dc.contributorBojacá Aldana, Carlos Ricardo
dc.contributorArguello Arias, Heliodoro
dc.creatorArias Rodríguez, Luis Alejandro
dc.date.accessioned2020-07-29T23:06:28Z
dc.date.accessioned2022-09-21T16:24:00Z
dc.date.available2020-07-29T23:06:28Z
dc.date.available2022-09-21T16:24:00Z
dc.date.created2020-07-29T23:06:28Z
dc.date.issued2020-06-09
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/77882
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3392308
dc.description.abstractEl tomate es una hortaliza de alto consumo a nivel mundial que hace parte de la canasta básica de los colombianos. Los sistemas productivos predominantes son convencionales a campo abierto o bajo invernadero, con manejo fitosanitario basado en plaguicidas de síntesis química. El objetivo del trabajo fue evaluar el uso y destino ambiental de plaguicidas en dos regiones productoras de tomate, con el fin de estimar los riesgos asociados bajo un enfoque agroecológico. Las zonas de estudio fueron regiones de Santander y Boyacá, productoras a campo abierto y bajo invernadero, respectivamente. Mediante 252 encuestas semi-estructuradas se caracterizó cada sistema de producción icluyendo aspectos socioeconómicos y fitosanitarios; por medio de 392 muestras compuestas se determinó el destino ambiental de plaguicidas; se evaluó el riesgo ambiental incluyendo el riesgo ecológico y el riesgo de consumo, este último con 696 muestras de frutos de las regiones de estudio y Bogotá, además se integró la percepción de los actores mediante 134 encuestas semi-estructuradas y se propusieron soluciones alternativas desde la agroecología. Como resultado, se determinó un manejo químico predominante con uso excesivo e inadecuado con 129 principios activos diferentes, principalmente insecticidas y fungicidas. Se detectaron residuos de 22 plaguicidas en frutos, hojas y suelo, siendo comunes en compartimientos y regiones dimetomorf, metomilo y tiociclam, no hubo detecciones en aguas ni sedimentos. Existe riesgo ecológico sobre especies terrestres y acuáticas, afectando servicios ecosistémicos. También se evidenció riesgo en la salud humana por ingesta de tomate con carbofuran, indoxacarb, difenoconazol y hexaconazol. Se superaron los Límites Máximos de Residuos-LMR en frutos. Los actores no perciben claramente el riesgo generado y su exposición. Este estudio bajo la perspectiva agroecológica vislumbró el panorama general de contaminación y riesgo ambiental por plaguicidas en sistemas productivos convencionales de tomate, proponiendo un proceso de disminución de su uso y conversión hacia sistemas de producción agroecológicos. (Texto tomado de la fuente).
dc.description.abstractWorldwide tomato is a high consumption vegetable, as part of Colombians staple food. The predominant productive systems are conventionals in open field or greenhouse, with pest management based on chemical pesticides. The main goal of this work was to evaluate the use and environmental fate of pesticides in two tomato producing regions, in order to estimate the associated risks under an agroecological approach. The study areas were some regions of Santander and Boyacá, open field and greenhouse producers, respectively. Each production system was characterized included socioeconomic and pest management aspects, through 252 semi-structured surveys. The environmental fate of pesticides was determined, through 392 composite samples. An Environmental Risk Assesment was implemented, including ecological risk and consumption risk, the latter, with 692 tomato samples from the study regions and Bogotá; also, the perception of the actors was integrated in the analysis through 134 semi-structured surveys in order to propose solutions from agroecology. As a result, a predominant chemical pest management was determined with excessive and inadequate use of 129 different active components, mainly insecticides and fungicides. Residues of 22 pesticides were detected in fruits, leaves and soil. Dimetomorph, methomyl and thiocyclam pesticides were common in compartments and regions. There is an ecological risk on terrestrial and aquatic species, affecting ecosystem services. There is also a risk to human health due to tomato intake of carbofuran, indoxacarb, difenoconazole and hexaconazole. Maximum Residues Limits-MRLs were exceeded in fruits. The risk generated and their exposures are not clearly perceived by the actors. This study under agroecological perspective glimpsed the big picture of contamination and environmental risk by pesticides in conventional tomato production systems, proposing a process to reduce their use and conversion to agroecological production systems.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ciencias Agrarias - Doctorado en Agroecología
dc.publisherEscuela de posgrados
dc.publisherFacultad de Ciencias Agrarias
dc.publisherBogotá, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationArias, L.A., Bojacá, C.R., Ahumada, D.A., Schrevens, E. 2014. Monitoring of pesticide residues in tomato marketed in Bogota. Food Control. 35: 213 - 217.
dc.relationAhumada, D.A., Arias, L.A., Bojacá, C.R. 2013. Multiresidue determination and uncertainty analysis of pesticides in soil by ultrafast liquid chromatography coupled to mass spectrometry. Journal of the Brazilian Chemical Society 24(7): 1188-1197.
dc.relationBojacá, C.R., Arias, L.A. Ahumada, D.A., Casilimas, H.A., Schrevens, E. 2013. Evaluation of pesticide residues in open field and greenhouse tomatoes from Colombia. Food Control. 30: 400- 403.
dc.relationBojacá, C.R., Gil, R., Casilimas, H., Arias, L.A., Schrevens, E. 2012. Modelling the environmental impact of pesticides sprayed on greenhouse tomatoes: a regional case study in Colombia. Acta Horticulturae (ISHS) 957:61-68.
dc.relationSerrato, N.A. 2018. Evaluación de Riesgo Ambiental de plaguicidas en agroecosistemas de tomate bajo invernadero y libre exposición de colombia. Director: Arias L.A. Maestría en Ciencias Ambientales, Universidad Jorge Tadeo Lozano. 28 p.
dc.relationSaénz, M.Y., Rosso, M. 2017. Efecto de cuatro plaguicidas sobre la nodulación de trébol rojo (Trifolium pratense) de Santa Sofía (Boyacá). Director: Arias L.A. Maestría en Ciencias Ambientales, Universidad Jorge Tadeo Lozano. 30 p.
dc.relationRodríguez, F.A. 2017. Efecto de plaguicidas sobre la polinización de tomate bajo invernadero por Apis mellifera (Hymenoptera: Apidae). Director: Arias L.A. Codirectora: Garzón, A. Biología Ambiental, Universidad Jorge Tadeo Lozano. 38 p.
dc.relationAux, S.M. 2016. Evaluación de residuos de plaguicidas y condiciones fisicoquímicas en aguas de ríos aledaños a sistemas agrícolas de la región del Ricaurte Alto, Boyacá, Colombia. Director: Arias L.A. Maestría en Ciencias Ambientales, Universidad Jorge Tadeo Lozano. 45 p.
dc.relationGarzón, A. 2014. Determinación de residuos de plaguicidas en hojas, frutos y suelo de sistemas productivos de tomate bajo invernadero y libre exposición en Colombia. Director: Arias L.A. Codirector: Bojacá, C.R. Biología Ambiental, Universidad Jorge Tadeo Lozano. 80 p.
dc.relationAyarza, A. 2014. Evaluación de residuos de plaguicidas en tejidos cuticulares y subcuticulares de frutos de tomate cultivados bajo invernadero y libre exposición en Colombia. Director: Arias L.A. Codirector: Bojacá, C.R. Biología Ambiental, Universidad Jorge Tadeo Lozano. 65 p.
dc.relationAbou-Arab, A.A.K. 1999.Behavior of pesticides in tomatoes during commercial and home preparation.Food Chemistry. 65: 509-514 p.
dc.relationAdeola, R.G. 2012. Perceptions of environmental effects of pesticides use in vegetable production by farmers in Ogbomoso, Nigeria. Global Journal of Science Frontier Research Agriculture & Biology. 12(4).1-8.
dc.relationAgronet, 2019. Área cosechada, producción y rendimiento de tomate en Colombia 2006-2018. En: https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1. Consulta Julio de 2019.
dc.relationAhumada, D. Zamudio, A. 2011. Análisis de residuos de plaguicidas en tomate mediante el uso de QuEChERS y cromatografía líquida ultrarrápida acoplada a espectrometría de masas. Revista Colombiana de Química. 40(2): 227-246.
dc.relationAhumada, D. Guerrero, J. 2010. Estudio del efecto matriz en el análisis de plaguicidas por cromatografía de gases. Vitae. 17 (1): 51-58.
dc.relationAktar, W. Sengupta, D. Chowdhury, A. 2009. Impact of pesticides use in agriculture: their benefits and hazards. Interdisc toxicol. 2 (1): 1-12.
dc.relationAltieri, M. 1999. The ecological role of biodiversity in agroecosystems. Agriculture, ecosystems & environment, 74(1):19-31.
dc.relationAltieri, M. 2002. Agroecology: the science of natural resource management for poor farmers in marginal environments. Agriculture, ecosystems & environment, 93(1): 1-24.
dc.relationAltieri, M., Nicholls, C. 2012. Agroecology scaling up for food sovereignty and resiliency. In Sustainable agriculture reviews. Springer Netherlands. Agroecología, 7(2): 65-83.
dc.relationAlza, W. Chaparro, S. García, J.2016. Estimación del riesgo de contaminación de fuentes hídricas de pesticidas (Mancozeb, Carbofuran) en Ventaquemada, Boyacá Colombia. Universidad Pedagógica y Tecnológica de Tunja. Boyacá Colombia Revista Biodiversidad y servicios ecosistemicos. Acta agronómica 65 (4), 68-374.
dc.relationAndow, D. 1991. Vegetational diversity and arthropod population response. Annual Review of Entomology 36: 561-586.
dc.relationAparicio, C. Barbaro, S. De Gerónimo, E. Portocarrero, R. 2014. Presence of pesticides in surface water from four sub-basins in Argentina. Chemosfere 107, 423-431.
dc.relationArtz D.R., Nault, B. 2011. Performance of Apis mellifera, Bombus impatiens, and Peponapis pruinosa (Hymenoptera: Apidae) as pollinators of pumpkin. J. Econ. Entomol. 104(4):1153–1161.
dc.relationÁvila-Orozco, F.D., León-Gallón, L.M., Pinzón-Fandiño, M.I., Londoño-Orozco, A., Gutiérrez-Cifuentes, J.A. 2017. Residualidad de fitosanitarios en tomate y uchuva cultivados en Quindío (Colombia). Corpoica Cienc Tecnol Agropecuaria, Mosquera (Colombia), 18(3): 571-582.
dc.relationBarnat, S., Boisset, M., Casse, F., Catteau, M., Lecerf, J-M., Veschambre, D., Periquet, A. 2010. Pesticide residues intake of French adults under increased consumption of fresh fruits and vegetables – A theorical study. Journal of Environmental Science and Health, Part B. 45(2): 102-107.
dc.relationBeddington, J., Asaduzzaman, M., Fernandez, A., Clark, M., Guillou, M., Jahn, M., Scholes, R. 2011. Achieving food security in the face of climate change: Summary for policy makers from the Commission on Sustainable Agriculture and Climate Change. Denmark, CGIAR, CCAFS.
dc.relationBerlinger, M.J. Watterson, J.C., Lange, A.H., Fisher, B.B., Ashton, F.F. 1986. Chapters: 10: Pest, 11: Diseases, Weed Control. In The Tomato Crop, A scientific basis for improvement. Atherton, J.G, Rudich, J., Roberts, E.H. (Eds.), Chapman and Hall Ltd. pp 391-509.
dc.relationBhandari, G., Zomer, P., Atreya, K., Mol, H.G.L., Yang, X., Geissen, V. 2019. Pesticide residues in Nepalese vegetables and potential health risks. Environmental Research. 172 (2019): 511–521.
dc.relationBlazquez, C. 1973. Residue determination of ethylenethiourea (2-imidazolidinethione) from tomato foliage, soil, and water. J,Agric. Food Chem. 21 (3): 330-332.
dc.relationBoivin, A., Poulsen, V. 2017. Environmental risk assessment of pesticides: state of the art and prospective improvement from science, Environmental Science and Pollution Research, 24(8), 6889-6894.
dc.relationBojacá, C.R., Wyckhuys, K.A., Schrevens, E., 2014. Life cycle assessment of Colombian greenhouse tomato production based on farmer-level survey data. J. Clean. Prod. 69: 26–33.
dc.relationBonmatin, J. M., Moineau, I., Charvet, Colin, R.M.E., Fleche, C., Bengsch, E.R. 2005. Behaviour of Imidacloprid in Fields Toxicity for Honey Bees. In: Environmental Chemistry - Green chemistry and pollutants in ecosystems, Lichtfouse, E., Schwarzbauer, J. Robert, D. (Eds). Berlin, Heidelberg: Springer Berlin Heidelberg. pp. 483–94.
dc.relationBoudreau, M.A. 2013. Diseases in intercropping systems. Annu Rev Phytopathol 51: 499-519.
dc.relationBrandt, A., Gorenflo, R. S., Meixner, R. B. 2016. The neonicotinoids thiacloprid, imidacloprid, and clothianidin affect the inmunocompetence of honey bees (Apis mellifera L.). Journal of Insect Physiology. 86: 40-47.
dc.relationBunemann, E., Schwenke, G., Van Zwieten, L. 2006. Impact of agricultural inputs on soil organisms - a review. J. Soil Res. 44: 379- 406.
dc.relationCanccapa, A., Masiá, A., Navarro-Ortega, A., Picó, Y., Barceló, D. 2016. Pesticides in the Ebro River basin: occurrence and risk assessment. Environmental Pollution. 211: 414-424.
dc.relationCarazo-Rojas, E., Perez-Rojas, G., Perez-Villanueva, M., Chinchilla-Soto, C., Chin-Pampillo, J.S., Aguilar-Mora, P., Alpízar-Marín, M., Masís-Mora, M., Rodríguez-Rodríguez, C.E., Vryzas, Z. 2018. Pesticide monitoring and ecotoxicological risk assessment in surface water bodies and sediments of a tropical agro-ecosystem. Environmental Pollution. 241(2018): 800-809.
dc.relationCárdenas, O. Silva, E. Ortiz, J. 2010. Uso de plaguicidas inhibidores de la acetilcolinesterasa en once entidades territoriales de salud en Colombia, 2002-2005. Biomédica. 30(1): 95-106.
dc.relationCarriquiriborde, P, Mirabella, P., Waichman, A., Solomon, K., Van den Brink, P., Maund, S. 2014. Aquatic risk assessment of pesticides in Latin America. Integrated Environmental Assessment and Management. 10(4): 539-542.
dc.relationCastro, P., Ramos, J., Estévez, S., Andrea, R. 2004. Residuos de Plaguicidas Organofosforados en muestras de tomate. Revista de Ingeniería, 20: 14-22
dc.relationCengiz, M.F., Certel, M., Karakas, B., Gocmen, H. 2007.Residue contents of captan and procymidone applied on tomatoes grown in greenhouses and their reduction by duration of a pre-harvest interval and post-harvest culinary applications. Food Chemistry. 100: 1611-1619.
dc.relationClaeys, W.L., Schmit, J-F., Bragard, C., Maghuin-Rogister, G., Pussemier, L., Schiffers, B. 2011.Exposure of several Belgian consumer groups to pesticide residues through fresh fruit and vegetable consumption. Food Control. 22: 508-516.
dc.relationCohen, M. A. 2017. Riesgo Ambiental: La aportación de Ulrich Beck. Acta Sociológica. 73: 171-194.
dc.relationCook, S.M., Zeyaur, R.K., Pickett, J.A. 2007. The Use of Push-Pull Strategies in Integrated Pest Management. Annu. Rev. Entomol. 52: 375–400.
dc.relationCooper, J. Dobson, H. 2007. The benefits of pesticides to mankind and the environment. Crop Protection. 26: 1337-1348.
dc.relationCortés, A. 2004. Suelos colombianos: Una mirada desde la academia. Universidad Jorge Tadeo Lozano. Bogotá. 126 p.
dc.relationCossettini, O. 2006. Guía de interpretación placas Petrifilm 3M. Buenos Aires. Argentina.
dc.relationCosta, E.M., Araujo, E.L., Maia, A. V. P., Silva, F. E. L., Bezerra, C. E. S., Silva, J. G. 2014. Toxicity of insecticides used in the Brazilian melon crop to the honey bee Apis mellifera under laboratory conditions. Apidologie. 45 (1):34–44.
dc.relationDarko, G., Akoto, O. 2008. Dietary intake of organophosphorus pesticide residues through vegetables from Kumasi, Ghana. Food and Chemical Toxicology. 46: 3703-3706.
dc.relationDe Ponti, T., Rijk, B., van Ittersum, M.K., 2012. The crop yield gap between organic and conventional agriculture.Agricultural systems. 108: 1-9.
dc.relationDey, 2010. Use of pesticides in vegetable farms and its impact on health of farmers and environment. Environmental science and technology. 2019(2): 134-140.
dc.relationDíaz, S. M., Sánchez, F., Varona, M., Eljach, V., Muñoz G.M.N. 2017. Niveles de colinesterasa en cultivadores de papa expuestos ocupacionalmente a plaguicidas, Totoró, Cauca, Revista de la Universidad Industrial de Santander, Salud, 49(1), 85-92.
dc.relationDorais, M., Ehret, D.L., Papadopoulos, A.P. 2008. Tomato (Solanum lycopersicum) health components: from the seed to the consumer. Phytochem Rev. 7: 231-250. Editorial Limusa. México.
dc.relationDurovic, R. Gajic, J. Dordevic, T. 2009. Effects of organic matter and clay content in soil on pesticide adsorption processes. Pestic.Phytomed. 24: 51- 57.
dc.relationEdwards, C. 1993. The impact of pesticides on the environment. Capítulo 2: 13-47. Pimentel, D. Lehman, H (eds.).1993. The Pesticide Question: Environment, Economics, and Ethics. Springer. New York, Estados Unidos. 441 p.
dc.relationEFSA, 2013. Scientific opinion on the identification of pesticides to be included in cumulative assessment groups on the basis of their toxicological profile. EFSA J.11, 3293.
dc.relationEkström, G., Ekbom, B. 2012. Pest Control in Agro-ecosystems: An Ecological Approach. Critical Reviews in Plant Sciences, 30:1-2, 74-94.
dc.relationEl-Shahawi, M.S. 1997. Retention profiles of some comercial pesticides, pyrethroid and acaricide residues and their application to tomato and parsley plants. Journal of Chromatography. 760: 179-192.
dc.relationEncuesta Nacional de Situación Nutricional (ENSIN). 2015. Instituto Colombiano de Bienestar Familiar (ICBF), Ministerio de Salud y Protección Social, Instituto Nacional de Salud (INS). En: https://www.icbf.gov.co/bienestar/nutricion/encuesta-nacional-situacion-nutricional. Consulta Julio de 2019.
dc.relationEnvironmental Protection Agency (EPA). 1998. Fate, Transport and transformation test guidelines. OPPTS 835.5154. Anaerobic biodegradation in the subsurface. Prevention, Pesticides and Toxic Substances. EPA. United States. 10 pp.
dc.relationEPA. 2011. 2006-2007 Pesticide Market Estimates: Sales and Usage. Washington, USA. 41 p.
dc.relationEPA. 2019. Integrated Risk Information System (IRIS). En: https://www.epa.gov/iris. Consulta Julio de 2019.
dc.relationEPA. 2019. Risk Assessment: Ecological Risk Assessment, Human Health Risk Assessment. En: https://www.epa.gov/risk/ecological-risk-assessment. Consulta Enero de 2019.
dc.relationEscobar, H., Lee, R. (Eds.) 2009. Manual de producción de tomate bajo invernadero. Segunda Edición. Universidad de Bogotá Jorge Tadeo Lozano. Bogotá. 167 p.
dc.relationEtchegoyen, M. A., Ronco, A. E., Almada, P., Abelando, M., Marino, D. J. 2017. Occurrence and fate of pesticides in the Argentine stretch of the Paraguay-Paraná basin. Environmental Monitoring and Assessment. 189(2): 63.
dc.relationEU Pesticide database (CEE). 2019. Commission Amending Regulation, European Commission, Regulation 1107/2009 (91/414). En: https://ec.europa.eu/food/plant/pesticides/max_residue_levels /eu_rules_en. Consulta Julio de 2019.
dc.relationFarias, D.M., Guerrero, J.A., Lozano, A., Piedrahita, W. 2004. Estudio de residuos de permetrina en un cultivo de tomate. Agronomía Colombiana, 22(1): 74-80.
dc.relationFenik, J., Tankiewicz, M., Biziuk, M. 2011. Properties and determination of pesticides in fruits and vegetables. Trends in Analytical Chemestry, 30 (6): 814-826.
dc.relationFenoll, J., Hellín, P., Martínez, C.M., Miguel, M., Flores, P. 2007. Multiresidue method for analysis of pesticides in pepper and tomato by gas chromatography with nitrogen-phosphorus detection.Food Chemistry. 105: 711-719.
dc.relationFeola, G., Binder, C.R. 2010. Identifying and investigating pesticide application types to promote a more sustainable pesticide use. The case of smallholders in Boyaca, Colombia. Crop Protection. 29: 612-622.
dc.relationFierro, H., Téllez, J. 1997. Motivaciones y uso de plaguicidas en el cultivo de la papa, Corpoica, Tibaitatá. pp : 1-48
dc.relationFife, J. Nokes, S. 2002. Evaluation of the effect of rainfall intensity and duration on the persistence of chlorothalonil on processing tomato foliage. Crop Protection. 21: 733-740.
dc.relationFinizio, A., Villa, S. 2002. Environmental risk assessment for pesticides: A tool for decision making, Environmental Impact Assessment Review, 22(3): 235-248.
dc.relationFisher D., Hayes A. 1982. Effects of some systemic imidazole and triazole fungicides on white clover and symbiotic nitrogen fixation by Rhizobium trifolii. Ann. Appl. Biol. 101: 19-24.
dc.relationFlores-Pacheco, J. A. Mairena, A., Espluga, J. 2013. Evaluación de riesgos en sistemas agrícolas asociados a la utilización de plaguicidas en el Municipio de Kukra Hill, Nicaragua, Centroamérica. Nexo Revista Científica. 26(1): 34-44.
dc.relationFood and Agriculture organization of the Nations – FAO. 2017. Food and agriculture data-FAOSTAT. Tomatoes. En: http://www.fao.org/faostat/en/#home. Consulta Julio de 2019.
dc.relationFAO. 1999. Recommended methods of sampling for the determination of pesticide residues for compliance with MRLS CAC/GL 33-1999. 18 p.
dc.relationFood and Agriculture Organization of the United Nations / World Health Organization (FAO/WHO). 2019. Codex Pesticides Residues in Food Online Database. Pesticide residues in food and feed. Codex Alimentarius, VO-0048-Tomato. EN: http://www.codexalimentarius.net/pestres/data/ commodities/ details.html?id=320. Consulta Julio de 2019.
dc.relationFAO/WHO. 2011. Pesticide residues in food 2010, Joint FAO/WHO Meeting on Pesticides Residues, FAO plant production and protection paper 200. Rome. 55 p.
dc.relationFAO, 2016. Asistencia técnica y extensión rural participativa en América Latina. Lima. 52 p.
dc.relationFood and Drug Administration United States (FDA). 2018. Pesticide Analytical Manual (PAM) Sec 302.
dc.relationFuentes, L.S., Niño, N.E., Casilimas, H.A., Bojacá, C.R. 2014. Plagas y enfermedades del cultivo de tomate guía técnica de campo. Universidad Jorge Tadeo Lozano. 72 p.
dc.relationFytolab, 2015. Manual interno de procesos, basado en Standard Methods, 2005.
dc.relationGallego, A.G.H. 1973. Residuos de plaguicidas Organoclorados en productos agrícolas de consumo humano en Cali. Tesis de Ingeniería sanitaria. Universidad del Valle. 48 p.
dc.relationGambacorta, G., Faccia, M., Lambacchia, C., Di Luccia, A., La Notte, E. 2005. Pesticide residues in tomato grown in open field. Food Control.16: 629-632.
dc.relationGarrido, A., Martínez, J.L., López., Cortés S., Martínez, I. 2004. Monitoring multi-class pesticide residues in fresh fruits and vegetables by liquid chromatography with tandem mass spectrometry. Journal of Chromatography A, 1048: 199-206.
dc.relationGarzón, A., Manejo sostenible de mosca blanca (Trialeurodes vaporariorum) en tomate (Solanum lycopersicum) mediante estrategias basadas en agentes de control biológico. Tesis Maestría en Ciencias Ambientales. Universidad Jorge Tadeo Lozano. 24 p.
dc.relationGevao, B. Semple, K. Jones, K. 2000. Bound pesticide residues in soils: a review. Environmental pollution. 108: 3-14.
dc.relationGil, R., Bojacá, C.R., Schrevens, E. 2019. Understanding the heterogeneity of smallholder production systems in the Andean tropics – The case of Colombian tomato growers. NJAS - Wageningen Journal of Life Sciences. 88(2019):1-9.
dc.relationGil, R., Bojacá, C.R., Schrevens, E., 2017. Uncertainty of the agricultural grey water footprint based on high resolution primary data. Water Resour. Manag. 31 (11), 3389–3400.
dc.relationGliessman, S. 2015. Agroecology: The ecology of sustainable food systems, Third ed., 371. Nueva York: Taylor y Francis. 406 p.
dc.relationGoss, D & Wauchope RD (1990) The SCR/ARS/CES Pesticide Properties Database. II using it with Soils data in a screening Procedure. In D.L. Weigmann Ed., Pesticides in the next decade: the challenge ahead, Virginia Resources Research Centre, Blacksburg, VA, USA pp471-493.
dc.relationGuaitero, L.B. 2010. Propuesta metodológica para la evaluación de riesgo ambiental causado por el uso de plaguicidas en sistemas hortofrutícolas de la Sabana de Bogotá. Tesis de Maestría en Ciencias Agrarias. Facultad de Agronomía. Universidad Nacional de Colombia. 180 p.
dc.relationGuerrero, J. 2003. Estudio de residuos de plaguicidas en frutas y hortalizas en áreas específicas de Colombia. Agronomía Colombiana, 21(3): 198-209.
dc.relationGutiérrez, J.A. & Londoño, A. 2009. Determinación de plaguicidas Organoclorados y Organofosforados en tomates de cadena en las ciudades de Pereira y Armenia, Colombia. Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas. 8(3): 165-171.
dc.relationHatt, S., Artru, S., Brédart, D., Lassois, L., Francis, F., Haubruge, E. Stassart, P., Dufrene, M., Munty, A., Boeraeve, F. 2016.Towards sustainable food systems: the concept of agroecology and how it questions current research practices. A review. Biotechnol. Agron. Soc. Environ. 20(S1):215-224.
dc.relationHarari, R, Harari, H. 2006. Children's environment and health in Latin America: the Ecuatorian case, Annals of the New York Academy of Sciences, 1076(1): 660-677.
dc.relationHernández, L., Guerrero, E., Cubillos, F., Salazar, F. 1986. Niveles sanguíneos de insecticidas Organoclorados en varios grupos de población colombiana. Revista Colombiana de Ciencias Químicas y farmacológicas. 45(1): 49-58.
dc.relationHernández, F. Beltrán, J. 1995. Análisis de residuos de plaguicidas en aguas. Grupo de investigación de medio ambiente y recursos naturales. Departamento de Ciencias Experimentales. Universidad Jaime L. Castellón. pp: 321-355.
dc.relationHerridge D., Peoples, M., Boddey R. 2008. Global inputs of biological nitrogen fixation in agricultural systems. Plant and Soil, 311: 1-18.
dc.relationHock, W. 1994. Effect of pH on pesticide stability and efficacy. Perential Plants 2(2) 1-2.
dc.relationIdrovo, A. 2000. Vigilancia de las Intoxicaciones con Plaguicidas en Colombia. Rev. Salud Pública. 2 (1): 36-46.
dc.relationImfeld, G. Vuilleumier, S. 2012. Measuring the effects of pesticides on bacterial communities in soil: A critical review. European Journal of soil biology. 49: 22-30.
dc.relationInstituto Colombiano Agropecuario (ICA). 2019. Registros de venta de plaguicidas químicos de uso agrícola - y bioinsumos. Julio de 2019. En: https://www.ica.gov.co/. Consulta Julio de 2019.
dc.relationIwata, Y. Spear, R. Knaak, J. Foster, R. 1977. Worker reentry into pesticide-treated crops, I, Procedure for the determination of dislodgable pesticide residues on foliage. Bulletin of Environmental Contamination and Toxicology. 18 (6): 649-655.
dc.relationJaramillo, J. Rodríguez, V. Guzmán, M. Zapata, M. 2006. El cultivo de tomate bajo invernadero (Lycopersicon esculentum. mill). Boletín técnico 21. Corpoica. Antioquia, Colombia. 48 p.
dc.relationJardim, A., Caldas, E., 2012. Brazilian monitoring programs for pesticide residues in food e Results from 2001 to 2010. Food Control, 25: 607-616.
dc.relationJenkins, D.; Snoesyink, V.; Ferguson, J.; Leckie, J. 1983. Química del Agua: manual de laboratorio.
dc.relationJuraske, R., Antón, A., Castells, F., Huijbregts, M.A.J. 2007. Human intake fractions of pesticides via greenhouse tomato consumption: Comparring model estimates with measurements for Captan. Chemosphere. 67: 1102-1107.
dc.relationJuraske, R., Mosquera, C.S., Erazo, A., García, G., Berdugo, M.B., Díaz, J., Binder, C.R., Hellweg, S., Guerrero, J.A. 2011. Pesticide uptake in potatoes: model and field experiments. Environmental Science & Technology. 45 (2) : 651-657.
dc.relationKah, M. 2007. Behavior of ionisable pesticides in soils. PhD Thesis. Environmental Department. University of York. 229 p.
dc.relationKatz. J.M., Winter, C.K. 2009. Comparision of pesticide exposure from consumption of domestic imported fruits and vegetables.Food and Chemical Toxicology. 47: 335-338.
dc.relationKaushik, G., Satya, S. Naik, S.N. 2009. Food processing a tool to pesticide dissipation – A review.Food Research International. 42: 26-40.
dc.relationKimura, S. Sinha, N. 2008. Tomato (Solanum lycopersicum): A Model Fruit-Bearing Crop, Cold Spring Harb Protoc. EN: http:// cshprotocols.cshlp.org/ content/2008/11/pdb. emo105.full.pdf+html. Consulta Octubre 2013.
dc.relationKolankaya, D. Ogus, A. Ayas, Z. Akay, M. 1989, Manganese ethylenebisdithiocarbamate (Maneb) and ethylenethiourea (ETU) residues in different parts of tomato plant and soil, Food Chemestry, 34 (3):181-186.
dc.relationKong, Z., Dong, F., Xu, J., Liu, X., Zhang, Ch. Li, J., Li, Y., Chen, X., Shan, W., Zheng, Y. 2012.Determination of difeconazole residue in tomato during home canning by UPLC-MS/MS. Food Control. 23: 542-546.
dc.relationKontou, S., Tsipi, D., Tzia, C. (2004). Stability of the dithiocarbamate pesticide maneb in tomato homogenates during cold storage and thermal processing. Food Additives and Contaminants. 21(11): 1083–1089.
dc.relationLehmann, E., Turrero, N., Kolia, M., Konate, Y., de Alencastro, L.F., 2017. Dietary risk assessment of pesticides from vegetables and drinking water in gardening areas in Burkina Faso. Sci. Total Environ. 601(602)1208–1216.
dc.relationLeiva, F.R., Fuentes, C.L., Guaitero, B. 2012. Metodología para la evaluación del riesgo ambiental causado por el uso de plaguicidas en sistemas hortofrutícolas en el departamento de Cundinamarca. Avances de la Investigación Agronómica II, Universidad Nacional de Colombia, Facultad de Agronomía, pp 99-110.
dc.relationLetourneau, D., Armbrecht, I., Salguero, B., Montoya, J., Jiménez E., Daza, M., Escobar, S., Galindo, V., Gutiérrez, C., Duque, S., López, J., Acosta, A., Herrera, J., Rivera, L., Saavedra, C., Torres, A., Reyes, A. 2011. Does plant diversity benefit agroecosystems? A synthetic review. Ecol Appl 21: 9-21.
dc.relationLi, H., Wei, Y., Lydy, M. J., You, J. 2014. Inter-compartmental transport of organophosphate and pyrethroid pesticides in South China: implications for a regional risk assessment. Environmental Pollution. 190: 19-26.
dc.relationLi. L, Jiang, G., Liu, C., Liang, H., Sun, D., Li, W. 2012. Clothianidin dissipation in tomato and soil, and distribution in tomato peel and flesh.Food Control. 25: 265-269.
dc.relationLloret L., Martínez, R. E. 2005. Evolución y filogenia de Rhizobium. Rev. Latinoam. Microbiol. 47: 43-6.
dc.relationLobatón J., Cure J., Almanza M. 2012. Fenología y Oferta Floral de Trébol Rojo Trifolium pratense (Fabales: Fabaceae) en Praderas de Kikuyo Penissetum clandestinum (Poales: Poaceae), como Fuente Alimento para Bombus atratus (Hymnoptera, Apoidea) en Cajicá, Colombia. Revista de Ciencias Básicas. Universidad Militar Nueva Granada, 8(1) ,18-27.
dc.relationLondoño, R., Barreto, J.R. 1982. Muestreo y manejo de muestras de productos agrícolas para análisis de residuos de plaguicidas. Instituto Colombiano Agropecuario. Bogotá (Colombia). 30 p.
dc.relationLotter, D.W. 2003. Organic agriculture. J Sustainable Agric 21: 37-51.
dc.relationLyon, A., Bell, M., Gratton, C., Jackson, R. 2011. Farming without a recipe: Wisconsin graziers and new directions for agricultural science. Journal of Rural Studies. 27(4): 384-393.
dc.relationMacias‐Macias, O., Chuc, J., Ancona‐Xiu, P., Cauich, O., Quezada‐Euán, J. J. G. 2009. Contribution of native bees and Africanized honey bees (Hymenoptera: Apoidea) to Solanaceae crop pollination in tropical México. J. Appl. Entomol. 133(6):456–465.
dc.relationMacLachlan, D.J., Hamilton, D. 2010. Estimation methods for maximum residue limits for pesticides.Regulatory Toxicology and Pharmacology. 58: 208-218.
dc.relationMahugija, J. Kishimba, M. 2007. Organochlorine pesticides and metabolites in young leaves of Mangifera indica from sites near a point source in Coast region, Tanzania. Chemosphere. 68: 832-837.
dc.relationMarrugo-Negrete, J. L., Navarro-Frómeta, A. E., Urango-Cardenas, I. D. 2014. Organochlorine pesticides in soils from the middle and lower Sinú River Basin (Córdoba, Colombia), Water, Air, & Soil Pollution, 225(8): 2053.
dc.relationMartínez, R. Balaguera, J. Arias, H. Velásquez, M. Ruiz, F. Janeth, A. 2012. Plan de Desarrollo Municipal: Municipio Valle de San José, Colombia. 235 p.
dc.relationMcRae RJ, Hill SB, Mehuys FR, Henning J. 1990. Farm scale agronomic and economic conversion from conventional to sustainable agriculture. Advances in Agronomy 43: 155-198.
dc.relationMedina, D. Abreu, de V. Buscema, A. Ettiene, G. & Prieto A. (1999). Persistence of Organophosphorus Pesticide Residues in Limón River Waters. Environmental Contamination and Toxicology. 63, 39-44.
dc.relationMejías, J., Jerez, J. 2006. Guía para la toma de muestras de residuos de plaguicidas Agua, sedimento y suelo. Ministerio de Agricultura. Gobierno de Chile.
dc.relationMiranda, D., Fischer, G., Barrientos, J.C., Carranza, C., Rodriguez, M., Lanchero, O. 2009. Caracterization of productive systems of tomato (Solanum lycopersicum L.) in producing zones of Colombia. Acta horticulturae, 821: 35-45.
dc.relationMojica, A., Guerrero, J. A. 2013. Evaluación del movimiento de plaguicidas hacia la cuenca del lago de tota, Colombia. Revista Colombiana de Química. 42(2): 29-38.
dc.relationMonsalve, O., Escobar, H., Medina, A., Forero, A. 2009. Estrategias de fertilización limpia y orgánica en la producción de tomate bajo invernadero. Universidad de Bogotá Jorge Tadeo Lozano. Bogotá. 98 p.
dc.relationMosquera-Vivas, C.S., Martinez, M.J., García-Santos, G., Guerrero-Dallos, J.A. 2018. Adsorption-desorption and hysteresis phenomenon of tebuconazole in Colombian agricultural soils: Experimental assays and mathematical approaches. Chemosphere. 190 (2018) 393 – 404.
dc.relationMosquera-Vivas,C.S., Walthe, E., García-Santos, G., Obregón-Neira, N., Celis-Ossa, R.E., González-Murillo, C.A., Juraske, R., Hellweg, S., Guerrero-Dallos, J.A. 2016. The effect of the soil properties on adsorption, single-point desorption, and degradation of chlorpyrifos in two agricultural soil profiles from Colombia. Soil Science.181 (9/10): 446-456.
dc.relationMunicipio De Villa de Leyva. 2004. Plan de Desarrollo Municipal 198 p.
dc.relationMurcia, A.M., Stashenko, E. 2008. Determinación de plaguicidas organofosforados en vegetales producidos en Colombia. Agro Sur. 36(2): 71-81.
dc.relationNaizaque, J. 2008. Esquema de ordenamiento territorial: Municipio de Combita. Corpoboyaca. Bogotá. p 43.
dc.relationNarváez, J., Palacio, J., Molina F. 2012. Persistencia de plaguicidas en el ambiente y su ecotoxicidad: Una revisión de los procesos de degradación natural. Revista Gestión y Ambiente. Universidad Nacional de Colombia. Sede Medellín. 15(3): 27-38.
dc.relationNasreddine, L., Parent-Massin, D. 2002.Food contamination by metals and pesticides in the European Union. Should we worry?.Toxicology Letters. 127: 29-41 pp.
dc.relationNicholls, C.I, Altieri M.A., Vazquez. L. 2016. Agroecology: Principles for the Conversion and Redesign of Farming Systems. J Ecosys Ecograph. S5: 010, 8p.
dc.relationNiewiadomska, A.2003. Effect of carbendazim, imazetapir and thiram on nitrogenase activity, the number of microorganisms in soil and yield of red clover (Trifolium pretense L.). Polish Journal of Environmental Studies. 13(4): 403-410.
dc.relationOECD. 2003. OECD Environmental Indicators. Development, measurement and use. Reference paper. Organisation for Economic Co- Operation and development. France.
dc.relationOo, M.L, Yabe, M., Khai, H.V. 2012. Farmers' Perception, Knowledge and Pesticide Usage Practices: A Case Study of Tomato Production in Inlay Lake, Myanmar. Journal- Faculty of Agriculture Kyushu University. 57 (1), 327–331 (2012).
dc.relationOrtíz, M. Sánchez, E. Olvera, A. Folch, J. 2011. Pesticides in the Environment: Impacts and their Biodegradation as a Strategy for Residues Treatment. Cap 27. Pp 25. En: Stoytcheva, M (Ed). 2011. Pesticides- Formulations, Effects, Fate. InTech. Baja California, Mexico. 808 p.
dc.relationOsman, K.A., Al-Humaid, A.I., Al-Rehiayani, S.M., Al-Redhaiman, K.N. 2011. Estimated daily intake of pesticide residues exposure by vegetables grown in greenhouses in Al-Qassim región, Saudi Arabia.Food Control. 22: 947-953.
dc.relationOwnby, D.R., Trimble, T.A. Cole, M.J.L. 2004. Pesticide Residues in Water, Sediment and Fish at the Sparta, IL, USA National Guard Armony. Bulletin of Environmental Contamination and Toxicology. 73(5): 802-809.
dc.relationPáez, M.I., Varona, M., Díaz, S.M., Castro, R.A., Barbosa, E., Carvajal, N., Londoño, A. 2011. Evaluación de riesgo en humanos por plaguicidas en tomate cultivado con sistemas tradicional y BPA (Buenas Prácticas Agrícolas). Revista de Ciencias, Universida del Valle. 15: 153-166.
dc.relationPardo, S., Suárez, H., Pertuz, V. 2009. Interacción de los suelos sulfatados ácidos con el agua y sus efectos en la sobrevivencia del Bocachico (Prochilodus magdalenae) en cultivo. Revista Colombiana de Ciencias Pecuarias. Medellín. Colombia. 22(4).
dc.relationPenido, P., Clarete, E., Rath, S., Reyes, F.G. 2009. Residue content of oxytetracycline applied on tomatoes grown in open field and greenhouse. Food Control. 20: 11-16.
dc.relationPérez, M. A., Navarro, H., Miranda, E. 2013. Residuos de plaguicidas en hortalizas: problemática y riesgo en México. Revista Internacional de Contaminación Ambiental. 29: 45-64.
dc.relationPesticide Action Network (PAN). 2019. Pesticide Database, North America. Version 12.0. En http://www.pesticideinfo.org/. Consulta Julio de 2019.
dc.relationPinzón, G. 2007. Historia de la formación de Santander, sus provincias y municipios. (Sic) Editorial. 526 p.
dc.relationPolanco, Y., Salazar, J.C., Curbow, B. 2014. A quantitative analysis of Colombian campesinos’ use of pesticides: perceived control and confidence in this use. Rev. Fac. Nac. Salud Pública 2014; 32(3): 373-382.
dc.relationPesticide Properties Database (PPDB). 2019. University of Hertfordshire. En: https://sitem.herts.ac.uk/aeru/ppdb/en/. Consulta Julio de 2019.
dc.relationR Core Team, 2017. R: a language and environment for statistical computing. URL. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.
dc.relationRamírez, H. 2010. Geología. Diagnostico esquema de ordenamiento territorial de Páramo- Santander.
dc.relationRamírez, J. Lacasaña, M. 2001. Plaguicidas: clasificación, uso, toxicología y medición de la exposición. Arch Prev Riesgos Labor. 4(2): 67-75.
dc.relationRavelo-Pérez, L.M., Hernández-Borguez, J., Borgues-Miguel, T.M., Rodríguez-Delgado, M.A. 2008. Pesticide analysis in tomatoes by solid-phase microextraction and micellarelectrokinetic chromatography (Short communication).Journal of Chromatography.A(1185): 151-154.
dc.relationRodríguez, D., Ahumada, D.A., Díaz, A.C., Guerrero, J.A. 2014. Evaluation of pesticide residues in honey from different geographic regions of Colombia. Food Control. 37 (2014): 33-40.
dc.relationRoldán, G. Ramírez, J. 2008. Fundamentos de limnología neotropical: Editorial Universidad de Antioquia. Medellín. Colombia. 440 p.
dc.relationRömbke, J., Waichman, A. V., Garcia, M. V. 2008. Risk assessment of pesticides for soils of the Central Amazon, Brazil: comparing outcomes with temperate and tropical data. Integrated Environmental Assessment and Management. 4(1): 94-104.
dc.relationRuíz-Toledo, J., Castro, R., Rivero-Pérez, N., Bello-Mendoza, R., Sánchez, D. 2014. Occurrence of glyphosate in water bodies derived from intensive agriculture in a tropical region of southern Mexico, Bulletin of Environmental Contamination and Toxicology. 93(3): 289-293.
dc.relationSabara, H. A., Gillespie, D. R., Elle, E., Winston, L. 2004. Influence of brood, vent screening, and time of year on honey bee (Hymenoptera: Apidae) pollination and fruit quality of greenhouse tomatoes. J. Econ. Entomol. 97(3): 727–734.
dc.relationSabara, H.A., Winston, M.L. 2003 Managing Honey Bees (Hymenoptera : Apidae ) for Greenhouse Tomato Pollination. J. Econ. Entomol. 96: 547–554.
dc.relationSadlo, S. 1997. Adaption of the internal standard method to a pesticide residues study in/on plants.Short communication.Journal of Chromatography.765: 115- 119.
dc.relationShetty, P.K., Murugan, M., Hiremath, M.B., Sreeja. K.G. 2010. Farmers’ education and perception on pesticide use and crop economies in Indian agriculture. Journal of Experimental Sciences 1(1): 3-8.
dc.relationShankar, P., Shaikh N., Sharmishtha P. 2012. Effect of Different Herbicides on the Nodulation Property of Rhizobial Isolates. Universal Journal of Environmental Research and Technology, 2(4): 293-299.
dc.relationShegunova, P. Klanova, J. Holoubek, I. 2007. Residues of organochlorinated pesticides in soils from the Czech Republic. Environmental Pollution. 146: 257-261.
dc.relationSilici, L. 2014. Agroecology-what it is and what it has to offer. Issue Paper 14629IIED. London: International Institute for Environment and Development.
dc.relationSolano, L. Malaver, T. Alarcon, R. Porras, M. Pineda, L. Duque, G. Gutiérrez, N. Vega, N. 2012. Plan de Desarrollo Municipal: Municipio de Paramo. Paramo, Colombia. 174 p.
dc.relationStandard Methods. 2005. Examination of Water and Wastewater; APHA, AWWA and WEF, 21st Edition.
dc.relationStephenson, G. Solomon, K. 2013. Plaguicidas y ambiente. Versión en español editada por Carazo, E. 1 ed. 580 p.
dc.relationSuárez, J., Suárez, J., López, D., Morocho, H., Cachiguango, L., & Dellai, W. 2017. Agroecology and Health: Lessons from Indigenous Populations. Current Environmental Health Reports, 4(2), 244-251.
dc.relationTittonell, P. 2014. Ecological intensification of agriculture sustainable by nature. Current Opinion in Environmental Sustainability, 8: 53-61.
dc.relationToledo, V.M. 2008. Metabolismos rurales: hacia una teoría económico-ecológica de la apropiación de la naturaleza. Revista Iberoamericana de Economía Ecológica. 7: 1-26
dc.relationTuo, Y., Hala, N. 2011. Impact of terrestrial spraying of thiocyclam hydrogen oxalate on oil palm pollinating insects. J. Agric. Biol. Sci. 2: 208–213.
dc.relationUrrego, C.J., Cachique, J.A. 1986. Cuantificación de residuos de plaguicidas Organoclorados y Organofosforados en cultivo de tomate en zonas de Cundinamarca y Boyacá. Tesis Agrología. Fundación Universidad de Bogotá Jorge Tadeo Lozano, Bogotá (Colombia). 107 p.
dc.relationVaarst, M., Getz, A., Chappell, M.J., Brinkley, C., Nijbroek, R. Arraes, N., Andreasen, L., Gattinger, A., De Almeida, G., Bossio D., Halberg, N. 2018. Exploring the concept of agroecological food systems in a city-region context, Agroecology and Sustainable Food Systems, 42(6): 686-711.
dc.relationVallejo, F. Estrada, E. 2004. Producción de hortalizas de clima cálido. Universidad Nacional de Colombia. Palmira, Colombia. 344 p.
dc.relationVan der Werf. 1996. Assessing the impact of pesticides on the environment. Agriculture, Ecosystems and Environment. 60: 81-96.
dc.relationVerschueren, K. 1983. Handbook of environmental data on organic chemicals. 2nd. edition. Van Nostrand Reinhol Company, pp: 22-137.
dc.relationVincent J. M. 1970. A Manual for the Practical Study of Root-Nodule Bacteria. Handbook. International Biological Programme Blackwell Scientific. 164 p.
dc.relationWang, C. Liu, Z. 2007. Foliar uptake of pesticides—Present status and future challenge. Pesticide Biochemistry and Physiology. 87: 1-8.
dc.relationWare, G. Estesen, B. Buck, N. 1980. Dislodgable insecticide residues on cotton foliage: Acephate, AC 222,705, EPN, fenvalerate, methomyl, methyl parathion, permethrin, and thiodicarb. Bulletin of Environmental Contamination and Toxicology. 25: 608-615.
dc.relationWezel, A., Bellon, S., Doré, T., Francis, C., Vallod, D., David, C. 2009. Agroecology as a science, a movement and a practice. A review. Agronomy for Sustainable Development, 29(4): 503-515.
dc.relationWezel, A., Casagrande, M., Celette, F., Vian, J., Ferrer, A., Peigné, J. 2014. Agroecological practices for sustainable agriculture A review. Agronomy for sustainable development, 34(1): 1-20.
dc.relationWilliamson, S. M., Wright, G. A. 2013. Exposure to multiple cholinergic pesticides impairs olfactory learning and memory in honeybees. J. Exp. Biol. 216 (10): 1799–1807.
dc.relationWillis, G., McDowell, L. 1987. Pesticide persistence on foliage. Reviews of Environmental Contamination and Toxicology. 100: 23-73.
dc.relationWood, S, A., Karp, D.S., DeClerck, F., Kremen, C., Naeem, S., Palm Ch. 2015. Functional traits in agriculture: agrobiodiversity and ecosystem services. Trends in Ecology & Evolution: 1–9.
dc.relationWorld Health Organization - WHO. 1997. Guidelines for predicting dietary intake of pesticide residues. Switzerland. 33 pp.
dc.relationWorld Health Organization - WHO. 2012. Joint FAO/WHO Meeting on Pesticide Residues (JMPR). En: http://apps.who.int/pesticide-residues-jmpr-database/Home/Range/All. Consulta Julio de 2019.
dc.relationYang, T., Doherty, J., Zhao, B., Kinchla, A., Clark, J., He, L. 2017. Effectiveness of Commercial and Homemade Washing Agents in Removing Pesticide Residues on and in Apples. J. Agric. Food Chem. 9 p.
dc.relationZamar, A.B., Uddin, S., Moniruzzaman, B., Karim, M, Hua, S. 2012. Organophosphorus and carbamate pesticide residues detected in water samples collected from paddy and vegetable fields of the savar and dhamrai upazilas in bangladesh. International Journal of Environmental Research and Public Health. 9:3318-3329.
dc.relationZhang, W. Jiang, F. Ou, J. 2011. Global pesticide consumption and pollution: with China as a focus. Proceedings of the International Academy of Ecology and Environmental Sciences. 1 (2): 125-144.
dc.relationZhang, W., Ricketts, T., Kremen, C., Carney, K., Swinton, S. 2007. Ecosystem services and dis-services to agriculture. Ecological economics, 64(2): 253-260.
dc.relationArias L.A. 2019. Programa Profesional en AGROECOLOGÍA, Universidad de Bogotá Jorge Tadeo Lozano. Resolución 008924 Ministerio de Educación Nacional (MEN) del 27 de agosto de 2019. Proponente, Líder del Proceso de Creación y Director del Programa. En: https://www.utadeo.edu.co/es/facultad/ciencias-naturales-e-ingenieria/programa/bogota/agroecologia
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleEvaluación agroecológica del uso y destino ambiental de plaguicidas en sistemas de producción de tomate de Boyacá y Santander en Colombia
dc.typeTesis


Este ítem pertenece a la siguiente institución