dc.contributor | Rojano, Benjamín Alberto | |
dc.contributor | Morales Saavedra, Diana Marcela | |
dc.contributor | Química de los Productos Naturales y los Alimentos | |
dc.creator | Zapata Osorio, Luz Angela | |
dc.date.accessioned | 2021-11-29T15:02:16Z | |
dc.date.available | 2021-11-29T15:02:16Z | |
dc.date.created | 2021-11-29T15:02:16Z | |
dc.date.issued | 2021 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/80737 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.description.abstract | La guayaba agria, Psidium araca, tiene características sensoriales y compuestos bioactivos que pueden hacerla competitiva en mercados internacionales y a la vez utilizarse como ingrediente para impulsar el mercado de productos funcionales a nivel nacional. Teniendo esto en cuenta, este trabajo se enfocó en la elaboración de un producto alimenticio del sector de galletería utilizando pulpa de guayaba agria como ingrediente funcional. Inicialmente se hizo una caracterización de los compuestos bioactivos y la capacidad antioxidante de la pulpa liofilizada de guayaba agria. Se evaluó el contenido de fenoles totales, flavonoides totales y taninos condesados. También se evaluó la capacidad para atrapar radicales libres ABTS●+, DPPH y peroxilos (ORAC), y la capacidad para reducir el hierro férrico (FRAP). Luego se fabricaron dos tipos de galleta adicionando la pulpa liofilizada de guayaba agria directamente a la galleta o a la crema de relleno. Se evaluó el contenido de fenoles totales y taninos condensados, al igual que la capacidad reductora (FRAP), tanto a las galletas con adición de pulpa como las galletas sin adición de pulpa. Se hizo una medición adicional de capacidad antioxidantes por ABTS y ORAC para las galletas con adición de pulpa. Finalmente, se efectuó una evaluación sensorial de las galletas utilizando una prueba hedónica para los aspectos de color, sabor, dureza, masticabilidad y aceptabilidad general, en un grupo de 78 personas no entrenadas. A partir de este trabajo, se puede afirmar que la pulpa liofilizada de guayaba presenta actividad antioxidante significativa en comparación con otros productos. Además, se obtuvo un producto alimenticio funcional tipo galleta, con valores de actividad antioxidante significativamente mayores a una galleta común y con buena aceptación del público evaluador. (Texto tomado de la fuente) | |
dc.description.abstract | The sour guava, Psidium araca, has sensory characteristics and bioactive compounds which can make it competitive in international markets and at the same time it can be used as an ingredient to boost the market of functional products at a national scale. Considering this, this work focused on the elaboration of a food product for the biscuit sector using sour guava pulp as a functional ingredient. Initially, the bioactive compounds and antioxidant capacity of freeze-dried sour guava pulp were characterised. The content of total phenols, total flavonoids and condensed tannins was evaluated. The ability to trap ABTS●+, DPPH and peroxyl free radicals (ORAC), and the ability to reduce ferric iron (FRAP) were also evaluated. Two types of biscuit were then manufactured by adding the freeze-dried sour guava pulp directly to the biscuit or to the cream filling. The content of total phenols and condensed tannins, as well as the reducing capacity (FRAP), were evaluated for both the biscuits with added pulp and the biscuits without added pulp. An additional measurement of antioxidant capacity by ABTS and ORAC was made for the biscuits with added pulp. Finally, a sensory evaluation of the biscuits was carried out using a hedonic test for colour, taste, hardness, chewiness and overall acceptability in a group of 78 untrained persons. From the results of this work, it can be stated that freeze-dried guava pulp shows significant antioxidant activity compared to other products. Furthermore, a biscuit-type functional food product was obtained, with significantly higher antioxidant activity values than a common biscuit and with good acceptance by the evaluating public. | |
dc.language | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Medellín - Ciencias Agrarias - Maestría en Ciencia y Tecnología de Alimentos | |
dc.publisher | Departamento de Ingeniería Agrícola y Alimentos | |
dc.publisher | Facultad de Ciencias Agrarias | |
dc.publisher | Medellín, Colombia | |
dc.publisher | Universidad Nacional de Colombia - Sede Medellín | |
dc.relation | Abdel-Hamid, M., Romeih, E., Huang, Z., Enomoto, T., Huang, L., & Li, L. (2020). Bioactive properties of probiotic set-yogurt supplemented with Siraitia grosvenorii fruit extract. Food Chemistry, 303, 125400. https://doi.org/10.1016/j.foodchem.2019.125400 | |
dc.relation | Agrahar-Murugkar, D. (2020). Food to food fortification of breads and biscuits with herbs, spices, millets and oilseeds on bio-accessibility of calcium, iron and zinc and impact of proteins, fat and phenolics. Lwt, 130, 109703. https://doi.org/10.1016/j.lwt.2020.109703 | |
dc.relation | Ajila, C. M., Leelavathi, K., & Prasada Rao, U. J. S. (2008). Improvement of dietary fiber content and antioxidant properties in soft dough biscuits with the incorporation of mango peel powder. Journal of Cereal Science, 48(2), 319–326. https://doi.org/10.1016/j.jcs.2007.10.001 | |
dc.relation | Alcaire, F., Antúnez, L., Vidal, L., Velázquez, A. L., Giménez, A., Curutchet, M. R., Girona, A., & Ares, G. (2020). Healthy snacking in the school environment: Exploring children and mothers’ perspective using projective techniques. Food Quality and Preference, 104173. https://doi.org/10.1016/j.foodqual.2020.104173 | |
dc.relation | Alongi, M., Melchior, S., & Anese, M. (2019). Reducing the glycemic index of short dough biscuits by using apple pomace as a functional ingredient. LWT, 100, 300–305. https://doi.org/10.1016/j.lwt.2018.10.068 | |
dc.relation | Alvídrez-Morales, A., González-Martínez, B. E., & Jiménez-Salas, Z. (2002). Tendencias en la producción de alimentos: Alimentos funcionales. Revista Salud Pública y Nutrición, 3(3), 1–6. | |
dc.relation | Amorim, C., Godoy Alves Filho, E., Soares Rodrigues, T. H., Bender, R. J., Marques Canuto, K., Santos Garruti, D., & Rogéria Antoniolli, L. (2020). Volatile compounds associated to the loss of astringency in ‘Rama Forte’ persimmon fruit. Food Research International, 136, 109570. https://doi.org/10.1016/j.foodres.2020.109570 | |
dc.relation | Antoniewska, A., Rutkowska, J., & Martinez Pineda, M. (2019). Antioxidative, sensory and volatile profiles of cookies enriched with freeze-dried Japanese quince (Chaenomeles japonica) fruits. Food Chemistry, 286, 376–387. https://doi.org/10.1016/j.foodchem.2019.02.029 | |
dc.relation | Antoniewska, A., Rutkowska, J., Martinez Pineda, M., & Adamska, A. (2018). Antioxidative, nutritional and sensory properties of muffins with buckwheat flakes and amaranth flour blend partially substituting for wheat flour. LWT - Food Science and Technology, 89, 217–223. https://doi.org/10.1016/j.lwt.2017.10.039 | |
dc.relation | Aranceta Bartrina, J., Blay Cortés, G., Echevarría Guitiérrez, F. J., Inmaculada;, G. C., Hernández Cabria, M., Iglesias Barcia, J. R., & López Díaz-Ufano, M. L. (2011). Atención primaria de calidad: Guía de buena práctica clinica en Alimentos funcionales. Organización Médica Colegial de España. | |
dc.relation | Avello, M., & Suwalsky, M. (2006). Radicales libres, antioxidantes naturales y mecanismos de protección. Atenea, 494, 161–172. https://doi.org/10.4067/s0718-04622006000200010 | |
dc.relation | Bajaj, S., Urooj, A., & Prabhasankar, P. (2006). Effect of incorporation of mint on texture, colour and sensory parameters of biscuits. International Journal of Food Properties, 9(4), 691–700. https://doi.org/10.1080/10942910600547632 | |
dc.relation | Benzie, I. F. F., & Strain, J. J. (1996). The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Analytical Biochemistry, 239(1), 70–76. https://doi.org/10.1006/abio.1996.0292 | |
dc.relation | Bhat, N. A., Wani, I. A., & Hamdani, A. M. (2020). Tomato powder and crude lycopene as a source of natural antioxidants in whole wheat flour cookies. Heliyon, 6(1), e03042. https://doi.org/10.1016/j.heliyon.2019.e03042 | |
dc.relation | Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5 | |
dc.relation | Brand, M. H., Connolly, B. A., Levine, L. H., Richards, J. T., Shine, S. M., & Spencer, L. E. (2017). Anthocyanins, total phenolics, ORAC and moisture content of wild and cultivated dark-fruited Aronia species. Scientia Horticulturae, 224, 332–342. https://doi.org/10.1016/j.scienta.2017.06.021 | |
dc.relation | Brennan, C. S., & Samyue, E. (2004). Evaluation of Starch Degradation and Textural Characteristics of Dietary Fiber Enriched Biscuits. International Journal of Food Properties, 7(3), 647–657. https://doi.org/10.1081/JFP-200033070 | |
dc.relation | Chagas Barros, R. G., Corrêa Pereira, U., Santana Andrade, J. K., Santos de Oliveira, C., Vieira Vasconcelos, S., & Narain, N. (2020). In vitro gastrointestinal digestion and probiotics fermentation impact on bioaccessbility of phenolics compounds and antioxidant capacity of some native and exotic fruit residues with potential antidiabetic effects. Food Research International, 136(July), 109614. https://doi.org/10.1016/j.foodres.2020.109614 | |
dc.relation | Chen, L.-Y., Cheng, C.-W., & Liang, J.-Y. (2015). Effect of esterification condensation on the Folin–Ciocalteu method for the quantitative measurement of total phenols. Food Chemistry, 170, 10–15. https://doi.org/10.1016/j.foodchem.2014.08.038 | |
dc.relation | Chen, Y., Wang, Y., Xu, L., Jia, Y., Xue, Z., Zhang, M., Phisalaphong, M., & Chen, H. (2020). Ultrasound-assisted modified pectin from unripe fruit pomace of raspberry (Rubus chingii Hu): Structural characterization and antioxidant activities. LWT, 134, 110007. https://doi.org/10.1016/j.lwt.2020.110007 | |
dc.relation | Chuacharoen, T., Prasongsuk, S., & Sabliov, C. M. (2019). Effect of Surfactant Concentrations on Physicochemical Properties and Functionality of Curcumin Nanoemulsions Under Conditions Relevant to Commercial Utilization. Molecules, 24(15), 2744. https://doi.org/10.3390/molecules24152744 | |
dc.relation | Combs, C. A. (Ed.). (2016). Tannins: Biochemistry, food sources and nutritional properties. Nova Science Publishers. | |
dc.relation | Coronado H, M., Vega y León, S., Gutiérrez T, R., Vázquez F, M., & Radilla V, C. (2015). Antioxidantes: perspectiva actual para la salud humana. Revista Chilena de Nutrición, 42(2), 206–212. https://doi.org/10.4067/S0717-75182015000200014 | |
dc.relation | Cuadrado Silva, C. T. (2016). Estudio químico de las propiedades sensoriales y biofuncionales de la guayaba agria (Psidium friedrichsthalianum Nied.) [Universidad Nacional de Colombia]. http://www.bdigital.unal.edu.co/54997/ | |
dc.relation | Das Chagas, E. G. L., Vanin, F. M., dos Santos Garcia, V. A., Yoshida, C. M. P., & de Carvalho, R. A. (2021). Enrichment of antioxidants compounds in cookies produced with camu-camu (Myrciaria dubia) coproducts powders. LWT, 137, 110472. https://doi.org/10.1016/j.lwt.2020.110472 | |
dc.relation | De Lacerda de Oliveira Pineli, L., Veras de Carvalho, M., Andrade de Aguiar, L., de Oliveira, G. T., Costa Celestino, Sô. M., Braz Assunção Botelho, R., & Chiarello, M. D. (2015). Use of baru (Brazilian almond) waste from physical extraction of oil toproduce flour and cookies. LWT - Food Science and Technology, 60(1), 50–55. https://doi.org/10.1016/j.lwt.2014.09.035 | |
dc.relation | De Oliveira, S. D., Araújo, C. M., Borges, G. da S. C., Lima, M. dos S., Viera, V. B., Garcia, E. F., de Souza, E. L., & de Oliveira, M. E. G. (2020). Improvement in physicochemical characteristics, bioactive compounds and antioxidant activity of acerola (Malpighia emarginata D.C.) and guava (Psidium guajava L.) fruit by-products fermented with potentially probiotic lactobacilli. LWT, 134, 110200. https://doi.org/10.1016/j.lwt.2020.110200 | |
dc.relation | Dinero. (2018). Exportación de frutas colombianas en 2018. 23 /05/2018. https://www.dinero.com/edicion-impresa/pais/articulo/exportacion-de-frutas-colombianas-en-2018/258606 | |
dc.relation | Djaoudene, O., Mansinhos, I., Gonçalves, S., Jara-Palacios, M. J., Bachir bey, M., & Romano, A. (2021). Phenolic profile, antioxidant activity and enzyme inhibitory capacities of fruit and seed extracts from different Algerian cultivars of date (Phoenix dactylifera L.) were affected by in vitro simulated gastrointestinal digestion. South African Journal of Botany, 137, 133–148. https://doi.org/10.1016/j.sajb.2020.10.015 | |
dc.relation | Dos Santos, W. N. L., da Silva Sauthier, M. C., Pinto dos Santos, A. M., de Andrade Santana, D., Almeida Azevedo, R. S., & da Cruz Caldas, J. (2017). Simultaneous determination of 13 phenolic bioactive compounds in guava (Psidium guajava L.) by HPLC-PAD with evaluation using PCA and Neural Network Analysis (NNA). Microchemical Journal, 133, 583–592. https://doi.org/10.1016/j.microc.2017.04.029 | |
dc.relation | Fonseca C, Z. Y., Patiño B, G. A., & Herrán F, O. F. (2013). Malnutrición y seguridad alimentaria: un estudio multinivel. Revista Chilena de Nutrición, 40(3), 206–215. https://doi.org/10.4067/S0717-75182013000300001 | |
dc.relation | Galla, N. R., Pamidighantam, P. R., Karakala, B., Gurusiddaiah, M. R., & Akula, S. (2017). Nutritional, textural and sensory quality of biscuits supplemented with spinach (Spinacia oleracea L.). International Journal of Gastronomy and Food Science, 7, 20–26. https://doi.org/10.1016/j.ijgfs.2016.12.003 | |
dc.relation | Garzón, G. Astrid, Narváez-Cuenca, C.-E., Vincken, J.-P., & Gruppen, H. (2017). Polyphenolic composition and antioxidant activity of açai (Euterpe oleracea Mart.) from Colombia. Food Chemistry, 217, 364–372. https://doi.org/10.1016/j.foodchem.2016.08.107 | |
dc.relation | Garzón, G.A., Narváez, C. E., Riedl, K. M., & Schwartz, S. J. (2010). Chemical composition, anthocyanins, non-anthocyanin phenolics and antioxidant activity of wild bilberry (Vaccinium meridionale Swartz) from Colombia. Food Chemistry, 122(4), 980–986. https://doi.org/10.1016/j.foodchem.2010.03.017 | |
dc.relation | Guevara Benavides, L. M. (2017, December 22). Nutresa y Colombina son los líderes del negocio de las galletas en Navidad. La República. https://www.larepublica.co/empresas/nutresa-y-colombina-son-los-lideres-del-negocio-de-las-galletas-en-navidad-2584201 | |
dc.relation | Hagerman, A. E., & Butler, L. G. (1989). Choosing appropriate methods and standards for assaying tannin. Journal of Chemical Ecology, 15(6), 1795–1810. https://doi.org/10.1007/BF01012267 | |
dc.relation | Hamid, Thakur, N. S., Thakur, A., & Kumar, P. (2020). Effect of different drying modes on phenolics and antioxidant potential of different parts of wild pomegranate fruits. Scientia Horticulturae, 274(August), 109656. https://doi.org/10.1016/j.scienta.2020.109656 | |
dc.relation | Haytowitz, D. B., & Bhagwat, S. (2010). Oxygen Radical Absorbance Capacity (ORAC) of Selected Foods, Release 2. In Nutrient Data Laboratory (pp. 1–46). U.S. Department of Agriculture, Agricultural Research Service. http://www.ars.usda.gov/Services/docs.htm?docid=15866 | |
dc.relation | Kasote, D. M., Jayaprakasha, G. K., & Patil, B. S. (2019). Leaf Disc Assays for Rapid Measurement of Antioxidant Activity. Scientific Reports, 9(1), 1884. https://doi.org/10.1038/s41598-018-38036-x | |
dc.relation | Kidoń, M., & Grabowska, J. (2021). Bioactive compounds, antioxidant activity, and sensory qualities of red-fleshed apples dried by different methods. LWT, 136(January 2020), 110302. https://doi.org/10.1016/j.lwt.2020.110302 | |
dc.relation | Krystyjan, M., Gumul, D., Ziobro, R., & Korus, A. (2015). The fortification of biscuits with bee pollen and its effect on physicochemical and antioxidant properties in biscuits. LWT - Food Science and Technology, 63(1), 640–646. https://doi.org/10.1016/j.lwt.2015.03.075 | |
dc.relation | Kuskoski, E. M., Asuero, A. G., Troncoso, A. M., Mancini-Filho, J., & Fett, R. (2005). Aplicación de diversos métodos químicos para determinar actividad antioxidante en pulpa de frutos. Ciência e Tecnologia de Alimentos, 25(4), 726–732. https://doi.org/10.1590/S0101-20612005000400016 | |
dc.relation | Lara Mantilla, C. (2008a). Chemical analysis of the culture medium: Psidium araca, 25% P/V. Archivos de Zootecnia, 217, 79–82. | |
dc.relation | Lara Mantilla, C. (2008b). Composición química de un medio de cultivo a partir de guayaba agria (Psidium araca) y su relación con la nutrición de los microorganismos ruminales. Revista Colombiana de Biotecnología, 10(2), 44–49. | |
dc.relation | Lara Mantilla, C., Nerio, L., & Oviedo Zumaqué, L. E. (2007). Evaluación fisicoquímica y bromatológica de la guayaba agria (Psidium araca) en dos estados de maduración. Temas Agrarios, 12(1), 13–21. https://doi.org/10.21897/rta.v12i1.647 | |
dc.relation | Lee, D. P. S., Gan, A. X., & Kim, J. E. (2020). Incorporation of biovalorised okara in biscuits: Improvements of nutritional, antioxidant, physical, and sensory properties. LWT, 134, 109902. https://doi.org/10.1016/j.lwt.2020.109902 | |
dc.relation | Lillo, A., Carvajal-Caiconte, F., Nuñez, D., Balboa, N., & Alvear Zamora, M. (2016). Cuantificacion espectrofometria de compuestos fenolicos y actividad antioxidante en distintos berries nativos de Cono Sur de America. Revista de Investigaciones Agropecuarias, 42(2), 168–174. http://www.redalyc.org/articulo.oa?id=86447075010%0ACómo | |
dc.relation | Lima, R. da S., Ferreira, S. R. S., Vitali, L., & Block, J. M. (2019). May the superfruit red guava and its processing waste be a potential ingredient in functional foods? Food Research International, 115, 451–459. https://doi.org/10.1016/j.foodres.2018.10.053 | |
dc.relation | Lucini Mas, A., Brigante, F. I., Salvucci, E., Pigni, N. B., Martinez, M. L., Ribotta, P., Wunderlin, D. A., & Baroni, M. V. (2020). Defatted chia flour as functional ingredient in sweet cookies. How do Processing, simulated gastrointestinal digestion and colonic fermentation affect its antioxidant properties? Food Chemistry, 316, 126279. https://doi.org/10.1016/j.foodchem.2020.126279 | |
dc.relation | Mahloko, L. M., Silungwe, H., Mashau, M. E., & Kgatla, T. E. (2019). Bioactive compounds, antioxidant activity and physical characteristics of wheat-prickly pear and banana biscuits. Heliyon, 5(10), e02479. https://doi.org/10.1016/j.heliyon.2019.e02479 | |
dc.relation | Mammen, D., & Daniel, M. (2012). A critical evaluation on the reliability of two aluminum chloride chelation methods for quantification of flavonoids. Food Chemistry, 135(3), 1365–1368. https://doi.org/10.1016/j.foodchem.2012.05.109 | |
dc.relation | Marinova, D., Ribarova, F., & Atanassova, M. (2005). Total Phenolics and Total Flavonoids in Bulgarian Fruits and Vegetables. Journal of the University of Chemical Technology and Metallurgy, 40(3), 255–260. | |
dc.relation | Mir, S. A., Bosco, S. J. D., Shah, M. A., Santhalakshmy, S., & Mir, M. M. (2017). Effect of apple pomace on quality characteristics of brown rice based cracker. Journal of the Saudi Society of Agricultural Sciences, 16(1), 25–32. https://doi.org/10.1016/j.jssas.2015.01.001 | |
dc.relation | Pasqualone, A., Makhlouf, F. Z., Barkat, M., Difonzo, G., Summo, C., Squeo, G., & Caponio, F. (2019). Effect of acorn flour on the physico-chemical and sensory properties of biscuits. Heliyon, 5(8), e02242. https://doi.org/10.1016/j.heliyon.2019.e02242 | |
dc.relation | Pedraza Chaverri, J., & Cárdenas Rodríguez, N. (2018). Especies reactivas de oxígeno y sistemas antioxidantes. Aspectos básicos. Educación Química, 17(2), 164. https://doi.org/10.22201/fq.18708404e.2006.2.66056 | |
dc.relation | Pérez-Burillo, S., Oliveras, M. J., Quesada, J., Rufián-Henares, J. A., & Pastoriza, S. (2018). Relationship between composition and bioactivity of persimmon and kiwifruit. Food Research International, 105, 461–472. https://doi.org/10.1016/j.foodres.2017.11.022 | |
dc.relation | Perumal, V., Khatib, A., Uddin Ahmed, Q., Fathamah Uzir, B., Abas, F., Murugesu, S., Zuwairi Saiman, M., Primaharinastiti, R., & EL-Seedi, H. (2021). Antioxidants profile of Momordica charantia fruit extract analyzed using LC-MS-QTOF-based metabolomics. Food Chemistry: Molecular Sciences, 100012. https://doi.org/10.1016/j.fochms.2021.100012 | |
dc.relation | Price, M. L., Van Scoyoc, S., & Butler, L. G. (1978). A critical evaluation of the vanillin reaction as an assay for tannin in sorghum grain. Journal of Agricultural and Food Chemistry, 26(5), 1214–1218. https://doi.org/10.1021/jf60219a031 | |
dc.relation | Prior, R. L., Hoang, H., Gu, L., Wu, X., Bacchiocca, M., Howard, L., Hampsch-Woodill, M., Huang, D., Ou, B., & Jacob, R. (2003). Assays for Hydrophilic and Lipophilic Antioxidant Capacity (oxygen radical absorbance capacity (ORAC FL)) of Plasma and Other Biological and Food Samples. Journal of Agricultural and Food Chemistry, 51(11), 3273–3279. https://doi.org/10.1021/jf0262256 | |
dc.relation | Prior, R. L., Wu, X., & Schaich, K. (2005). Standardized Methods for the Determination of Antioxidant Capacity and Phenolics in Foods and Dietary Supplements. Journal of Agricultural and Food Chemistry, 53(10), 4290–4302. https://doi.org/10.1021/jf0502698 | |
dc.relation | Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9–10), 1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3 | |
dc.relation | Rodriguez-Sandoval, E., Prasca-Sierra, I., & Hernandez, V. (2017). Effect of modified cassava starch as a fat replacer on the texture and quality characteristics of muffins. Journal of Food Measurement and Characterization, 11(4), 1630–1639. https://doi.org/10.1007/s11694-017-9543-0 | |
dc.relation | Rojano, B., Gaviria, C., Gil, M., Saez, J., Schinella, G., & Tournier, H. (2008). Actividad antioxidante del isoespintanol en diferentes medios. Vitae, 15(1), 173–181. | |
dc.relation | Roleira, F. M. F., Varela, C. L., Costa, S. C., & Tavares-da-Silva, E. J. (2018). Phenolic Derivatives From Medicinal Herbs and Plant Extracts: Anticancer Effects and Synthetic Approaches to Modulate Biological Activity. In B. T.-S. in N. P. C. Atta-ur-Rahman (Ed.), Studies in Natural Product Chemistry (Vol. 57, pp. 115–156). Elsevier. https://doi.org/10.1016/B978-0-444-64057-4.00004-1 | |
dc.relation | Rotta, E. M., Giroux, H. J., Lamothe, S., Bélanger, D., Sabik, H., Visentainer, J. V., & Britten, M. (2020). Use of passion fruit seed extract (Passiflora edulis Sims) to prevent lipid oxidation in dairy beverages during storage and simulated digestion. LWT, 123, 109088. https://doi.org/10.1016/j.lwt.2020.109088 | |
dc.relation | Sánchez-Riaño, A. M., Solanilla-Duque, J. F., Méndez-Arteaga, J. J., & Váquiro-Herrera, H. A. (2020). Bioactive potential of Colombian feijoa in physiological ripening stage. Journal of the Saudi Society of Agricultural Sciences, 19(4), 299–305. https://doi.org/10.1016/j.jssas.2019.05.002 | |
dc.relation | Sharma, P., Velu, V., Indrani, D., & Singh, R. P. (2013). Effect of dried guduchi (Tinospora cordifolia) leaf powder on rheological, organoleptic and nutritional characteristics of cookies. Food Research International, 50(2), 704–709. https://doi.org/10.1016/j.foodres.2012.03.002 | |
dc.relation | Sidhu, J. S., Al-Hooti, S. N., Al-Saqer, J. M., Al-Amiri, H. A., Al-Foudari, M., Al-Othman, A., Ahmad, A., Al-Haji, L., Ahmed, N., Mansor, I. B., & Minal, J. (2004). Developing Functional Foods Using Red Palm Olein: Pilot-Scale Studies. International Journal of Food Properties, 7(1), 1–13. https://doi.org/10.1081/JFP-120022491 | |
dc.relation | Singleton, G., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology And Viticulture, 16(3), 144–158. | |
dc.relation | Srivastava, P., Indrani, D., & Singh, R. P. (2014). Effect of dried pomegranate (Punica granatum) peel powder (DPPP) on textural, organoleptic and nutritional characteristics of biscuits. International Journal of Food Sciences and Nutrition, 65(7), 827–833. https://doi.org/10.3109/09637486.2014.937797 | |
dc.relation | Thaipong, K., Boonprakob, U., Crosby, K., Cisneros-Zevallos, L., & Hawkins Byrne, D. (2006). Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. Journal of Food Composition and Analysis, 19(6–7), 669–675. https://doi.org/10.1016/j.jfca.2006.01.003 | |
dc.relation | Tyagi, P., Chauhan, A. K., & Aparna. (2020). Optimization and characterization of functional cookies with addition of Tinospora cordifolia as a source of bioactive phenolic antioxidants. LWT, 130, 109639. https://doi.org/10.1016/j.lwt.2020.109639 | |
dc.relation | Vallejo, F., Tomás-Barberán, F. A., & García-Viguera, C. (2003). Effect of climatic and sulphur fertilisation conditions, on phenolic compounds and vitamin C, in the inflorescences of eight broccoli cultivars. European Food Research and Technology, 216(5), 395–401. https://doi.org/10.1007/s00217-003-0664-9 | |
dc.relation | Voss-Rech, D., Klein, C. S., Techio, V. H., Scheuermann, G. N., Rech, G., & Fiorentin, L. (2011). Antibacterial activity of vegetal extracts against serovars of Salmonella. Ciência Rural, 41(2), 314–320. https://doi.org/10.1590/S0103-84782011000200022 | |
dc.relation | Zapata, K., Cortes, F. B., & Rojano, B. A. (2013). Polifenoles y Actividad Antioxidante del Fruto de Guayaba Agria (Psidium araca). Informacion Tecnologica, 24(5), 103–112. https://doi.org/10.4067/S0718-07642013000500012 | |
dc.relation | Zapata, S., Piedrahita, A. M., & Rojano, B. (2014). Capacidad atrapadora de radicales oxígeno (ORAC) y fenoles totales de frutas y hortalizas de Colombia. Perspectivas En Nutrición Humana, 16(1), 25–36. | |
dc.rights | Reconocimiento 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | Elaboración de un producto alimenticio funcional mediante el uso de pulpa liofilizada de guayaba agria (Psidium araca) | |
dc.type | Trabajo de grado - Maestría | |