dc.contributor | Lizarazo Marriaga, Juan Manuel | |
dc.contributor | Mariño Camargo, Alvaro | |
dc.contributor | Análisis, diseño y materiales - GIES | |
dc.creator | Luna Tamayo, Patricia | |
dc.date.accessioned | 2020-08-05T06:31:09Z | |
dc.date.available | 2020-08-05T06:31:09Z | |
dc.date.created | 2020-08-05T06:31:09Z | |
dc.date.issued | 2020-08-03 | |
dc.identifier | Luna Tamayo, P. (2020). Mechanical behavior of a composite material using a polyester matrix reinforced with Guadua angustifolia bamboo fibers (tesis de Doctorado). Universidad Nacional de Colombia, Bogotá, Colombia | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/77927 | |
dc.description.abstract | Las fibras naturales se han convertido en un recurso valioso para la industria de los materiales compuestos. Su uso como refuerzo de matrices poliméricas le proporciona múltiples beneficios al material compuesto, siendo destacable la resistencia mecánica por unidad de peso y el bajo costo de producción por unidad de volumen. El comportamiento mecánico de los materiales compuesto está fuertemente influenciado por las propiedades de los materiales constituyentes y de la uni ́on entre matriz y fibras. Debido a la naturaleza hidrófila de las fibras naturales y al comportamiento hidrófobo de los polímeros comúnmente empleados, existe una incompatibilidad físico-química entre las fases del material compuesto. Esta incompatibilidad trae como consecuencia una deficiente transferencia de esfuerzos desde la matriz hacia las fibras, y por lo tanto, un inadecuado desempeño mecánico del material compuesto. As ́ı, es necesario tratar las fibras o las matrices poliméricas para mejorar las propiedades finales del material compuesto. Tradicionalmente, en aplicaciones industriales los tratamientos esta ́ direccionados a la modificación de las fibras naturales.
El objetivo de esta investigación es usar fibras de bambú Guadua angustifolia (fibras de guadua) como refuerzo de matrices de poliéster. Para aumentar la compatibilidad entre las fases, antes de la fabricación del material compuesto, las fibras de bambú se trataron usando enfoques químicos o físicos. En el enfoque químico, se utilizaron tratamientos alcalinos (con hidróxido de sodio) para reducir las características hidrófilas de las fibras de guadua, lo que induce una mayor compatibilidad química con la matriz de poliéster. En el enfoque físico, se usaron tratamientos plasma (de grabado en seco) para aumentar la rugosidad superficial de las fibras de guadua, aumentando así el agarre mecánico (por fricción) con la matriz.
Así, en esta investigación se estudió la influencia de las dos técnicas de compatibilización en las propiedades (físicas, microestructurales, químicas y mecánicas) de las fibras de guadua y del compuesto guadua-poliéster. El programa experimental se enfoco ́ en la extracción y caracterización de fibras de guadua, así como en la caracterización de la matriz de poliéster y del compuesto. Los resultados obtenidos muestran que los tratamientos alcalinos disminuyen la resistencia a tracción de las fibras de guadua cerca de un 42% para la concentración ma ́s alta. En contraste, los tratamientos con plasma no afectan considerablemente la resistencia a tracción de las fibras. Además, ambas técnicas de compatibilización mejoran la resistencia a tracción y flexión de los compuestos guadua-poliéster, debido al incremento en la adherencia entre las fases del material compuesto. Finalmente, se propone un modelo anal ́ıtico para describir el comportamiento macroscópico del material compuesto ante cargas de tracción, obteniendo diferencias cercanas al ±3% entre los valores medidos y los calculados.
Esta tesis demuestra la potencialidad del uso de fibras naturales como refuerzo de materiales compuestos, los cuales pueden ser usados en diversas aplicaciones de ingeniería debido a su adecuado desempeño mecánico. | |
dc.description.abstract | Natural fibers have become a valuable resource in the composite industry. Their use as a reinforcement material for polymeric matrices provides multiple benefits for composites, thus showing a remarkable mechanical strength per unit weight and a low production cost per volume unit. Composites’ mechanical behavior is strongly influenced by properties of individual components and the bonding between matrix and fibers. Due to the hydrophilic nature of natural fibers and the hydrophobic behavior of common polymers, there is a physico-chemical incompatibility between them. This incompatibility leads to a poor stress transfer from matrix to fibers, and as a result, to an inadequate mechanical performance of the composite material. Therefore, it is necessary to treat fibers or matrices, in order to improve composites’ final properties. When it comes to industrial applications, natural fibers are commonly treated in order to overcome those incompatibilities.
This research is intended to use Guadua angustifolia bamboo fibers (guadua fibers) as a reinforcement for polyester matrices. In order to increase the compatibility be- tween phases, before composite manufacturing, the fibers were treated employing chem- ical and physical approaches. As for the chemical approach, alkali (sodium hydroxide) treatments were used to reduce guadua fibers’ hydrophilic features, thus inducing more chemical compatibility with the polyester matrix. Regarding the physical approach, plasma treatments (dry etching) were used in order to increase guadua fibers’ superficial roughness, leading to an increase in the mechanical bonding (frictionally) with the matrix.
This research was focused on the influence of the above compatibilization techniques on the properties (physical, microstructural, chemical and mechanical) of guadua fibers and polyester-guadua composites. The experimental program was focused on the ex- traction and characterization of guadua fibers, as well as on the characterization of polyester matrices and composites. Results showed that alkali treatments decrease guadua fibers’ tensile strength, around 42% for the highest concentration; in contrast, plasma treatments do not affect considerably their tensile properties. Moreover, both compatibilization techniques improve polyester-guadua composites’ tensile and bend- ing strength, due to an increment in the bonding stress between composite phases. Finally, an analytical model is proposed to describe the macroscopical behavior of the composite material under tensile loads, obtaining differences between the measured and calculated strength is ±3%.
This thesis demonstrates the potential of using natural fibers as a reinforcement for composite materials, which could be advised for different engineering applications due to their adequate mechanical behavior. | |
dc.language | eng | |
dc.publisher | Bogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Civil | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | Abdul, H. P. S., Bhat, I. U. H., Jawaid, M., Zaidon, A., Hermawan, D., and Hadi, Y. S. (2012). Bamboo fibre reinforced biocomposites: a review. Materials & Design, 42:353–368. | |
dc.relation | Agarwal, B. D., Broutman, L. J., and Chandrashekhara, K. (1990). Analysis and performance of fiber composites. John Wiley & Sons, Inc, tercera ed edition. | |
dc.relation | Akovali, G. (2005). Polymers in Construction. Rapra Technology. | |
dc.relation | Albella, J. M., editor (2003). Láminas delgadas y recubrimientos: preparación, propiedades y aplicaciones. Consejo Superior de Investigaciones Científicas, Madrid, España. | |
dc.relation | Ali, A., Shaker, K., Nawab, Y., Jabbar, M., Hussain, T., Militky, J., and Baheti, V. (2016). Hydrophobic treatment of natural fibers and their composites – A review. Journal of Industrial Textiles, Accepted:1–31. | |
dc.relation | Alsaeed, T., Yousif, B. F., and Ku, H. (2013a). The potential of using date palm fibres as reinforcement for polymeric composites. Materials and Design, 43:177–184. | |
dc.relation | Alsaeed, T., Yousif, B. F., and Ku, H. (2013b). The potential of using date palm fibres as reinforcement for polymeric composites. Materials and Design, 43:177–184. | |
dc.relation | Alves, M. E., Castro, T. V., da Fonseca, O., de Andrade, F., and Dias Toledo Filho, R. (2013). The effect of fiber morphology on the tensile strength of natural fibers. Journal of Materials Research and Technology, 2(2):149–157. | |
dc.relation | Amirou, S., Zerizer, A., Haddadou, I., and Merlin, A. (2013). Effects of corona dis- charge treatment on the mechanical properties of biocomposites from polylactic acid and Algerian date palm fibres. Scientific Research and Essays, 8(21):946–952. | |
dc.relation | Ansell, M. and Sapuan, M. (2014). Tropical Natural Fibre Composites. Springer Singapore. | |
dc.relation | Ashby, M. (1992). Materials Selection in Mechanical Design. Pergamon Press, Oxford. | |
dc.relation | Askeland, D. R., Fulay, P. P., and Wright, W. J. (2013). Ciencia e ingeniería de materiales. Cengage Learning Editores, S.A., sixth edit edition. | |
dc.relation | ASTM (2008). ASTM D3039/D3039M - 08 Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials. | |
dc.relation | ASTM (2010a). ASTM D3800-99: Standard Test Method for Density of High-Modulus Fibers. | |
dc.relation | ASTM (2010b). ASTM D695 -10 Standard Test Method for Compressive Properties of Rigid Plastics 1. | |
dc.relation | ASTM (2010c). ASTM D790-10 Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials. | |
dc.relation | ASTM (2013). ASTM D792-13: Standard Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement. | |
dc.relation | ASTM (2014). ASTM C1557-14: Standard Test Method for Tensile Strength and Young’s Modulus of Fibers. | |
dc.relation | ASTM (2016). ASTM D2734-16: Standard Test Methods for Void Content of Rein- forced Plastics. | |
dc.relation | Avella, M., Martuscelli, E., and Mazzola, M. (1985). Kinetic study of the cure reaction of unsaturated polyester resins. Journal of Thermal Analysis, 30(6):1359–1366. | |
dc.relation | Azadeh, A. and Ghavami, K. (2015). DG Bamboo fiber distribution in radial direction by considering the height and orientation. In 16th NOCMAT 2015, Winnipeg, Canada. | |
dc.relation | Aziz, S. H. and Ansell, M. P. (2004). The effect of alkalization and fibre alignment on the mechanical and thermal properties of kenaf and hemp bast fibre composites: Part 1 - polyester resin matrix. Composites Science and Technology, 64(9):1219–1230. | |
dc.relation | Azwa, Z., Yousif, B., a.C. Manalo, and Karunasena, W. (2013). A review on the degradability of polymeric composites based on natural fibres. Materials & Design, 47:424–442. | |
dc.relation | Bahari, S. A. and Krause, A. (2015). Utilizing Malaysian Bamboo for use in thermo- plastic composites. Journal of Cleaner Production. | |
dc.relation | Bank, L. (2006a). Composites for construction: Structural design with FRP materials. John Wiley & Sons. | |
dc.relation | Barra, B., Santos, S., Bergo, P., Alves, C., Ghavami, K., and Savastano, H. (2015). Residual sisal fibers treated by methane cold plasma discharge for potential appli- cation in cement based material. Industrial Crops and Products, 77:691–702. | |
dc.relation | Beckermann, G. W. and Pickering, K. L. (2009). Engineering and evaluation of hemp fibre reinforced polypropylene composites: Micro-mechanics and strength prediction modelling. Composites Part A: Applied Science and Manufacturing, 40(2):210–217. | |
dc.relation | Benedikt, J. (2010). Plasma-chemical reactions: Low pressure acetylene plasmas. Journal of Physics D: Applied Physics, 43(4). | |
dc.relation | Benyahia, A., Merrouche, A., Rokbi, M., and Kouadri, Z. (2013). Study the effect of alkali treatment of natural fibers on the mechanical behavior of the composite unsaturated Polyester-fiber. In 21 Congr`es Francais de Mécanique. | |
dc.relation | Biagiotti, J., Puglia, D., and Kenny, J. M. (2004). A Review on Natural Fibre- Based Composites-Part I. Journal of Natural Fibers, 1(2):37–68. | |
dc.relation | Biswas, S., Ahsan, Q., Cenna, A., Hasan, M., and Hassan, A. (2013). Physical and mechanical properties of jute, bamboo and coir natural fiber. Fibers and Polymers, 14(10):1762–1767. | |
dc.relation | Bledzki, A. and Gassan, J. (1999). Composites reinforced with cellulose based fibres. Progress in Polymer Science, 24:221–274. | |
dc.relation | Bledzki, A., Reihmane, S., and Gassan, J. (1996). Properties and modification methods for vegetable fibers for natural fiber composites. Journal of Applied Polymer Science, 59(8):1329–1336. | |
dc.relation | Bogaerts, A., Neyts, E., Gijbels, R., and Van der Mullen, J. (2002). Gas discharge plasmas and their applications. Spectrochimica Acta - Part B Atomic Spectroscopy, 57(4):609–658. | |
dc.relation | Bowyer, W. H. and Bader, M. G. (1972). On the re-inforcement of thermoplastics by imperfectly aligned discontinuous fibres. Journal of Materials Science, 7:1315–1321. | |
dc.relation | Bozaci, E., Sever, K., Sarikanat, M., Seki, Y., Demir, A., Ozdogan, E., and Tavman, I. (2013). Effects of the atmospheric plasma treatments on surface and mechanical properties of flax fiber and adhesion between fiber-matrix for composite materials. Composites Part B: Engineering, 45(1):565–572. | |
dc.relation | Cai, M., Takagi, H., Nakagaito, A. N., Li, Y., and Waterhouse, G. I. (2016). Effect of alkali treatment on interfacial bonding in abaca fiber-reinforced composites. Composites Part A: Applied Science and Manufacturing, 90:589–597. | |
dc.relation | Carlsson, C. M. G. and Stroem, G. (1991). Reduction and Oxidation of Cellulose Surfaces by Means of Cold-Plasma. Langmuir, 7(11):2492–2497. | |
dc.relation | Carrasquero, F. (2004). Fundamentos de polímeros. VI Escuela Venezolana para la Enseñanza de la Química, Venezuela. | |
dc.relation | Chapman, B. (1980). Glow discharge processes. John Wiley & Sons. | |
dc.relation | Chattopadhyay, S. K., Khandal, R. K., Uppaluri, R., and Ghoshal, A. K. (2011). Bamboo fiber reinforced polypropylene composites and their mechanical, thermal, and morphological properties. Journal of Applied Polymer Science, 119:1619–1626. | |
dc.relation | Chawla, K. (2011). Composite materials. Springer, third edit edition. | |
dc.relation | Chou, C.-S., Chen, C.-Y., Lin, S.-H., Lu, W.-H., and Wu, P. (2015). Preparation of TiO2/bamboo-charcoal-powder composite particles and their applications in dye- sensitized solar cells. Advanced Powder Technology, 26(3):711–717. | |
dc.relation | Chunhong, W., Shengkai, L., and Zhanglong, Y. (2016). Mechanical, hygrothermal age- ing and moisture absorption properties of bamboo fibers reinforced with polypropylene composites. Journal of Reinforced Plastics and Composites, 0:1–13. | |
dc.relation | Ciro, H. J., Osorio, J. A., and Vélez, J. M. (2005). Determinación de la resistencia mecánica a tensión y cizalladura de la Guadua angustifolia Kunth. Revista Facultad Nacional de Agronomía Medellín, 58(1):2709–2715. | |
dc.relation | Ciupagea, L., Andrei, G., Dima, D., and Murarescu, M. (2013). Specific heat and thermal expansion of polyester composites containing singlewall -, multiwall - and functionalized carbon nanotubes. Digest Journal of Nanomaterials and Biostructures, 8(4):1611–1619. | |
dc.relation | Constante, A. and Pillay, S. (2016). Compression molding of algae fiber and epoxy composites: Modeling of elastic modulus. Journal of Reinforced Plastics and Composites. | |
dc.relation | Correal, J. F. and Arbelaéz, J. (2010). Influence of age and height position on Colombian Guadua angustifolia bamboo mechanical properties. Maderas. Ciencia y tecnología, 12(2):105–113. | |
dc.relation | Correal, J. F., Echeverry, J. S., Ram ́ırez, F., and Yam ́ın, L. E. (2014). Experimental evaluation of physical and mechanical properties of Glued Laminated Guadua angustifolia Kunth. Construction & Building Materials, 73:105–112. | |
dc.relation | Correal, J. F. and Ramirez, F. (2009). Experimental study of glued laminated guadua as building material: adhesive calibration. In VIII World Bamboo Congress Proceedings, volume 8, pages 16–24. | |
dc.relation | Correal, J. F. and Ramirez, F. (2010). Adhesive bond performance in glue line shear and bending for glued laminated guadua bamboo. Journal of Tropical Forest Science, 22(4):433–439. | |
dc.relation | Correia, V. C., dos Santos, V., Rodier, L. B., Ghavami, K., and Savastano Jr, H. (2016). Bamboo fiber at macro- , micro- and nanoscale for application as reinforcement. Green Materials, 4:41–52. | |
dc.relation | Costa, T., Feitor, M., Alves Junior, C., and Bezerra, C. (2008). Caracterizacao de filmes de poliéster modificados por plasma de O2 a baixa pressao. Revista Matéria, 13(1):65–76. | |
dc.relation | Costa, T. H. C., Feitor, M., Alves, C. J., Freire, P. B., and de Bezzera, C. M. (2006). Effects of gas composition during plasma modification of polyester fabrics. Journal of Materials Processing Technology, 173:40–43. | |
dc.relation | Cuellar, A. and Muñoz, I. (2010). Fibra de guadua como refuerzo de matrices poliméricas. Dyna, 77:137–142. | |
dc.relation | Dally, J. W. (2008). Statistical analysis of experimental data. In Sharpe, W., editor, Handbook of Experimental Solid Mechanics, chapter 11, pages 259–280. Springer. | |
dc.relation | Daniel, I. and Ishai, O. (1994). Engineering mechanics of composite materials. Oxford University Press, primera ed edition. | |
dc.relation | Daniel, I. M. and Ishai, O. (2006). Engineering Mechanics of Composite Materials. Oxford University Press, second edi edition. | |
dc.relation | de Andrade, F., Chawla, N., and Toledo Filho, R. D. (2008). Tensile behavior of high performance natural (sisal) fibers. Composites Science and Technology, 68(15- 16):3438–3443. | |
dc.relation | de Carvalho, K., Brocks, T., Montoro, S., Hilario, M., and Cornelis, H. (2015). Effect of fiber chemical treatment of nonwoven coconut fiber/epoxy composites adhesion obteined by RTM process. Polymer Composites. | |
dc.relation | de Farias, J. G. G., Cavalcante, R. C., Canabarro, B. R., Viana, H. M., Scholz, S., and Simao, R. A. (2017). Surface lignin removal on coir fibers by plasma treatment for improved adhesion in thermoplastic starch composites. Carbohydrate Polymers, 165:429–436. | |
dc.relation | de Oliveira, M., Reis, H., Pereira, J. C., de Brito, C. L., Rodrigues, M., and Alves, C. (2010). O Uso Do Plasma De Nitrogenio Para Modificacao Superficial Em Membranas De Quitosana. Revista Brasileira de Inovacao Tecnológica em Saúde, pages 1–15. | |
dc.relation | Delvasto, S., Toro, E. F., Perdomo, F., and Mejía de Guti ́errez, R. (2010). An appropriate vacuum technology for manufacture of corrugated fique fiber reinforced cementitious sheets. Construction and Building Materials, 24(2):187–192. | |
dc.relation | Denes, F. S. and Manolache, S. (2004). Macromolecular plasma-chemistry: An emerg- ing field of polymer science. Progress in Polymer Science, 29(8):815–885. | |
dc.relation | Deshpande, A. P., Bhaskar Rao, M., and Lakshmana Rao, C. (2000). Extraction of bamboo fibers and their use as reinforcement in polymeric composites. Journal of Applied Polymer Science, 76:83–92. | |
dc.relation | Djamil, S., Suhot, M. A., and Hasan, M. Z. (2015). Tensile strength polymer matrix composite with reinforcement Gigantochloa Apus. In 2nd International Conference on Engineering of Tarumanagara (ICET 2015), pages ME–20/1–ME–20/7. | |
dc.relation | Espitía-Nery, M. E., Corredor-Pulido, D. E., Rodríguez-Ramírez, N. J., and Calderón- Bustos, J. N. (2018). Morphological and nanomechanical characterization of Guadua Angustifolia kunth fiber by means of SEM and AFM. Dyna, 85(206):148–154. | |
dc.relation | Estrada, M. (2010). Extracción y caracterización mecánica de las fibras de bambú (Guadua angustifolia) para su uso potencial como refuerzo de materiales compuestos. Master thesis, Universidad de Los Andes. | |
dc.relation | Estrada, M. (2016). Modelo numérico micromecánico del proceso de fractura de estructuras fabricadas con bambú Guadua angustifolia. Phd. thesis, Universidad Nacional de Colombia. | |
dc.relation | Faiizin, N., Aziz, A., Ibrahim, A., and Ahmad, Z. (2016). Flexural properties of compression moulded kenaf polyethylene composite. Jurnal Teknologi, 5:105–110. | |
dc.relation | Fan, M., Dai, D., and Huang, B. (2012). Fourier Transform Infrared Spectroscopy for Natural Fibres. InTech, pages 45–68. | |
dc.relation | Fang, H., Wu, Q., Hu, Y., Wang, Y., and Yan, X. (2013). Effects of thermal treatment on durability of short bamboo-fibers and its reinforced composites. Fibers and Polymers, 14:436–440. | |
dc.relation | Fangueiro, R. and Rana, S. (2016). Natural Fibres: advances in science and technology towards industrial applications, volume 12. Springer. | |
dc.relation | Faruk, O., Bledzki, A., Fink, H., and Sain, M. (2012). Biocomposites reinforced with natural fibers: 2000–2010. Progress in Polymer Science, 37(11):1552–1596. | |
dc.relation | Fernandes, P. H., de Freitas, M., Hila ́rio, M. O., Coelho, K. C., Milanese, A. C., Cornelis, H. J., and Mulinari, D. R. (2015). Vegetal fibers in polymeric composites: a review. Pol ́ımeros, 25(1):9–22. | |
dc.relation | Flamm, D. L. and Herb, G. K. (1989). Chapter 1: Plasma Etching Technology—An Overview. In Plasma Etching, pages 1–89. Academic Press, Inc. | |
dc.relation | Freire, W. and Beraldo, A. (2003). Tecnologias e materiais alternativos de construcao. Editora da Unicamp, Campinas, SP. | |
dc.relation | Fu, S.-y., Yue, C.-y., Hu, X., and Mai, Y.-w. (2006). Analyses of the micromechanics of stress transfer in single- and multi- fiber pull-out tests. Composites Science and Technology, 60(2000):569–579. | |
dc.relation | Fuentes, C. A., Tran, L. Q. N., Dupont-Gillain, C., Vanderlinden, W., De Feyter, S., Van Vuure, A. W., and Verpoest, I. (2011). Wetting behaviour and surface properties of technical bamboo fibres. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 380(1-3):89–99. | |
dc.relation | Fuqua, M., Huo, S., and Ulven, C. (2012). Natural Fiber Reinforced Composites. Polymer Reviews, 52(3):259–320. | |
dc.relation | Ganeshan, P. and Raja, K. (2016). Study on the mechanical properties of glass fiber reinforced polyester composites. International Journal of Advanced Engineering Technology, VII(II):261–264. | |
dc.relation | Gassan, J., Chate, A., and Bledzki, A. (2001). Calculation of elastic properties of natural fibers. Journal of Materials Science, 6:3715–3720. | |
dc.relation | George, J., Sreekala, M., and Thomas, S. (2001). A review on interface modification and characterization of natural fiber reinforced plastic composites. Polymer Engineering & Science, 41(9):1471–1485. | |
dc.relation | Ghavami, K. (2005). Bamboo as reinforcement in structural concrete elements. Cement and Concrete Composites, 27(6):637–649. | |
dc.relation | Ghavami, K., Allameh, S. M., Sanchez, M. L., and Soboyejo, W. O. (2003). Multiscale study of bamboo Phyllostachys Edulis. In First Interamerican Conference on Non Conventional Materials and Technologies in the Ecoconstruction and Infrastructure. | |
dc.relation | Ghavami, K. and Marinho, A. B. (2005). Propriedades físicas e mecánicas do colmo inteiro do bambu da espécie Guadua angustifolia. Revista Brasileira de Engenharia Agricola e Ambiental, 9:107–114. | |
dc.relation | Glass, G. V. (1966). Testing homogeneity of variances. American Education Research Journal, 3(3):187–190. | |
dc.relation | González, H. A., Montoya, J. A., and Bedoya, J. R. (2007). Resultados del ensayo a flexión en muestras de bambú de la especie Guada angustifolia Kuntn. Scientia et Technica, pages 503–508. | |
dc.relation | Gopi, V., Arun, C. S., Gopi, A., Sankaranarayanan, S., Raj, S. S., Arun, S. C., Gopi, A., Sankaranarayanan, S., and Raj, S. S. (2016). Characterization of fish scale reinforced composites. International Journal of Engineering Science and Computing, 6(5):5227–5230. | |
dc.relation | Grand View Research (2018). Natural Fiber Composites (NFC) Market Size, Share & Trends Analysis Report By Raw Material, By Matrix, By Technology (Injection Molding, Compression Molding, Pultrusion), By Application, And Segment Fore- casts, 2018 - 2024. Technical report, Grand View Research. | |
dc.relation | Grand View Research (2019). Plastics Market Size, Share & Trends Analysis Report By Product (PE, PP, PU, PVC, PET, Polystyrene, ABS, PBT, PPO, Epoxy Polymers, LCP, PC, Polyamide), By Application, and Segment Forecasts, 2019 - 2025. Technical report, Grand View Research. | |
dc.relation | Grosser, D. and Liese, W. (1971). On the anatomy of asian bamboos, with special reference to their vascular bundles. Wood Science and Technology, 5:290–312. | |
dc.relation | Gupta, A. (2014). Synthesis , chemical resistance , and water absorption of bamboo fiber reinforced epoxy composites. Polymer composites, pages 1–5. | |
dc.relation | Habibi, M. K. and Lu, Y. (2014). Crack propagation in bamboo’s hierarchical cellular structure. Scientific Reports, 4. | |
dc.relation | Halip, J. A., Hua, L. S., Ashaari, Z., Tahir, M. P., Chen, L. W., and Anwar Uyup, M. K. (2019). Effect of treatment on water absorption behavior of natural fiber–reinforced polymer composites. Elsevier Ltd. | |
dc.relation | Halliwell, S. M. (2015). Polymers in Building and Construction. Rapra Technology. | |
dc.relation | Harris, B. (1999). Engineering composite materials. The Institute of Materials, London. | |
dc.relation | Hashim, M. Y., Amin, A. M., Marwah, O. M., Othman, M. H., Yunus, M. R., and Huat, N. C. (2017). The effect of alkali treatment under various conditions on physical properties of kenaf fiber. Journal of Physics: Conf. Series, 914(012030). | |
dc.relation | He, J., Tang, Y., and Wang, S.-Y. (2007). Differences in morphological characteristics of bamboo fibres and other natural cellulose fibres: Studies on X-ray diffraction, solid state 13C-CP/MAS NMR, and second derivative FTIR spectroscopy data. Iranian Polymer Journal (English Edition), 16(12):807–818. | |
dc.relation | Hidalgo, O. (2003). Bamboo the gift of Gods. D ́VINNI LTDA, Colombia, primera ed edition. | |
dc.relation | Hidalgo-Salazar, M. A. and Correa, J. P. (2018). Mechanical and thermal properties of biocomposites from nonwoven industrial Fique fiber mats with Epoxy Resin and Linear Low Density Polyethylene. Results in Physics, 8:461–467. | |
dc.relation | Hill, C., Norton, A., and Newman, G. (2009). The water vapor sorption behavior of natural fibers. Journal of Applied Polymer Science, 112:1524–1537. | |
dc.relation | Ho, M., Wang, H., Lee, J., Ho, C., Lau, K., Leng, J., and Hui, D. (2012). Critical factors on manufacturing processes of natural fibre composites. Composites Part B: Engineering, 43(8):3549–3562. | |
dc.relation | Hossain, S. I., Hasan, M., Hasan, N., and Hassan, A. (2013). Effect of chemical treatment on physical , mechanical and thermal properties of ladies finger natural fiber. Advances in Materials Science and Engineering. | |
dc.relation | Hsueh, C.-h. (1990). Interfacial Debonding and Fiber Pull-out Stresses of Fiber-reinforced Composites. Materials Science and Engineering, 125:67–73. | |
dc.relation | Hua, Z. Q., Sitaru, R., Denes, F., and Young, R. (1997). Mechanisms of oxygen- and argon-RF-plasma-induced surface chemistry of cellulose. Plasmas and Polymers, 2(3):199–224. | |
dc.relation | Huang, J.-K. and Young, W.-B. (2019). The mechanical, hygral, and interfacial strength of continuous bamboo fiber reinforced epoxy composites. Composites Part B: Engineering, 166(November 2018):272–283. | |
dc.relation | Huang, R., Zhang, Y., Xu, X., Zhou, D., and Wu, Q. (2012). Effect of hybrid mineral and bamboo fillers on thermal expansion behavior of bamboo fiber and recycled polypropylene – polyethylene composites. BioResources, 7(4):4563–4574. | |
dc.relation | Hughes, M. (2012). Defects in natural fibres: their origin, characteristics and im- plications for natural fibre-reinforced composites. Journal of Materials Science, 47(2):599–609. | |
dc.relation | Hull, D. (1987). An introduction to composite materials. Cambridge University Press. | |
dc.relation | ICONTEC (2007). Norma Técnica Colombiana NTC 5525 Métodos de ensayo para determinar las propiedades físicas y mecánicas de la Guadua angustifolia Kunth. | |
dc.relation | Iloma ̈ki, K. (2011). Adhesion between natural fibers and thermosets. Master thesis, Tampereen Teknillinen Yliopisto. | |
dc.relation | Islam, M., Beg, M., and Mina, M. (2013). Fibre surface modifications through different treatments with the help of design expert software for natural fibre-based biocomposites. Journal of Composite Materials. | |
dc.relation | Jang-Kyo, K. and Yiu-Wing, M. (1998). Engineering interfaces in fiber reinforced composites. Elsevier Ltd. | |
dc.relation | Jawaid, M. and Abdul, H. (2011). Cellulosic/synthetic fibre reinforced polymer hybrid composites: A review. Carbohydrate Polymers, 86(1):1–18. | |
dc.relation | Jit, P., Pant, K. K., Satya, S., and Naik, S. N. (2016). Bamboo: The material of future. International Journal Series in Multidisciplinary Research, 2(2):27–34. | |
dc.relation | John, M. and Anandjiwala, R. (2008). Recent Developments in Chemical Modification and Characterization of Natural Fiber-Reinforced Composites. Polymer composites. | |
dc.relation | Joshi, S., Drzal, L., Mohanty, A., and Arora, S. (2004). Are natural fiber composites environmentally superior to glass fiber reinforced composites? Composites Part A: Applied Science and Manufacturing, 35(3):371–376. | |
dc.relation | Kabir, M., Wang, H., Lau, K., and Cardona, F. (2013). Tensile Properties of Chemically Treated Hemp Fibres as Reinforcement for Composites. Composites Part B: Engineering, 53:362–368. | |
dc.relation | Kabir, M. M., Wang, H., Lau, K. T., and Cardona, F. (2012). Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Composites Part B: Engineering, 43(7):2883–2892. | |
dc.relation | Kafi, A. A., Magniez, K., and Fox, B. L. (2011). A surface-property relationship of atmospheric plasma treated jute composites. Composites Science and Technology, 71(15):1692–1698. | |
dc.relation | Kalaprasad, G., Joseph, K., Thomas, S., and Pavithran, C. (1997). Theoretical modelling of tensile properties of short sisal fibre-reinforced low-density polyethylene composites. Journal of Materials Science, 2:4261 – 4267. | |
dc.relation | Kalia, S., Kaith, B., and Kaur, I. (2009). Pretreatments of Natural Fibers and their Application as Reinforcing Material in Polymer Composites — A Review. Polymer Engineering & Science. | |
dc.relation | Kang, J. T. and Kim, S. H. (2011). Improvement in the mechanical properties of polylactide and bamboo fiber biocomposites by fiber surface modification. Macro- molecular Research, 19(8):789–796. | |
dc.relation | Kasapoglu, E. (2008). Polymer-based Building Materials : Effects of Quality on Durability. In 11DBMC International Conference on Durability of Building Materials and Components. | |
dc.relation | Kenny, J. M., Maffezzoli, A., and Nicolais, L. (1990). A model for the thermal and chemorheological behavior of thermoset processing: (II) Unsaturated polyester based composites. Composites Science and Technology, 38(4):339–358. | |
dc.relation | Khan, Z., Yousif, B. F., and Islam, M. M. (2017). Fracture behaviour of bamboo fiber reinforced epoxy composites. Composites Part B. | |
dc.relation | Kim, H., Okubo, K., Fujii, T., and Takemura, K. (2013). Influence of fiber extraction and surface modification on mechanical properties of green composites with bamboo fiber. Journal of Adhesion Science and Technology, 27(12):1348–1358. | |
dc.relation | Konuma, M. (1992). Film Deposition by Plasma Techniques. Springer-Verlag. | |
dc.relation | Koyuncu, M., Karahan, M., Karahan, N., Shaker, K., and Nawab, Y. (2016). Static and dynamic mechanical properties of cotton/epoxy green composites. Fibres & Textiles in Eastern Europe, 24(4):105–111. | |
dc.relation | Krishnaprasad, R., Veena, N. R., Maria, H. J., Rajan, R., Skrifvars, M., and Joseph, K. (2009). Mechanical and thermal properties of bamboo microfibril reinforced polyhy- droxybutyrate biocomposites. Journal of Polymers and the Environment, 17(2):109– 114. | |
dc.relation | Kushwaha, P. K. and Kumar, R. (2010). Influence of chemical treatments on the mechanical and water absorption properties of bamboo fiber composites. Journal of Reinforced Plastics and Composites, 30(1):73–85. | |
dc.relation | Kwon, H.-J., Sunthornvarabhas, J., Park, J.-W., Lee, J.-H., Kim, H.-J., Piyachomk- wan, K., Sriroth, K., and Cho, D. (2013). Tensile properties of Kenaf Fiber and Corn Husk FlourReinforced Poly(lactic acid) Hybrid Bio-Composites: Role of Aspect Ratio of Natural Fibers. Composites Part B: Engineering. | |
dc.relation | Lamus, F. (2008). Calificación de una conexión viga-columna resistente a momento en guadua angustifolia. Master thesis, Universidad Nacional de Colombia. | |
dc.relation | Li, R., Ye, L., and Mai, Y. (1997). Application of plasma technologies in fibre-reinforced polymer composites: a review of recent developments. Composites Part A: Applied Science and Manufacturing, 28(1997):73–86. | |
dc.relation | Li, X., Tabil, L., and Panigrahi, S. (2007). Chemical Treatments of Natural Fiber for Use in Natural Fiber-Reinforced Composites: A Review. Journal of Polymers and the Environment, 15(1):25–33. | |
dc.relation | Li, Y., Hu, C., and Yu, Y. (2008). Interfacial studies of sisal fiber reinforced high density polyethylene (HDPE) composites. Composites Part A: Applied Science and Manufacturing, 39(4):570–578. | |
dc.relation | Liese, W. (1998). The anatomy of bamboo culms. International Network for Bamboo and Rattan. | |
dc.relation | Liese, W. and Ko ̈hl, M. (2015). Bamboo: the plant and its uses. Springer. | |
dc.relation | Liu, J., Jiang, M., Wang, Y., Wu, G., and Wu, Z. (2013). Tensile behaviors of ECR- glass and high strength glass fibers after NaOH treatment. Ceramics International, 39(8):9173–9178. | |
dc.relation | Londoño, X., Camayo, G., Riaño, N., and López, Y. (2002). Characterization of the anatomy of Guadua angustifolia (Poaceae: Bambusoideae) culms. Bamboo Science and Culture: The Journal of the American Bamboo Society, 16(1):18–31. | |
dc.relation | Lu, T., Jiang, M., Jiang, Z., Hui, D., Wang, Z., and Zhou, Z. (2013). Effect of surface modification of bamboo cellulose fibers on mechanical properties of cellulose/epoxy composites. Composites Part B: Engineering, 51:28–34. | |
dc.relation | Lui, D., Song, J., Anderson, D., Chang, P., and Hua, Y. (2012). Bamboo fiber and its reinforced composites: structure and properties. Cellulose, 19:1449–1480. | |
dc.relation | Luna, P. and Lizarazo-Marriaga, J. (2016). An extraction methodology of Guadua angustifolia bamboo fibers. In 6th Amazon & Pacific Green Materials Congress and Sustainable Construction Materials LAT-RILEM Conference, Cali, Colombia. | |
dc.relation | Luna, P. and Lizarazo-Marriaga, J. (2017). Proposed Method for Determining Cross- Sectional Area of Guadua angustifolia Bamboo Fibers. Journal of Natural Fibers, 16(2):253–262. | |
dc.relation | Luna, P., Lizarazo-Marriaga, J., and Marin ̃o, A. (2016a). Guadua angustifolia bamboo fibers as reinforcement of polymeric matrices: An exploratory study. Construction and building materials, 116:93–97. | |
dc.relation | Luna, P., Lizarazo-Marriaga, J., and Marin ̃o, A. (2016b). Preliminary study on the compatibilization techniques of natural fibers as reinforcement of polymeric matrices. In Sustainable Construction Materials and Technologies (SCMT4), Las Vegas, USA | |
dc.relation | Luna, P., Lizarazo-Marriaga, J., Marin ̃o, A., and Rivas, M. (2017a). Assessment of two compatibilization techniques for Guadua angustifolia bamboo fibers as reinforcement of polymeric matrices. In II Congreso Latinoamericano de Estructuras de Madera y II Congreso Ibero-Latinoamericano de la madera en la Construcci ́on (CLEM+CIMAD 2017), Jun ́ın,Argentina. | |
dc.relation | Luna, P., Lozano, J., and Takeuchi, C. (2014a). Determinación experimental de valores característicos de resistencia para Guadua angustifolia. Maderas. Ciencia y Tecnología, 16(1):77–92. | |
dc.relation | Luna, P., Lozano, J., Takeuchi, C., and Gutierrez, M. (2012). Experimental determination of allowable stresses for bamboo Guadua angustifolia Kunth structures. Key Engineering Materials, 517:76–80. | |
dc.relation | Luna, P., Marin ̃o, A., Lizarazo-Marriaga, J., and Beltr ́an, O. (2017b). Dry etching plasma applied to fique fibers : influence on their mechanical properties and surface appearance. Procedia Engineering, 200:141–147. | |
dc.relation | Luna, P. and Takeuchi, C. (2014). Home for Elderly People Built by the Community with Structural Elements of Laminated Bamboo Guadua in a Rural Area of Colombia. Key Engineering Materials, 600:773–782. | |
dc.relation | Luna, P., Takeuchi, C., and Cord ́on, E. (2014b). Mechanical Behavior of Glued Lami- nated Pressed Bamboo Guadua Using Different Adhesives and Environmental Con- ditions. Key Engineering Materials, 600:57–68. | |
dc.relation | Luna, P., Takeuchi, C., Granados, G., Lamus, F., and Lozano, J. (2011). Metodología de diseño de estructuras en Guadua Angustifolia como material estructural por el método de esfuerzos admisibles. Revista Educación en Ingeniería, pages 66–75. | |
dc.relation | Luna, P. and Takeuchi, C. P. (2012). Experimental Analysis of Frames Made with Glued Laminated Pressed Bamboo Guadua. Key Engineering Materials, 517:184– 188. | |
dc.relation | Madsen, B., Thygesen, A., and Lilholt, H. (2009). Plant fibre composites – porosity and stiffness. Composites Science and Technology, 69(7-8):1057–1069. | |
dc.relation | Manikandan, N., Morshed, M. N., Karthik, R., Azad, S. A., Deb, H., Rumil, T. M., and Ahmed, R. (2017). Effect of alkalization on fabrication and mechanical properties of jute fiber reinforced jute-polyester resin hybrid epoxy composite. American Journal of Current Organic Chemistry, 3(1):9–18. | |
dc.relation | Marais, S., Gouanve, F., Bonnesoeur, A., Grenet, J., Poncid-Epaillard, F., Morvan, C., and M ́etayer, M. (2005). Unsaturated polyester composites reinforced with flax fibers: effect of cold plasma and autoclave treatments on mechanical and permeation properties. Composites Part A: Applied Science and Manufacturing, 36(7):975–986. | |
dc.relation | MathWorks (2002). Curve Fitting Toolbox - User guide. | |
dc.relation | Maya, J. and Sabu, T. (2008). Biofibres and biocomposites. Carbohydrate Polymers, 71(3):343–364. | |
dc.relation | Mazumdar, S. K. (2002). Composites manufacturing: materials, products and process engineering, volume 44. CRC Press LLC. | |
dc.relation | Meichsner, J., Schmidt, M., Schneider, R., and Wagner, H.-E. (2013). Nonthermal Plasma Chemistry and Physics. CRC Press LLC. | |
dc.relation | Meyers, M. and Chawla, K. (2009). Mechanical Behavior of Materials. Cambridge University Press, Nueva York, segunda ed edition. | |
dc.relation | Mohanty, J., Das, S., Das, H., and Swain, S. (2013). Effective mechanical properties of Polyvinylalcohol Biocimposites with reinforcement of Date Palm Leaf Fibers. Polymer Composites, 116(1):37–43. | |
dc.relation | Montgomery, D. C. and Runger, G. C. (2002). Applied statistics and probability for engineers. John Wiley & Sons, Inc. | |
dc.relation | Montiel, M., Jimenez, V., and Guevara, E. (2006). Caracterización anatómica ultra- estructural de las variantes ”Atlántica”, ”Sur” y ”Cebolla” del bambú , Guadua angustifolia (Poaceae : Bambusoideae), en Costa Rica. Revista de Biología Tropical, 54(2):1–12. | |
dc.relation | Morán, J. (2015). Construir con bambú. Third edit edition. | |
dc.relation | Moreno, L., Osorio, L., and Trujillo, E. (2006). Estudio de las propiedades mecánicas de haces de fibra de Guadua angustifolia. Ingeniería & Desarrollo, 20:125–133. | |
dc.relation | Morent, R., De Geyter, N., Desmet, T., Dubruel, P., and Leys, C. (2011). Plasma surface modification of biodegradable polymers: A review. Plasma Processes and Polymers, 8(3):171–190. | |
dc.relation | Morshed, M., Alam, M., and Daniels, S. (2010). Plasma Treatment of Natural Jute Fibre by RIE 80 plus Plasma Tool. Plasma Science and Technology, 325. | |
dc.relation | Murali, K. and Mohana, K. (2007). Extraction and tensile properties of natural fibers: Vakka, date and bamboo. Composite Structures, 77(3):288–295. | |
dc.relation | Mustapha, B., Bahim, I., Mourad, B., and Abderrahim, B. (2016). Effect of fiber volume fraction in the tensile properties of renewable Diss fiber /polyester composite. Engineering Solid Mechanics, 4:91–96. | |
dc.relation | Mwaikambo, L. Y. and Ansell, M. P. (1999). The effect of chemical treatment on the properties of hemp, sisal, jute and kapok for composite reinforcement. Die Angewandte Makromolekulare Chemie, 272(4753):108–116. | |
dc.relation | Mwaikambo, L. Y. and Ansell, M. P. (2002). Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. Journal of Applied Polymer Science, 84(12):2222– 2234. | |
dc.relation | Nanni, A., De Luca, A., and Zadeh, H. (2014). Reinforced Concrete with FRP Bars. | |
dc.relation | Nayak, S. K., Dixit, G., and Appu Kuttan, K. K. (2013). Mechanical properties of eco-friendly recycled polymer composites: a comparative study of theoretical and experimental results. International Journal of Plastics Technology. | |
dc.relation | Nema, S. K. and Jhala, P. B. (2015). Plasma technologies for textile and apparel. Woodhead Publishing India PVT LTD. | |
dc.relation | Nishiyama, Y. (2009). Structure and properties of the cellulose microfibril. Journal of Wood Science, 55(4):241–249. | |
dc.relation | Nogata, F. and Takahashi, H. (1995). Intelligent functionally graded material: Bam- boo. Composites Engineering, 5(7):743–751. | |
dc.relation | Obando, G. J. (2010). Potencialidad de la fibra de Guadua angustifoli Kunth como refuerzo de matrices cementicias. PhD thesis, Universidad Nacional de Colombia, Bogota ́. | |
dc.relation | Okubo, K., Fujii, T., and Thostenson, E. T. (2009). Multi-scale hybrid biocomposite: Processing and mechanical characterization of bamboo fiber reinforced PLA with microfibrillated cellulose. Composites Part A: Applied Science and Manufacturing, 40(4):469–475. | |
dc.relation | Okubo, K., Fujii, T., and Yamamoto, Y. (2004). Development of bamboo-based polymer composites and their mechanical properties. Composites Part A: Applied Science and Manufacturing, 35(3):377–383. | |
dc.relation | Osorio, J., Espinosa, A., and García, E. (2009). Evaluación de las propiedades mecánicas de la estructura interna de la guadua con un modelo matemático. Dyna, 76(160):169–178. | |
dc.relation | Osorio, L., Trujillo, E., Van Vuure, A. W., Lens, F., Ivens, J., and Verpoest, I. (2010). The relation between bamboo fibre microstructure and mechanical properties. In 14th European Conference on Composite Materials. Budapest University of Technology and Economics. Department of Polymer Engineering. | |
dc.relation | Osorio, L., Trujillo, E., Van Vuure, A. W., and Verpoest, I. (2011). Morphological aspects and mechanical properties of single bamboo fibers and flexural characterization of bamboo/ epoxy composites. Journal of Reinforced Plastics and Composites, 30(5):396–408. | |
dc.relation | Osswald, T. A. and Menges, G. (2012). Material science of polymers for engineers. Hanser Publishers, third edit edition. | |
dc.relation | Oushabi, A., Sair, S., Oudrhiri Hassani, F., Abboud, Y., Tanane, O., and El Bouari, A. (2017). The effect of alkali treatment on mechanical, morphological and thermal properties of date palm fibers (DPFs): Study of the interface of DPF–Polyurethane composite. South African Journal of Chemical Engineering, 23:116–123. | |
dc.relation | Pacheco, C. (2006). Resistencia a la tracci ́on perpendicular a la fibra de la guadua angustifolia. Undergraduate work, Universidad Nacional de Colombia. | |
dc.relation | Pandiyaraj, K. N. and Selvarajan, V. (2008). Non-thermal plasma treatment for hydrophilicity improvement of grey cotton fabrics. Journal of Materials Processing Technology, 199(1):130–139. | |
dc.relation | Pantoja, N. and Acuña, D. (2005). Resistencia al corte paralelo a la fibra de la guadua angustifolia. Undergraduate work, Universidad Nacional de Colombia. | |
dc.relation | Parameswaran, N. and Liese, W. (1976). On the fine structure of bamboo fibres. Wood Science and Technology, 10:231–246. | |
dc.relation | Pecas, P.; Carvalho, H.; Salman, H.; Marco, L. (2018). Natural Fibres Composites and Their Applications: A Review. Journal of Composite Science, pages 1–20. | |
dc.relation | Pena, L. (2011). Desarrollo de un sistema semi-adiabatico para medir calor de hidratacion de pastas de cemento y morteros. Technical report, Universidad Nacional de Colombia. | |
dc.relation | Phong, N. T., Fujii, T., Chuong, B., and Okubo, K. (2012). Study on how to effectively extract bamboo fibers from raw bamboo and wastewater treatment. Journal of Materials Science Research, 1(1):144–155. | |
dc.relation | Phuong, N. T., Sollogoub, C., and Guinault, A. (2010). Relationship between fiber chemical treatment and properties of recycled pp/bamboo fiber composites. Journal of Reinforced Plastics and Composites, 29(21):3244–3256. | |
dc.relation | Pickering, K. L., Efendy, M. G., and Le, T. M. (2015). A review of recent developments in natural fibre composites and their mechanical performance. Composites Part A: Applied Science and Manufacturing. | |
dc.relation | Potluri, S., Sangeetha, K., Santhosh, R., Nivas, G., and Mahendran, R. (2018). Effect of low-pressure plasma on bamboo rice and its flour. Journal of Food Processing and Preservation, (August):e13846. | |
dc.relation | Prasanna, R., Rammanathan, K., and Rama, S. (2015). Study on physical and me- chanical properties of NFRP hybrid composite. Indian Journal of Pure & Applied Physics, 53:175–180. | |
dc.relation | Pusatcioglu, S. Y., Fricke, A. L., and Hassler, J. C. (1979). Heats of reaction and kinetics of a thermoset polyester. Journal of Applied Polymer Science, 24(4):937– 946. | |
dc.relation | Ramadevi, P., Sampathkumar, D., Srinivasa, C. V., and Bennehalli, B. (2012). Effect of alkali treatment on water absorption of single cellulosic abaca fiber. BioResources, 7(3):3515–3524. | |
dc.relation | Ramamoorthy, S. K., Skrifvars, M., and Persson, A. (2015). A review of natural fibers used in biocomposites: plant, animal and regenerated cellulose fibers. Polymer Reviews, 55(March 2015):107–162. | |
dc.relation | Ramirez, F., Maldonado, A., Correal, J., and Estrada, M. (2011). Bamboo-Guadua angustifolia kunt fibers for green composites. In 18th International Conference on Composite Materials, pages 1–4. The Korean Society of Composite Materials. | |
dc.relation | Rassiah, K., Ahmad, M. M. H., Ali, A., and Tamizi, M. M. (2015). The influence of laminated layer and thickness Gigantochloa Scortechinii bamboo strips on mechanical performance of unsaturated polyester composites. Life Science Journal, 12(2):182–188. | |
dc.relation | Ray, A. K., Das, S. K., Mondal, S., and Ramachandrarao, P. (2004). Microstructural characterization of bamboo. Journal of Materials Science, 39(3):1055–1060. | |
dc.relation | Ray, A. K., Mondal, S., Das, S. K., and Ramachandrarao, P. (2005). Bamboo - A functionally graded composite-correlation between microstructure and mechanical strength. Journal of Materials Science, 40(19):5249–5253. | |
dc.relation | Rocha, S., de Andrade Silva, F., Lopes, P., Toledo Filho, R. D., Ferreira Rocha, S., de Andrade Silva, F., Lopes Lima, P. R., and Toledo Filho, R. D. (2015). Effect of fiber treatments on the sisal fiber properties and fiber – matrix bond in cement based systems. Construction & Building Materials, 101:730–740. | |
dc.relation | Rodr ́ıguez, L., Fangueiro, R., and Orrego, C. (2015). Efecto de tratamientos qu ́ımicos y de plasma DBD en las propiedades de fibras del seudotallo del pl ́atano. Revista Latinoamericana de Metalurgia y Materiales, 35(2):1–10. | |
dc.relation | Roesler, J., Harders, H., and Baeker, M. (2006). Mechanical Behavior of Engineering Materials. Springer. | |
dc.relation | Rohit, K. and Dixit, S. (2016). A Review - Future aspect of natural fiber reinforced composite. Polymers from a renewable resources, 7(2):43–60. | |
dc.relation | Ross, S. M. (2004). Introduction to probability and statistics for engineers and scientists. Elsevier Academic Press, third edit edition. | |
dc.relation | Rowell, R. M., Anand, R., Caul, D. F., Jacobson, R. E., Gifford, O., and Drive, P. (1997). Utilization of Natural Fibers in Plastic Composites: Problems and Oppor- tunities. Lignocellulosic-Plastic Composites, pages 23–52. | |
dc.relation | Salit, M. S., Jawaid, M., Bin, N., and Hoque, E. (2015). Manufacturing of natural fibre reinforced polymer composites. Springer. | |
dc.relation | Sanjay, M. R., Arpitha, G. R., Naik, L., Gopalakrishna, K., and Yogesha, B. (2016). Applications of natural fibers and its composites: An overview. Natural Resources, 7:108–114. | |
dc.relation | Sanjay, M. R., Siengchin, S., Parameswaranpillai, J., Jawaid, M., Pruncu, C. I., and Khan, A. (2018). A Comprehensive Review of Techniques for Natural Fibers as Reinforcement in Composites: Preparation, Processing and Characterization. Carbohydrate Polymers, 207(November 2018):108–121. | |
dc.relation | Santhanam, V. and Chandrasekaran, M. (2014). Modeling and evaluation of tensile properties for banana/glass fiber hybrid composites. In Fifth TheIIER-SCIENCE PLUS International Conference, Singapore. | |
dc.relation | Sathishkumar, T. (2015). Influence of cellulose water absorption on the tensile properties of polyester composites reinforced with Sansevieria ehrenbergii fibers. Journal of Industrial Textiles. | |
dc.relation | Sathishkumar, T. P., Navaneethakrishnan, P., Shankar, S., Rajasekar, R., and Rajini, N. (2013). Characterization of natural fiber and composites - A review. Journal of Reinforced Plastics and Composites. | |
dc.relation | Scalici, T., Fiore, V., and Valenza, A. (2016). Effect of plasma treatment on the properties of Arundo Donax L. leaf fibres and its bio-based epoxy composites: a preliminary study. Composites Part B: Engineering. | |
dc.relation | Scherer, J. F. and Bom, R. P. (2019). Determination of shear modulus in bamboo fibers composite in torsion tests Determination of shear modulus in bamboo fi bers composite in torsion tests. Materials Research Express. | |
dc.relation | Schmid, S., Hamrock, B. J., and Jacobson, B. O. (2014). Fundamentals of Machine Elements. CRC Press LLC, third edit edition. | |
dc.relation | Seki, Y., Sarikanat, M., Sever, K., Erden, S., and Ali Gulec, H. (2010). Effect of the low and ratio frequency oxygen plasma treatment of jute fiber on mechanical properties of jute fiber/polyester composite. Fibers and Polymers, 11(8):1159 – 1164. | |
dc.relation | Senthilkumar, K., Saba, N., Chandrasekar, M., Jawaid, M., Rajini, N., Alothman, O. Y., and Siengchin, S. (2019). Evaluation of mechanical and free vibration prop- erties of the pineapple leaf fibre reinforced polyester composites. Construction and Building Materials, 195:423–431. | |
dc.relation | Sever, K., Erden, S., Gu ̈lec, H. A., Seki, Y., and Sarikanat, M. (2011). Oxygen plasma treatments of jute fibers in improving the mechanical properties of jute/HDPE composites. Materials Chemistry and Physics, 129(1-2):275–280. | |
dc.relation | Shahinur, S. and Ullah, A. S. (2017). Quantifying the Uncertainty Associated with the Material Properties of a Natural Fiber. Procedia CIRP, 61:541–546. | |
dc.relation | Shao, J., Wang, F., Li, L., and Zhang, J. (2013). Scaling analysis of the tensile strength of bamboo fibers using weibull statistics. Advances in Materials Science and Engineering, 2013:1–6. | |
dc.relation | Sharma, N., Sharma, S., Guleria, S. P., and Batra, N. K. (2015a). Mechanical Proper- ties of Urea Formaldehyde Resin Composites Reinforced with Bamboo , Coconut and Glass Fibers. International Journal of Soft Computing and Engineering (IJSCE), 5(2):66–71. | |
dc.relation | Sharma, N., Sharma, S., Guleria, S. P., and Batra, N. K. (2015b). Mechanical Proper- ties of Urea Formaldehyde Resin Composites Reinforced with Bamboo , Coconut and Glass Fibers. Internatiobal Journal of Soft Computing and Engineering, 5(2):66–71. | |
dc.relation | Shenton, M. J. and Stevens, G. C. (2001). Surface modification of polymer surfaces: atmospheric plasma versus vacuum plasma treatments. Journal of Physics D: Applied Physics, 34. | |
dc.relation | Silva, R., Haraguchi, S., Muniz, E., and Rubira, A. (2009). Aplicacoes de fibras lignocelulosicas na quimica de polimeros e em compositos. Quimica Nova, 32(3):661– 671. | |
dc.relation | Singh, G., Richa, and Sharma, M. L. (2017). Bamboo - A miracle plant. International Journal of Current Research in Biosciences and Plant Biology, 4(1):110–112. | |
dc.relation | Song, W., Zhao, F., Yu, X., Wang, C., Wei, W., and Zhang, S. (2015). Interfacial characterization and optimal preparation of novel bamboo plastic composite engineering materials. BioResources, 10:5049–5070. | |
dc.relation | Sparavigna, A. (2008). Plasma treatment advantages for textiles. Cornell University Library. | |
dc.relation | Sperling, L. H. (2006). Introduction to physical polymer science. John Wiley & Sons, Inc, cuarta edi edition. | |
dc.relation | Stamboulis, A., Baillie, C., and Schulz, E. (1999). Interfacial characterisation of flax fibre-thermoplastic polymer composites by the pull-out test. Die Angewandte Makro- molekulare Chemie, 272(4759):117–120. | |
dc.relation | Stuart, B. (2004). Infrared Spectroscopy: Fundamentals and Applications. Wiley. | |
dc.relation | Subash, S., Retnam, S. T., and Raja, E. (2017). A review on extraction of bamboo fibres and its properties. International Journal of Advanced Chemical Science and Applications, 5(2). | |
dc.relation | Summerscales, J., Dissanayake, N. P., Virk, A. S., and Hall, W. (2010). A review of bast fibres and their composites. Part 1 - Fibres as reinforcements. Composites Part A: Applied Science and Manufacturing, 41(10):1329–1335. | |
dc.relation | Sydenstricker, T., Mochnaz, S., and Amico, S. (2003). Pull-out and other evaluations in sisal-reinforced polyester biocomposites. Polymer Testing, 22(4):375–380. | |
dc.relation | Symington, M. C., Banks, W. M., West, O. D., and Pethrick, R. A. (2009). Tensile testing of cellulose based natural fibers for structural composite applications. Journal of Composite Materials, 43(9):1083–1108. | |
dc.relation | Takahashi, I., Sugimoto, T., Takasu, Y., Yamasaki, M., Sasaki, Y., and Kikata, Y. (2011). Bamboo fiber reinforced thermoplastic molding made of steamed wood flour. Journal of Materials Science, 46(21):6841–6849. | |
dc.relation | Takeuchi, C. (2014). Caracterización mecánica del bambú guadua laminado para uso estructural. Phd. thesis, Universidad Nacional de Colombia. | |
dc.relation | Takeuchi, C. P. and Gonz ́alez, C. E. (2007). Resistencia a la compresio ́n paralela a la fibra de la Guadua angustifolia y determinaci ́on del mo ́dulo de elasticidad. Ingenier ́ıa y Universidad, 11(1):89–103. | |
dc.relation | Tendero, C., Tixier, C., Tristant, P., Desmaison, J., and Leprince, P. (2006). Atmo- spheric pressure plasmas: A review. Spectrochimica Acta - Part B Atomic Spec- troscopy, 61(1):2–30. | |
dc.relation | Tham, M. W., Fazita, M. N., Abdul Khalil, H., Mahmud Zuhudi, N. Z., Jaafar, M., Rizal, S., and Haafiz, M. M. (2018). Tensile properties prediction of natural fibre composites using rule of mixtures: A review. Journal of Reinforced Plastics and Composites. | |
dc.relation | Tham, M. W., Fazita, M. N., Abdul Khalil, H., Mahmud Zuhudi, N. Z., Jaafar, M., Rizal, S., and Haafiz, M. M. (2018). Tensile properties prediction of natural fibre composites using rule of mixtures: A review. Journal of Reinforced Plastics and Composites. | |
dc.relation | Thwe, M. M. and Liao, K. (2003). Durability of bamboo-glass fiber reinforced polymer matrix hybrid composites. Composites Science and Technology, 63(3-4):375–387. | |
dc.relation | Tolosa, R. A., Arias, N. P., Cardona, C. A., and Giraldo, O. (2014). Cementicious materials reinforcement using Angustifolia kunth bamboo fiber covered with nanos- tructured manganese oxide. Industrial & Engineering Chemestry Research. | |
dc.relation | Torres, E., Plata, A., D ́ıaz, G., and Takeuchi, C. (2014). Analysis of the fiber density in bamboo Guadua angustifolia Kunth by extended field microscopy and high resolution images processing. Key Engineering Materials, 600:10–14. | |
dc.relation | Trujillo, E., Moesen, M., Osorio, L., Van Vuure, A. W., Ivens, J., and Verpoest, I. (2014). Bamboo fibres for reinforcement in composite materials: Strength Weibull analysis. Composites Part A: Applied Science and Manufacturing, 61:115–125. | |
dc.relation | Tserki, V., Zafeiropoulos, N., Simon, F., and Panayiotou, C. (2005). A study of the effect of acetylation and propionylation surface treatments on natural fibres. Composites Part A: Applied Science and Manufacturing, 36(8):1110–1118. | |
dc.relation | Tuttle, M. (2004). Structural analysis of polymeric composite materials. Marcel Dekker, INC. | |
dc.relation | Universidad Nacional de Colombia (2010). Validaci ́on de la Guadua angustifolia como material estructural para disen ̃o, por el m ́etodo de esfuerzos admisibles. | |
dc.relation | Valadez-Gonzalez, A., Cervantes-Uc, J., Olayo, R., and Herrera-Franco, P. (1999). Effect of fiber surface treatment on the fiber–matrix bond strength of natural fiber reinforced composites. Composites Part B: Engineering, 30(3):309–320. | |
dc.relation | Venkatesh Prasanna, R., Ramanathan, K., and Srinivasa Raman, V. (2016). Tensile, flexual, impact and water absorption properties of natural fibre reinforced polyester hybrid composites. Fibers & Textiles, 24(117):90–94. | |
dc.relation | Venkateshwaran, N. and ElayaPerumal, A. (2011). Modeling and Evaluation of Tensile Properties of Randomly Oriented Banana/Epoxy Composite. Journal of Reinforced Plastics and Composites, 30(23):1957–1967. | |
dc.relation | Vidal, J. and Gomez, R. (2002). Disen ̃o y elaboracion a escala natural de armaduras en guadua angustifolia. Undergraduate work, Universidad Nacional de Colombia. | |
dc.relation | Vijaya Ramnath, B., Rajesh, S., Elanchezhian, C., Santosh Shankar, A., Pithchai Pandian, S., Vickneshwaran, S., and Sundar Rajan, R. (2016). Investigation on mechanical behaviour of twisted natural fiber hybrid composite fabricated by vacuum assisted compression molding technique. Fibers and Polymers, 17(1):80–87. | |
dc.relation | Vilas, J. L., Laza, J. M., Garay, M. T., Rodr ́ıguez, M., and Leo ́n, L. M. (2001). Unsatu- rated polyester resins cure: kinetic, rheologic, and mechanical-dynamical analysis. I. Cure kinetics by DSC and TSR. Journal of Applied Polymer Science, 79(3):447–457. | |
dc.relation | Vison, J. R. and Sierakowski, R. L. (2004). The behaviour of structures composed of composite materials. Klumer Academic Publishers, second edi edition. | |
dc.relation | Wang, C., Bai, S., Yue, X., Long, B., and Choo-Smith, L.-P. (2016). Relationship between chemical composition, crystallinity, orientation and tensile strength of kenaf fiber. Fibers and Polymers, 17(11):1757–1764. | |
dc.relation | Wang, F., Shao, J., Keer, L. M., Li, L., and Zhang, J. (2015). The effect of elementary fibre variability on bamboo fibre strength. Materials and Design, 75:136–142. | |
dc.relation | Wang, H., An, X., Li, W., Wang, H., and Yu, Y. (2014). Variation of mechanical properties of single bamboo fibers (Dendrocalamus latiflorus Munro) with respect to age and location in culms. Holzforschung, 68(3):291–297. | |
dc.relation | Wang, Q. J. and Chung, Y. W. (2013). Encyclopedia of tribology, volume 28. Springer, New York, NY. | |
dc.relation | Wohlfart, E., Fern ́andez-Bl ́azquez, J. P., Knoche, E., Bello, A., P ́erez, E., Arzt, E., and Del Campo, A. (2010). Nanofibrillar patterns by plasma etching: The influence of polymer crystallinity and orientation in surface morphology. Macromolecules, 43(23):9908–9917. | |
dc.relation | Wood, A. R., Abel, M. L., Smith, P. A., and Watts, J. F. (2009). Chemical characterisation of the fracture surfaces of polyester resin and a polyester-based nanocomposite. Journal of Adhesion Science and Technology, 23(5):689–708. | |
dc.relation | Yang, Y. and Lee, L. (1988). Microstructure formation in the cure of unsaturated polyester resins. Polymer, 29(10):1793–1800. | |
dc.relation | Yang, Y., Yu, J., Xu, H., and Sun, B. (2017). Porous lightweight composites reinforced with fibrous structures. Springer. | |
dc.relation | Yu, Y., Huang, X., and Yu, W. (2014). High performance of bamboo-based fiber composites from long bamboo fiber bundles and phenolic resins. Journal of Applied Polymer Science, 131(12):1–8. | |
dc.relation | Zakikhani, P., Zahari, R., Sultan, M. T. H., and Majid, D. L. (2014). Extraction and preparation of bamboo fibre-reinforced composites. Materials & Design, 63:820–828. | |
dc.relation | Zhang, H. (2010). Building materials in civil. Woodhead Publishing India PVT LTD, first edit edition. | |
dc.relation | Zhang, X., Wang, F., and Keer, L. M. (2015). Influence of surface modification on the microstructure and thermo-mechanical properties of bamboo fibers. Materials, 8(10):6597–6608. | |
dc.relation | Zhou, Y., Fan, M., and Chen, L. (2016). Interface and bonding mechanisms of plant fibre composites: An overview. Composites Part B: Engineering, 101:31–45. | |
dc.relation | Zhou, Y., Long, C., Huang, J., Deng, Z., and Cao, T. (2013). Effect of surface treatments on properties of natural fiber reinforced Poly(lactic acid) composites. Journal of Reinforced Plastics and Composites. | |
dc.relation | Zhu, J., Shan, Y., Wang, T., Sun, H., Zhao, Z., Mei, L., Fan, Z., Xu, Z., Shakir, I., Huang, Y., Lu, B., and Duan, X. (2016). A hyperaccumulation pathway to three-dimensional hierarchical porous nanocomposites for highly robust high-power electrodes. Nature Communications, 7:1–10. | |
dc.relation | Zweben, C. and Rosen, W. (1970). A statistical theory of material strength wtih application to composite materials. Journal of the Mechanics and Physics of Solids, 18(1945):189–206. | |
dc.rights | Atribución-NoComercial 4.0 Internacional | |
dc.rights | Acceso abierto | |
dc.rights | http://creativecommons.org/licenses/by-nc/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Derechos reservados - Universidad Nacional de Colombia | |
dc.title | Mechanical behavior of a composite material using a polyester matrix reinforced with Guadua angustifolia bamboo fibers | |
dc.type | Documento de trabajo | |