dc.contributor | Chejne Jana, Farid | |
dc.contributor | Amell Arrieta, Andrés | |
dc.contributor | Termodinámica Aplicada y Energías Alternativas | |
dc.creator | Ordoñez Loza, Javier Alonso | |
dc.date.accessioned | 2021-10-14T19:33:00Z | |
dc.date.accessioned | 2022-09-21T16:23:19Z | |
dc.date.available | 2021-10-14T19:33:00Z | |
dc.date.available | 2022-09-21T16:23:19Z | |
dc.date.created | 2021-10-14T19:33:00Z | |
dc.date.issued | 2021-06-21 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/80555 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/3392175 | |
dc.description.abstract | Sugarcane bagasse bio-oil is a low calorific fuel produced by pyrolysis of cane bagasse in a nitrogen atmosphere and can be considered as a future alternative fuel. In this doctoral thesis, a detailed characterization of the bio-oil was developed, and the effect of carbon dioxide on char formation during thermal decomposition was evaluated. The kinetics was also analyzed, and decomposition stages were proposed. Likewise, bio-oil droplet evaporation experiments were carried out and allowed to identify the nature of the phenomenon of micro-explosions and its relationship with the formation of microbubbles, to complement the work, a novel model to predict micro-explosions were developed offering the possibility of understanding the phenomenon of micro-explosion formation from a collection of physicochemical events that begin with the nucleation, coalescence, and explosion of microbubbles within the drop. | |
dc.description.abstract | El bio-aceite de bagazo de caña es un combustible de bajo poder calorífico producido por la pirólisis de bagazo de caña en atmósfera de nitrógeno, y puede considerarse como un futuro combustible alternativo. En esta tesis una caracterización detallada del bio-aceite fue desarrollada, y se evaluó el efecto del dióxido de carbono en la formación de carbonizado durante la descomposición térmica. También se analizó la cinética y etapas de descomposición fueron propuestas. Así mismo experimentos de evaporación de gotas de bio-aceite fueron realizados y permitieron identificar la naturaleza del fenómeno de las micro-explosiones y su relación con la formación de microburbujas, para complementar el trabajo un novedoso modelo para predecir las micro-explosiones fue desarrollado ofreciendo la posibilidad de entender el fenómeno de formación de micro-explosiones a partir de una colección de eventos fisicoquímicos que comienzan con la nucleación, coalescencia y explosione de microburbujas dentro de la gota. (Texto tomado de la fuente) | |
dc.language | eng | |
dc.publisher | Medellín - Minas - Doctorado en Ingeniería - Sistemas Energéticos | |
dc.publisher | Departamento de Procesos y Energía | |
dc.publisher | Facultad de Minas | |
dc.publisher | Medellín, Colombia | |
dc.publisher | Universidad Nacional de Colombia - Sede Medellín | |
dc.relation | [1] R. Calabria, F. Chiariello, P. Massoli, Combustion fundamentals of pyrolysis oil based fuels, Exp. Therm. Fluid Sci. 31 (2007) 413–420. https://doi.org/10.1016/j.expthermflusci.2006.04.010. | |
dc.relation | [2] M. Garcia-Perez, P. Lappas, P. Hughes, L. Dell, A. Chaala, D. Kretschmer, C. Roy, Evaporation and combustion characteristics of biomass vacuum pyrolysis oils, IFRF Combust. J. 200601 (2006) 1–27. | |
dc.relation | [3] Á. Muelas, M.S. Callén, R. Murillo, J. Ballester, Production and droplet combustion characteristics of waste tire pyrolysis oil, Fuel Process. Technol. 196 (2019). https://doi.org/10.1016/j.fuproc.2019.106149. | |
dc.relation | [4] C. Branca, C. Di Blasi, Combustion kinetics of secondary biomass chars in the kinetic regime, Energy and Fuels. 24 (2010) 5741–5750. https://doi.org/10.1021/ef100952x. | |
dc.relation | [5] Z. Xiong, S.S.A. Syed-hassan, X. Hu, J. Guo, J. Qiu, X. Zhao, Pyrolysis of the aromatic-poor and aromatic-rich fractions of bio-oil : Characterization of coke structure and elucidation of coke formation mechanism, Appl. Energy. 239 (2019) 981–990. https://doi.org/10.1016/j.apenergy.2019.01.253. | |
dc.relation | [6] P. Eng, D. Scarpete, Diesel-water emulsion, an alternative fuel to reduce diesel engine emissions. A review, Mach. Technol. Mater. (2013) 7–10. | |
dc.relation | [7] C.Y. Hsuan, S.S. Hou, Y.L. Wang, T.H. Lin, Water-In-Oil emulsion as boiler fuel for Reduced NOx emissions and improved energy saving, Energies. 12 (2019) 1–14. https://doi.org/10.3390/en12061002. | |
dc.relation | [8] M.L. Botero, Y. Huang, D.L. Zhu, A. Molina, C.K. Law, Synergistic combustion of droplets of ethanol, diesel and biodiesel mixtures, Fuel. 94 (2012) 342–347. https://doi.org/10.1016/j.fuel.2011.10.049. | |
dc.relation | [9] C.K. Law, C.H. Lee, N. Srinivasan, Combustion characteristics of water-in-oil emulsion droplets, Combust. Flame. 37 (1980) 125–143. https://doi.org/10.1016/0010-2180(80)90080-2. | |
dc.relation | [10] R.H. C. R. Shaddix, D, Combustion Properties of Biomass Flash Pyrolysis Oils : Final Project Report, 1999. https://doi.org/10.2172/5983. | |
dc.relation | [11] C.R. Shaddix, S.P. Huey, Combustion characteristics of fast pyrolysis oils derived from hybrid poplar, Dev. Thermochem. Biomass Convers. (1997) 1630. | |
dc.relation | [12] M.J. Wornat, B.G. Porter, N.Y.C. Yang, Single Droplet Combustion of Biomass Pyrolysis Oils, Energy & Fuels. 8 (1994) 1131–1142. https://doi.org/10.1021/Ef00047a018. | |
dc.relation | [13] C. Branca, C. Di Blasi, Multistep mechanism for the devolatilization of biomass fast pyrolysis oils, Ind. Eng. Chem. Res. 45 (2006) 5891–5899. https://doi.org/10.1021/ie060161x. | |
dc.relation | [14] F. Stankovikj, A.G. McDonald, G.L. Helms, M. Garcia-Perez, Quantification of Bio-Oil Functional Groups and Evidences of the Presence of Pyrolytic Humins, Energy and Fuels. 30 (2016) 6505–6524. https://doi.org/10.1021/acs.energyfuels.6b01242. | |
dc.relation | [15] D.C.K. Rao, S. Syam, S. Karmakar, R. Joarder, Experimental investigations on nucleation , bubble growth , and micro- explosion characteristics during the combustion of ethanol / Jet A-1 fuel droplets, Exp. Therm. Fluid Sci. 89 (2017) 284–294. https://doi.org/10.1016/j.expthermflusci.2017.08.025. | |
dc.relation | [16] A.R. Teixeira, K.G. Mooney, J.S. Kruger, C.L. Williams, W.J. Suszynski, L.D. Schmidt, D.P. Schmidt, P.J. Dauenhauer, Aerosol generation by reactive boiling ejection of molten cellulose, Energy Environ. Sci. 4 (2011) 4306–4321. https://doi.org/10.1039/c1ee01876k. | |
dc.relation | [17] J.H. Han, C.D.A.E. Han, Bubble Nucleation in Polymeric Liquids . 11 . Theoretical Considerations, J. Polym. Sci. B Polym. Phys. 28 (1990) 743–761. https://doi.org/10.1002/polb.1990.090280510. | |
dc.relation | [18] J.L. Katz, Bubble Nucleation in Liquids, AIChE J. 21 (1975) 833–848. https://doi.org/10.1002/aic.690210502. | |
dc.relation | [19] D.C. Venerus, N. Yala, B. Bernstein, Analysis of diffusion-induced bubble growth in viscoelastic liquids, J. Non-Newtonian Fluid Mech. 75 (1998) 55–75. https://doi.org/10.1016/S0377-0257(97)00076-1. | |
dc.relation | [20] H. Schulz, Short history and present trends of Fischer – Tropsch synthesis, 186 (1999) 3–12.
[21] B.H. Davis, Overview of reactors for liquid phase Fischer – Tropsch synthesis, 71 (2002) 249–300. | |
dc.relation | [21] B.H. Davis, Overview of reactors for liquid phase Fischer – Tropsch synthesis, 71 (2002) 249–300. | |
dc.relation | [22] Y. Cheng, Y. Shen, D. Liu, J. Xu, Y. Sui, Numerical analysis of bubble bursting at the liquid surface by wave propagation, Int. J. Therm. Sci. 152 (2020) 106341. https://doi.org/10.1016/j.ijthermalsci.2020.106341. | |
dc.relation | [23] B.Y. Ni, A.M. Zhang, G.X. Wu, Simulation of a fully submerged bubble bursting through a free surface, Eur. J. Mech. B/Fluids. 55 (2016) 1–14. https://doi.org/10.1016/j.euromechflu.2015.08.001. | |
dc.relation | [24] K.M. Butler, A Numerical Model for Combustion of Bubbling Thermoplastic Materials in Microgravity, 2002. https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=861181. | |
dc.relation | [25] H.-Y. Kwak, Y.W. Kim, Homogeneous nucleation and macroscopic growth of gas bubble in organic solutions, Int. J. Heat Mass Transf. 41 (1998) 757–767. https://doi.org/10.1016/S0017-9310(97)00182-8. | |
dc.relation | [26] L. Hao, Analysis of bubble growth and motion dynamics in superheated liquid during flash evaporation, Int. J. Heat Mass Transf. 151 (2020) 119356. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119356. | |
dc.relation | [27] S. Hoon, C. Park, J. Lee, B. Lee, A Simple Parameterization for the Rising Velocity of Bubbles in a Liquid Pool, Nucl. Eng. Technol. 49 (2017) 692–699. https://doi.org/10.1016/j.net.2016.12.006. | |
dc.relation | [28] F. Stankovikj, M. Garcia-perez, TG-FTIR Method for the Characterization of Bio-oils in Chemical Families, Energy & Fuels. 30 (2017) 1689–1701. https://doi.org/10.1021/acs.energyfuels.6b03132. | |
dc.relation | [29] F. Stankovikj, C.-C. Tran, S. Kaliaguine, M. V. Olarte, M. Garcia-Perez, Evolution of Functional Groups during Pyrolysis Oil Upgrading, Energy & Fuels. (2017) acs.energyfuels.7b01251. https://doi.org/10.1021/acs.energyfuels.7b01251. | |
dc.relation | [30] A.R. Teixeira, R.J. Hermann, J.S. Kruger, W.J. Suszynski, L.D. Schmidt, D.P. Schmidt, P.J. Dauenhauer, Microexplosions in the upgrading of biomass-derived pyrolysis oils and the effects of simple fuel processing, ACS Sustain. Chem. Eng. 1 (2013) 341–348. https://doi.org/10.1021/sc300148b. | |
dc.relation | [31] G. Lu, X. Wang, W. Yan, International Journal of Heat and Mass Transfer Nucleate boiling inside small evaporating droplets : An experimental and numerical study, Int. J. Heat Mass Transf. 108 (2017) 2253–2261. https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.081. | |
dc.relation | [32] D. Yepes, F. Chejne, Gasificación de biomasa residual en el sector floricultor , caso : Oriente Antioqueño Gasification of waste biomass in the flower industry , case : Eastern Antioquia, ION. 25 (2012) 49–55. | |
dc.relation | [33] G. Marrugo, C.F. Valdés, F. Chejne, Biochar Gasification: An Experimental Study on Colombian Agroindustrial Biomass Residues in a Fluidized Bed, Energy & Fuels. 31 (2017) 9408–9421. https://doi.org/10.1021/acs.energyfuels.7b00665. | |
dc.relation | [34] Z. Xiong, Y. Wang, S.S.A. Syed-Hassan, X. Hu, H. Han, S. Su, K. Xu, L. Jiang, J. Guo, E.E.S. Berthold, S. Hu, J. Xiang, Effects of heating rate on the evolution of bio-oil during its pyrolysis, Energy Convers. Manag. 163 (2018) 420–427. https://doi.org/10.1016/j.enconman.2018.02.078. | |
dc.relation | [35] S.I. Yang, M.S. Wu, T.C. Hsu, Spray combustion characteristics of kerosene/bio-oil part I: Experimental study, Energy. 119 (2017) 26–36. https://doi.org/10.1016/j.energy.2016.12.062. | |
dc.relation | [36] J. Lehto, A. Oasmaa, Y. Solantausta, M. Kytö, D. Chiaramonti, Fuel oil quality and combustion of fast pyrolysis bio-oils, VTT Publ. (2013) 79. https://doi.org/10.1016/j.apenergy.2013.11.040. | |
dc.relation | [37] W.L.H. Hallett, N.A. Clark, A model for the evaporation of biomass pyrolysis oil droplets, 85 (2006) 532–544. https://doi.org/10.1016/j.fuel.2005.08.006. | |
dc.relation | [38] D.E. Spiel, The number and size of jet drops produced by air bubbles bursting on Understanding bio-oil droplets microexplosions in oxyfuel combustion
a fresh water surface, J. Geophys. Res. 99 (1994) 10289–10296. https://doi.org/10.1029/94JC00382. | |
dc.relation | [39] R.P.B. Ramachandran, G. Van Rossum, W.P.M. Van Swaaij, S.R.A. Kersten, Evaporation of biomass fast pyrolysis oil: Evaluation of char formation, Environ. Prog. Sustain. Energy. (2009). https://doi.org/10.1002/ep.10388. | |
dc.relation | [40] W. Chaiwat, I. Hasegawa, T. Tani, K. Sunagawa, K. Mae, Analysis of cross-linking behavior during pyrolysis of cellulose for elucidating reaction pathway, Energy and Fuels. 23 (2009) 5765–5772. https://doi.org/10.1021/ef900674b.
[41] M. Garcia-Perez, A. Chaala, H. Pakdel, D. Kretschmer, C. Roy, Characterization of bio-oils in chemical families, Biomass and Bioenergy. 31 (2007) 222–242. https://doi.org/10.1016/j.biombioe.2006.02.006.
[42] A.G.M.T. Siriwardhana, Aging and Stabilization of Pyrolitic Bio-Oils and Model Compounds, The University of Western Ontario, 2013. http://ir.lib.uwo.ca/cgi/viewcontent.cgi?article=3005&context=etd. | |
dc.relation | [40] W. Chaiwat, I. Hasegawa, T. Tani, K. Sunagawa, K. Mae, Analysis of cross-linking behavior during pyrolysis of cellulose for elucidating reaction pathway, Energy and Fuels. 23 (2009) 5765–5772. https://doi.org/10.1021/ef900674b.
[41] M. Garcia-Perez, A. Chaala, H. Pakdel, D. Kretschmer, C. Roy, Characterization of bio-oils in chemical families, Biomass and Bioenergy. 31 (2007) 222–242. https://doi.org/10.1016/j.biombioe.2006.02.006.
[42] A.G.M.T. Siriwardhana, Aging and Stabilization of Pyrolitic Bio-Oils and Model Compounds, The University of Western Ontario, 2013. http://ir.lib.uwo.ca/cgi/viewcontent.cgi?article=3005&context=etd. | |
dc.relation | [40] W. Chaiwat, I. Hasegawa, T. Tani, K. Sunagawa, K. Mae, Analysis of cross-linking behavior during pyrolysis of cellulose for elucidating reaction pathway, Energy and Fuels. 23 (2009) 5765–5772. https://doi.org/10.1021/ef900674b. | |
dc.relation | [41] M. Garcia-Perez, A. Chaala, H. Pakdel, D. Kretschmer, C. Roy, Characterization of bio-oils in chemical families, Biomass and Bioenergy. 31 (2007) 222–242. https://doi.org/10.1016/j.biombioe.2006.02.006. | |
dc.relation | [42] A.G.M.T. Siriwardhana, Aging and Stabilization of Pyrolitic Bio-Oils and Model Compounds, The University of Western Ontario, 2013. http://ir.lib.uwo.ca/cgi/viewcontent.cgi?article=3005&context=etd. | |
dc.rights | Reconocimiento 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | Understanding bio-oil droplets microexplosions in oxyfuel combustion. | |
dc.type | Tesis | |