dc.contributorColorado Lopera, Henry Alonso
dc.contributorRestrepo Gutierrez, Juan Camilo
dc.contributorMateriales
dc.creatorRodríguez Villegas, John Edison
dc.date.accessioned2021-05-21T15:06:05Z
dc.date.accessioned2022-09-21T16:21:17Z
dc.date.available2021-05-21T15:06:05Z
dc.date.available2022-09-21T16:21:17Z
dc.date.created2021-05-21T15:06:05Z
dc.date.issued2018
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/79546
dc.identifierUniversidad Nacional - Sede Medellín
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3391774
dc.description.abstractEvidence suggests that energy efficiency is one of the most crucial factors to be addressed in XXI century by building industry, and the study of the building envelope, which includes passive systems of dynamic activation that works with intrinsic properties of materials has risen significantly since the early 2000s as alternative. Hence, there is a growing body of literature that recognizes the advantages of polymers among others stimulus sensitive materials to define systems of dynamic activation. The adaptive building envelopes state of the art, as well as, semicrystalline shape memory polymers, is assessed in this work. In this way, the thermosensitive potential of a composite material based on a bidirectional shape memory polymer that could be used in responsive building skins was studied. Crosslinked ethylene-vinyl acetate copolymer prestressed, and functionalized sheets were encapsulated into a polyurethane rubber matrix to obtain a thermosensitive functional composite. The programming process which enhance the shape memory effect and the stability of the phenomenon through thermal cycling were studied, as well as, actuator capacity.
dc.description.abstractLa evidencia sugiere que la eficiencia energética es uno de los factores más importantes a abordar en el siglo XXI por la industria de la construcción. Es así como el estudio de la envolvente del edificio que incluye sistemas pasivos de activación dinámica con propiedades intrínsecas de los materiales ha aumentado desde el 2000 como alternativa. Por lo tanto, existe un cuerpo creciente de literatura que reconoce las ventajas de los polímeros sobre otros materiales sensibles a estímulos para definir sistemas de activación dinámica. En este trabajo se evalúa el estado del arte de las envolventes de construcción adaptables, así como los polímeros semi cristalinos con memoria de forma. De esta forma, se estudió el potencial termosensible de un material compuesto basado en un polímero de memoria de forma bidireccional que podría usarse en pieles arquitectónicas adaptativas. Copolímero reticulado de etileno-acetato de vinilo pretensado, y láminas funcionalizadas se encapsularon en una matriz de caucho de poliuretano para obtener un compuesto funcional termosensible. Se estudió el proceso de programación que mejora el efecto de memoria de forma y la estabilidad del fenómeno a través del ciclo térmico, así como la capacidad del actuador. (Texto tomado de la fuente)
dc.languageeng
dc.publisherUniversidad Nacional de Colombia
dc.publisherMedellín - Arquitectura - Maestría en Construcción
dc.publisherEscuela de construcción
dc.publisherFacultad de Arquitectura
dc.publisherMedellín, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Medellín
dc.relation[1] Levermore GJ., “A review of the IPCC assessment report four, part 1: the IPCC process and greenhouse gas emission trends from buildings worldwide. Build Serv Eng Res Technol 2008;29:349e61.v.”
dc.relation[2] International Energy Agency (IEA), “Energy Technologies Perspectives: Scenarios and Strategies to 2050, OECD/IEA,” Paris, 2008.
dc.relation[3] C. Muñoz, C. Zaror, G. Saelzer, and A. Cuchí, “Estudio del flujo energético en el ciclo de vida de una vivienda y su implicancia en las emisiones de gases de efecto invernadero, durante la fase de construcción Caso Estudio: Vivienda Tipología Social. Región del Biobío, Chile,” Rev. Constr., vol. 11, no. 3, pp. 125–145, Dec. 2012.
dc.relation[4] Y. Song, J. Sun, J. Li, and D. Xie, “Towards Net Zero Energy Building: Collaboration-based Sustainable Design and Practice of the Beijing Waterfowl Pavilion,” Energy Procedia, vol. 57, pp. 1773–1782, 2014.
dc.relation[5] I. Sartori, A. Napolitano, and K. Voss, “Net zero energy buildings: A consistent definition framework,” Energy Build., vol. 48, pp. 220–232, May 2012.
dc.relation[6] European Parliament, “Directive 2010/31/EU Energy performance of buildings. Off J Eur Union 2010. L 153/13-L 153-35.,” 19-May-201AD.
dc.relation[7] European Parliament, “Concerted action (CA) Energy performance of buildings directive (EPBD). www.epbd-ca.eu.”
dc.relation[8] European Parliament, “Directive 2012/27/EU.”
dc.relation[9] G. S. Brager and R. J. de Dear, “Thermal adaptation in the built environment: a literature review,” Energy Build., vol. 27, no. 1, pp. 83–96, Feb. 1998.
dc.relation[10] B. Kolarevic and V. Parlac, Eds., Building dynamics: exploring architecture of change. London; New York: Routledge, 2015.
dc.relation[11] J. Douglas, Building adaptation, 2nd ed. Amsterdam: Butterworth-Heinemann, Elsevier, 2006.
dc.relation[12] G. Koçlar, A. K. Yener, and N. T. Bayazit, “Building envelope design with the objective to ensure thermal, visual and acoustic comfort conditions,” Build. Environ., vol. 39, no. 3, pp. 281–287, Mar. 2004.
dc.relation[13] S. B. Sadineni, S. Madala, and R. F. Boehm, “Passive building energy savings: A review of building envelope components,” Renew. Sustain. Energy Rev., vol. 15, no. 8, pp. 3617–3631, Oct. 2011.
dc.relation[14] S. di Salvo, “Smart Materials in Architecture,” Int. J. Eng. Res. Afr., vol. 23, pp. 72–79, Apr. 2016.
dc.relation[15] R. M. Fortmeyer and C. D. Linn, Kinetic architecture: designs for active envelopes. Mulgrave, Victoria: Images Publishing Group, 2014.
dc.relation[16] M. A. Nikolinakou, A. J. Tallon, and J. A. Ochsendor, “Structure and Form of Early Gothic Flying Buttresses,” Rev. Eur. Génie Civ., vol. 9, no. 9–10, pp. 1191–1217, 2005.
dc.relation[17] P. Overy, Light, air & openness: modern architecture between the wars. London: Thames & Hudson, 2007.
dc.relation[18] J. W. Bertens, The idea of the postmodern: a history, Reprinted. London: Routledge, 1996.
dc.relation[19] D. L. Morse and J. W. Evenson, “Welcome to the Glass Age,” Int. J. Appl. Glass Sci., vol. 7, no. 4, pp. 409–412, Dec. 2016.
dc.relation[20] M. Wigginton, Glass in architecture. London: Phaidon, 2004.
dc.relation[21] W. Blaser, Mies van der Rohe, 6th, expanded and rev. ed ed. Basel ; Boston: Birkhauser Verlag, 1997.
dc.relation[22] H. ACHTEN, “One and Many: An Agent Perspective on Interactive Architecture,” presented at the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA), Los Angeles, California, pp. 479–486.
dc.relation[23] M. Barozzi, J. Lienhard, A. Zanelli, and C. Monticelli, “The Sustainability of Adaptive Envelopes: Developments of Kinetic Architecture,” Procedia Eng., vol. 155, pp. 275–284, 2016.
dc.relation[24] M. Perino and V. Serra, “Switching from static to adaptable and dynamic building envelopes: A paradigm shift for the energy efficiency in buildings,” J. Facade Des. Eng., vol. 3, no. 2, pp. 143–163, Oct. 2015.
dc.relation[25] G. C. Henriques, “Responsive systems, relevance, state of the art and developments,” presented at the 19th Conference of the Iberoamerican Society of Digital Graphics, Florianópolis, Brasil, 2015, vol. 1, pp. 200–206.
dc.relation[26] G. Hoover and W. Rempfer, “Closed loop control with data acquisition systems,” in Analog Circuit Design, Elsevier, 2015, pp. 807–808.
dc.relation[27] J. Frazer, “An Evolutionary Architecture.” 1995.
dc.relation[28] AEDAS, Al Bahar Towers, The Abu Dhabi Investment Council. 2012.
dc.relation[29] Jean Nouvel, Architecture-Studio, Arab World Institute. 1987.
dc.relation[30] E. Giselbrecht, Kiefer Technic Showroom. 2007.
dc.relation[31] JSWD Architekten and Chaix & Morel et Associés, Q1 ThyssenKrupp Quarter. 2010.
dc.relation[32] S. Godsell and H. Franklin, RMIT Design Hub. 2012.
dc.relation[33] SOMA, One Ocean. 2012.
dc.relation[34] Y. Su, “Arab Worl Institute EVDA 621 Formal Strategies in architecture, Case Study Analysis.” .
dc.relation[35] S. Attia, “Evaluation of adaptive facades: The case study of Al Bahr Towers in the UAE,” QScience Connect, vol. 2017, no. 2, p. 6, Oct. 2017.
dc.relation[36] M. Meagher, “Responsive Architecture and the Problem of Obsolescence,” Int. J. Archit. Res. ArchNet-IJAR, vol. 8, no. 3, p. 95, Nov. 2014.
dc.relation[37] D. Aelenei, L. Aelenei, and C. P. Vieira, “Adaptive Façade: Concept, Applications, Research Questions,” Energy Procedia, vol. 91, pp. 269–275, Jun. 2016.
dc.relation[38] B. L. H. Hasselaar, “Climate Adaptive Skins: towards the new energy-efficient façade,” 2006, vol. I, pp. 351–360.
dc.relation[39] L. Sun et al., “Stimulus-responsive shape memory materials: A review,” Mater. Des., vol. 33, pp. 577–640, Jan. 2012.
dc.relation[40] B. Ogwezi, R. Bonser, G. Cook, and J. Sakula, “Multifunctional, Adaptable Facades,” presented at the TSBE EngD Conference, University of Reading, 2011.
dc.relation[41] R. Ng, Performative Materials in Architecture and Design. Bristol: Intellect Ltd, 2013.
dc.relation[42] L. A. Momoda, “The future of engineering materials: Multifunction for performance: Tailored structure,” presented at the tenth annual symposium on Frontiers of Engineering, Washington D.C, pp. 47–52.
dc.relation[43] A. Ritter, Smart materials in architecture, interior architecture and design. Basel ; Boston: Birkhäuser, 2007.
dc.relation[44] A. Maragkoudaki, “No-Mech Kinetic Responsive Architecture: Kinetic Responsive Architecture with No Mechanical Parts,” 2013, pp. 145–150.
dc.relation[45] D. Kim Sung, “Skin Deep: Breathing Life into the Layer between Man and Nature.” The American Institute of Architects, 2008.
dc.relation[46] C. Doumpioti, “Responsive and Autonomous Material Interfaces,” in ACADIA 11: Integration through Computation, Banff, Alberta, 2011, pp. 318–325.
dc.relation[47] R. C. G. M. Loonen, F. Favoino, J. L. M. Hensen, and M. Overend, “Review of current status, requirements and opportunities for building performance simulation of adaptive facades,” J. Build. Perform. Simul., vol. 10, no. 2, pp. 205–223, Mar. 2017.
dc.relation[48] A. Aksamija, Integrating innovation in architecture: design, methods and technology for progressive practice and research. West Sussex, United Kingdom: Wiley, 2016.
dc.relation[49] W.-G. Drossel, H. Kunze, A. Bucht, L. Weisheit, and K. Pagel, “Smart3 – Smart Materials for Smart Applications,” Procedia CIRP, vol. 36, pp. 211–216, 2015.
dc.relation[50] J. Daveiga and P. Ferreira, “Smart and Nano Materials in Architecture,” presented at the 2005 Annual Conference of the Association for Computer Aided Design In Architecture, Savannah, Georgia, 2005, pp. 58–67.
dc.relation[51] R.C.G.M. Loonen et al., “Design for façade adaptability – Towards a unified and systematic characte,” presented at the 10th Conference on Advanced Building Skins, Bern, Switzerland, 2015, pp. 1284–1294.
dc.relation[52] Bahar BASARIR and M. Cem ALTUN, “A Classification Approach for Adaptive Façades,” presented at the Interdiciplinary Perspectives for Future Building Envelopes, Istanbul, Turkey, 2017.
dc.relation[53] F. Fiorito et al., “Shape morphing solar shadings: A review,” Renew. Sustain. Energy Rev., vol. 55, pp. 863–884, Mar. 2016.
dc.relation[54] D. Correa Zuluaga and A. Menges, “3D Printed Hygroscopic Programmable Material Systems,” MRS Proc., vol. 1800, 2015.
dc.relation[55] Nicola Augustin, “Motion with Moisture: Creating Passive Dynamic Envelope Systems Using the Hygroscopic Properties of Wood Veneer,” Master Thesis, University of Waterloo, Ontario, Canada, 2018.
dc.relation[56] C. Chao, Reacting architectural surface. 2015.
dc.relation[57] B. Torres, “Programmable Matter Hygroscopic actuation of multidirectional lattice structures,” Master Thesis, University of Stuttgart, Stuttgart, Germany, 2014.
dc.relation[58] D. Wood, C. Vailati, A. Menges, and M. Rüggeberg, “Hygroscopically actuated wood elements for weather responsive and self-forming building parts – Facilitating upscaling and complex shape changes,” Constr. Build. Mater., vol. 165, pp. 782–791, Mar. 2018.
dc.relation[59] C. Vailati, E. Bachtiar, P. Hass, I. Burgert, and M. Rüggeberg, “An autonomous shading system based on coupled wood bilayer elements,” Energy Build., vol. 158, pp. 1013–1022, Jan. 2018.
dc.relation[60] A. Y. Kyriakou, A. Potter, and W. Zhao, “SoftSpaces.” Architectural Association AA, London, 2016.
dc.relation[61] E. Mitrofanova, A. Rathee, and P. Santayanon, “hydroceramic,” Master Thesis, Institute for advanced architecture of Catalonia, Barcelona, 2014.
dc.relation[62] I. Ayala Castro, M. Manosong, and Y. C. Chang, “Water-driven Breathing skin,” Master Thesis, Institute for advanced architecture of Catalonia, Barcelona, 2017.
dc.relation[63] L. Roth, “Hydromembrane,” Master Thesis, Institute for advanced architecture of Catalonia, Barcelona, 2015.
dc.relation[64] A. Garcia Garcia, M. Srinivas, and M. A. Juarez, “Thermatrix bimetals,” Master Thesis, Institute for advanced architecture of Catalonia, Barcelona, 2014.
dc.relation[65] S. Verma and P. Devadass, “adaptive[skins]: Responsive building skin systems based on tensegrity principles,” in Future Traditions, Portugal, 2013, pp. 155–170.
dc.relation[66] V. Sushant and D. Pradeep, “Adaptive [skins]: Adaptation through smart systems,” presented at the 7th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design, Jeddah, Kingdom of Saudi Arabia, 2014, pp. 275–289.
dc.relation[67] N. Diniz, B. Cesar, S. D. Miguel, and T. Alasdair, “Morphosis: A responsive membrane,” presented at the 12th International Conference on Computer Aided Architectural Design Futures, Sydney, Australia, 2007, pp. 489–498.
dc.relation[68] M. Formentini and S. Lenci, “An innovative building envelope (kinetic façade) with Shape Memory Alloys used as actuators and sensors,” Autom. Constr., vol. 85, pp. 220–231, Jan. 2018.
dc.relation[69] S. Abdelmohsen, P. Massoud, and A. Elshafei, “Using Tensegrity and Folding to Generate Soft Responsive Architectural Skins,” in Complexity & Simplicity, Finland, 2016, vol. 01, pp. 529–536.
dc.relation[70] C. K. Khoo and F. Salim, “Responsive Materiality for Morphing Architectural Skins,” presented at the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA), Cambridge, Ontario, 2013, pp. 243–252.
dc.relation[71] C. K. Khoo, J. Burry, and M. Burry, “Soft responsive kinetic system: An elastic transformable architectural skin for climatic and visual control,” presented at the Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA 11), Bangff, Canada, 2011, pp. 334–341.
dc.relation[72] C. K. Khoo and F. Salim, “A responsive morphing media skin,” in Beyond codes and pixels, Hong Kong, 2012, pp. 517–526.
dc.relation[73] C. K. Khoo, F. Salim, and J. Burry, “Designing Architectural Morphing Skins with Elastic Modular Systems,” Int. J. Archit. Comput., vol. 9, no. 4, pp. 397–419, Dec. 2011.
dc.relation[74] J. W. Jun, M. Silverio, J. A. Llubia, A. Markopoulou, A. Chronis, and A. Dubor, “Remembrane: A Shape Changing Adaptive Structure,” presented at the 7th International Conference, CAAD Futures 2017, Proceedings, Istanbul, Turkey, 2017, pp. 180–198.
dc.relation[75] J. W. Jun, J. Alcover, and M. Silverio, “Remembrane,” Master Thesis, Institute for advanced architecture of Catalonia, Barcelona, 2015.
dc.relation[76] N. Gonzales and M. Shreyas, “Self - Adaptive membrane - A passive kinetic system,” Master Thesis, Institute for advanced architecture of Catalonia, Barcelona, 2015.
dc.relation[77] C. Ji et al., “Al-doped VO 2 films as smart window coatings: Reduced phase transition temperature and improved thermochromic performance,” Sol. Energy Mater. Sol. Cells, vol. 176, pp. 174–180, Mar. 2018.
dc.relation[78] M. Zhu, H. Qi, B. Wang, H. Wang, T. Guan, and D. Zhang, “Thermochromism of vanadium dioxide films controlled by the thickness of ZnO buffer layer under low substrate temperature,” J. Alloys Compd., vol. 740, pp. 844–851, Apr. 2018.
dc.relation[79] J. B. MacChesney and H. J. Guggenheim, “Growth and electrical properties of vanadium dioxide single crystals containing selected impurity ions,” J. Phys. Chem. Solids, vol. 30, no. 2, pp. 225–234, Feb. 1969.
dc.relation[80] W. Burkhardt, T. Christmann, B. . Meyer, W. Niessner, D. Schalch, and A. Scharmann, “W- and F-doped VO 2 films studied by photoelectron spectrometry,” Thin Solid Films, vol. 345, no. 2, pp. 229–235, May 1999.
dc.relation[81] Z. Cao, Y. Lu, X. Xiao, Y. Zhan, H. Cheng, and G. Xu, “Tunable simultaneously visible-light and near-infrared transmittance for VO 2 /SiO 2 composite films to enhance thermochromic properties,” Mater. Lett., vol. 209, pp. 609–612, Dec. 2017.
dc.relation[82] S. Hoffmann, E. S. Lee, and C. Clavero, “Examination of the technical potential of near-infrared switching thermochromic windows for commercial building applications,” Sol. Energy Mater. Sol. Cells, vol. 123, pp. 65–80, Apr. 2014.
dc.relation[83] V. Costanzo, G. Evola, and L. Marletta, “Thermal and visual performance of real and theoretical thermochromic glazing solutions for office buildings,” Sol. Energy Mater. Sol. Cells, vol. 149, pp. 110–120, May 2016.
dc.relation[84] E. S. Lee, X. Pang, S. Hoffmann, H. Goudey, and A. Thanachareonkit, “An empirical study of a full-scale polymer thermochromic window and its implications on material science development objectives,” Sol. Energy Mater. Sol. Cells, vol. 116, pp. 14–26, Sep. 2013.
dc.relation[85] M. M. Seyfouri and R. Binions, “Sol-gel approaches to thermochromic vanadium dioxide coating for smart glazing application,” Sol. Energy Mater. Sol. Cells, vol. 159, pp. 52–65, Jan. 2017.
dc.relation[86] H. Yang et al., “Composite phase change materials with good reversible thermochromic ability in delignified wood substrate for thermal energy storage,” Appl. Energy, vol. 212, pp. 455–464, Feb. 2018.
dc.relation[87] Z. Liang et al., “Tungsten-doped vanadium dioxide thin films as smart windows with self-cleaning and energy-saving functions,” J. Alloys Compd., vol. 694, pp. 124–131, Feb. 2017.
dc.relation[88] W. Lu, G. Zhao, B. Song, J. Li, X. Zhang, and G. Han, “Preparation and thermochromic properties of sol-gel-derived Zr-doped VO 2 films,” Surf. Coat. Technol., vol. 320, pp. 311–314, Jun. 2017.
dc.relation[89] N. Wang, Q. S. Goh, P. L. Lee, S. Magdassi, and Y. Long, “One-step hydrothermal synthesis of rare earth/W-codoped VO 2 nanoparticles: Reduced phase transition temperature and improved thermochromic properties,” J. Alloys Compd., vol. 711, pp. 222–228, Jul. 2017.
dc.relation[90] K. Allen, K. Connelly, P. Rutherford, and Y. Wu, “Smart windows—Dynamic control of building energy performance,” Energy Build., vol. 139, pp. 535–546, Mar. 2017.
dc.relation[91] W. Feng, L. Zou, G. Gao, G. Wu, J. Shen, and W. Li, “Gasochromic smart window: optical and thermal properties, energy simulation and feasibility analysis,” Sol. Energy Mater. Sol. Cells, vol. 144, pp. 316–323, Jan. 2016.
dc.relation[92] N. Bhaktavatsala, “Colourmorph,” Master Thesis, Institute for advanced architecture of Catalonia, Barcelona, 2015.
dc.relation[93] K. S. Pascha, “The use of Phase-Change-Material as cooling-strategy for buildings in the Chilean climate,” Int. J. Low-Carbon Technol., vol. 3, no. 2, pp. 101–109, Apr. 2008.
dc.relation[94] L. Bianco et al., “Thermal and optical characterisation of dynamic shading systems with PCMs through laboratory experimental measurements,” Energy Build., vol. 163, pp. 92–110, Mar. 2018.
dc.relation[95] L. Li, H. Yu, X. Wang, and S. Zheng, “Thermal analysis of melting and freezing processes of phase change materials (PCMs) based on dynamic DSC test,” Energy Build., vol. 130, pp. 388–396, Oct. 2016.
dc.relation[96] F. Liu, J. Zhu, J. Liu, B. Ma, W. Zhou, and R. Li, “Preparation and properties of capric-stearic acid/White Carbon Black composite for thermal storage in building envelope,” Energy Build., vol. 158, pp. 1781–1789, Jan. 2018.
dc.relation[97] A. Fateh, D. Borelli, F. Devia, and H. Weinläder, “Summer thermal performances of PCM-integrated insulation layers for light-weight building walls: effect of orientation and melting point temperature,” Therm. Sci. Eng. Prog., Jan. 2018.
dc.relation[98] K. O. Lee, M. A. Medina, X. Sun, and X. Jin, “Thermal performance of phase change materials (PCM)-enhanced cellulose insulation in passive solar residential building walls,” Sol. Energy, vol. 163, pp. 113–121, Mar. 2018.
dc.relation[99] L. Royon, L. Karim, and A. Bontemps, “Optimization of PCM embedded in a floor panel developed for thermal management of the lightweight envelope of buildings,” Energy Build., vol. 82, pp. 385–390, Oct. 2014.
dc.relation[100] L. Erlbeck et al., “Adjustment of thermal behavior by changing the shape of PCM inclusions in concrete blocks,” Energy Convers. Manag., vol. 158, pp. 256–265, Feb. 2018.
dc.relation[101] A. D’Alessandro, A. L. Pisello, C. Fabiani, F. Ubertini, L. F. Cabeza, and F. Cotana, “Multifunctional smart concretes with novel phase change materials: Mechanical and thermo-energy investigation,” Appl. Energy, vol. 212, pp. 1448–1461, Feb. 2018.
dc.relation[102] A. Laura Pisello, C. Fabiani, and F. Cotana, “New experimental technique to investigate the thermal behavior of PCM/doped concrete for enhancing thermal/energy storage capability of building envelope,” Energy Procedia, vol. 126, pp. 139–146, Sep. 2017.
dc.relation[103] E. Leang, P. Tittelein, L. Zalewski, and S. Lassue, “Numerical study of a composite Trombe solar wall integrating microencapsulated PCM,” Energy Procedia, vol. 122, pp. 1009–1014, Sep. 2017.
dc.relation[104] V. V. Rao, R. Parameshwaran, and V. V. Ram, “PCM-mortar based construction materials for energy efficient buildings: A review on research trends,” Energy Build., vol. 158, pp. 95–122, Jan. 2018.
dc.relation[105] S. Li, G. Sun, K. Zou, and X. Zhang, “Experimental research on the dynamic thermal performance of a novel triple-pane building window filled with PCM,” Sustain. Cities Soc., vol. 27, pp. 15–22, Nov. 2016.
dc.relation[106] G. G. D. Han, H. Li, and J. C. Grossman, “Optically-controlled long-term storage and release of thermal energy in phase-change materials,” Nat. Commun., vol. 8, no. 1, Dec. 2017.
dc.relation[107] M. Decker, “Nanotechology and Emergent Materials in Architecture,” presented at the Tectonics of Teaching, Tectonics of Teaching, 2013, vol. 2013, pp. 1–7.
dc.relation[108] H. Joucka, “Sound to Polymer 1.0,” Master Thesis, Institute for advanced architecture of Catalonia, Barcelona, 2016.
dc.relation[109] L. Franzke, D. Rossi, and K. Franinovic, “Fluid Morphologies: Hydroactive Polymers for Responsive Architecture,” in POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines, Ann Arbor, Michigan, 2016, pp. 478–487.
dc.relation[110] M. Decker, “Soft Human Computer Interfaces - Towards Soft Robotics in Architecture,” presented at the 35th eCAADe Conference, Rome, Italy, 2017, vol. 02, pp. 739–744.
dc.relation[111] M. Kretzer, “towards a new softness The aesthetics of soft dielectric electroactive polymers and their application in an architectural context.” Morgan Ip, Dino Rossi Chair for Computer Aided Architectural Design, 2010.
dc.relation[112] M. Kretzer and D. Rossi, “ShapeShift,” Leonardo, vol. 45, no. 5, pp. 480–481, Oct. 2012.
dc.relation[113] N. Biloria and V. Sumini, “Performative Building Skin Systems: A Morphogenomic Approach towards Developing Real-Time Adaptive Building Skin Systems,” Int. J. Archit. Comput., vol. 7, no. 4, pp. 643–675, Dec. 2009.
dc.relation[114] A. Azens and C. Granqvist, “Electrochromic smart windows: energy efficiency and device aspects,” J. Solid State Electrochem., vol. 7, no. 2, pp. 64–68, Feb. 2003.
dc.relation[115] N. L. Sbar, L. Podbelski, H. M. Yang, and B. Pease, “Electrochromic dynamic windows for office buildings,” Int. J. Sustain. Built Environ., vol. 1, no. 1, pp. 125–139, Jun. 2012.
dc.relation[116] E. S. Lee and A. Tavil, “Energy and visual comfort performance of electrochromic windows with overhangs,” Build. Environ., vol. 42, no. 6, pp. 2439–2449, Jun. 2007.
dc.relation[117] S. Beites, “Morphological Behavior of Shape Memory Polymers Toward a Deployable, Adaptive Architecture,” in Adaptive Architecture, Cambridge, Ontario, 2013, pp. 121–128.
dc.relation[118] Z. D. Arnellou, E. A. Papakonstantinou, and P. Sarantinoudi, “Fabricflation. Structuring textile techniques,” Master Thesis, Institute for advanced architecture of Catalonia, Barcelona, 2015.
dc.relation[119] R. shambayati, ece Tankal, and B. Efilena, “Translated Geometries,” Master Thesis, Institute for advanced architecture of Catalonia, Barcelona, 2014.
dc.relation[120] Y. Tang, G. Lin, S. Yang, Y. K. Yi, R. D. Kamien, and J. Yin, “Programmable Kiri-Kirigami Metamaterials,” Adv. Mater., p. 1604262, Dec. 2016.
dc.relation[121] C. Skaar, Wood-water relations. Place of publication not identified: Springer, 2012.
dc.relation[122] Samuel V. Glass and Samuel L. Zelinka, “Moisture Relations and Physical Properties of Wood,” in Wood handbook : wood as an engineering material, FPL-GTR-190., Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, 2010.
dc.relation[123] V. Kamperidou, I. Barboutis, and V. Vasileiou, “Response of colour and hygroscopic properties of Scots pine wood to thermal treatment,” J. For. Res., vol. 24, no. 3, pp. 571–575, Sep. 2013.
dc.relation[124] J. M. Dinwoodie, Timber, its nature and behaviour, 2nd ed. London ; New York : [England]: E & FN Spon ; BRE, with the support of the Centre for Timber Technology and Construction at BRE, 2000.
dc.relation[125] I. Burgert and P. Fratzl, “Actuation systems in plants as prototypes for bioinspired devices,” Philos. Trans. R. Soc. Math. Phys. Eng. Sci., vol. 367, no. 1893, pp. 1541–1557, Apr. 2009.
dc.relation[126] A. Le Duigou and M. Castro, “Evaluation of force generation mechanisms in natural, passive hydraulic actuators,” Sci. Rep., vol. 6, no. 1, May 2016.
dc.relation[127] M. T. Marshall, “HYGROSCOPIC CLIMATIC MODULATED BOUNDARIES: A Strategy for Differentiated Performance Using a Natural Circulative and Energy Captive Building Envelope in Hot and Moisture Rich Laden Air Environments.,” Perkins & Will research journal, vol. 02.01, no. 03, pp. 41–54, 2010.
dc.relation[128] M. T. Marshall, “Bi-directional thermo-hygroscopic facades: Feasibility for liquid desiccant thermal walls to provide cooling in a small-office building,” presented at the Architectural Research Centers Consortium FUTURE of Architectural Research, Illinois, Chicago, 2015, pp. 45–56.
dc.relation[129] B. Ogwezi, G. Jeronimidis, G. Cook, J. Sakula, and A. Kilaire, “Development of a passive and adaptable façade element for humidity control.” Technologies for a Sustainable Built Environment (T SBE) Centre, University of Reading, 2013.
dc.relation[130] T. L. Staples and P. K. Chatterjee, “Synthetic Superabsorbents,” in Textile Science and Technology, vol. 13, Elsevier, 2002, pp. 283–322.
dc.relation[131] E. M. Ahmed, “Hydrogel: Preparation, characterization, and applications: A review,” J. Adv. Res., vol. 6, no. 2, pp. 105–121, Mar. 2015.
dc.relation[132] Y. Qiu and K. Park, “Environment-sensitive hydrogels for drug delivery,” Adv. Drug Deliv. Rev., vol. 53, no. 3, pp. 321–339, Dec. 2001.
dc.relation[133] S. D. Kim, Bloom. Materials & Applications Gallery. 2012.
dc.relation[134] Y. Liu, Y. Li, K. . Ramesh, and J. Van Humbeeck, “High strain rate deformation of martensitic NiTi shape memory alloy,” Scr. Mater., vol. 41, no. 1, pp. 89–95, Jun. 1999.
dc.relation[135] C. Cismaşiu and F. P. Amarante dos Santos, “Numerical simulation of superelastic shape memory alloys subjected to dynamic loads,” Smart Mater. Struct., vol. 17, no. 2, p. 025036, Apr. 2008.
dc.relation[136] T. Waitz, V. Kazykhanov, and H. P. Karnthaler, “Martensitic phase transformations in nanocrystalline NiTi studied by TEM,” Acta Mater., vol. 52, no. 1, pp. 137–147, Jan. 2004.
dc.relation[137] M. Decker and Z. Andrzej, “Designing Resilient Buildings with Emergent Materials,” presented at the 32nd eCAADe Conference, England, The U.K., 2014, vol. 2, pp. 179–184.
dc.relation[138] M. Kamalisarvestani, R. Saidur, S. Mekhilef, and F. S. Javadi, “Performance, materials and coating technologies of thermochromic thin films on smart windows,” Renew. Sustain. Energy Rev., vol. 26, pp. 353–364, Oct. 2013.
dc.relation[139] I. P. Parkin and T. D. Manning, “Intelligent Thermochromic Windows,” J. Chem. Educ., vol. 83, no. 3, p. 393, Mar. 2006.
dc.relation[140] S. Wang, M. Liu, L. Kong, Y. Long, X. Jiang, and A. Yu, “Recent progress in VO2 smart coatings: Strategies to improve the thermochromic properties,” Prog. Mater. Sci., vol. 81, pp. 1–54, Aug. 2016.
dc.relation[141] R. Zhang et al., “Metal-to-insulator transition and its effective manipulation studied from investigations in V 1-x Nb x O 2 bulks,” Ceram. Int., vol. 44, no. 3, pp. 2809–2813, Feb. 2018.
dc.relation[142] M. Casini, “Active dynamic windows for buildings: A review,” Renew. Energy, vol. 119, pp. 923–934, Apr. 2018.
dc.relation[143] M. Kuta and T. M. Wójcik, “Phase change materials in energy sector - applications and material requirements,” EPJ Web Conf., vol. 92, p. 02043, 2015.
dc.relation[144] M. Iten, S. Liu, and A. Shukla, “A review on the air-PCM-TES application for free cooling and heating in the buildings,” Renew. Sustain. Energy Rev., vol. 61, pp. 175–186, Aug. 2016.
dc.relation[145] A. Kasaeian, L. bahrami, F. Pourfayaz, E. Khodabandeh, and W.-M. Yan, “Experimental studies on the applications of PCMs and nano-PCMs in buildings: A critical review,” Energy Build., vol. 154, pp. 96–112, Nov. 2017.
dc.relation[146] H. Akeiber et al., “A review on phase change material (PCM) for sustainable passive cooling in building envelopes,” Renew. Sustain. Energy Rev., vol. 60, pp. 1470–1497, Jul. 2016.
dc.relation[147] Y. Cascone, A. Capozzoli, and M. Perino, “Optimisation analysis of PCM-enhanced opaque building envelope components for the energy retrofitting of office buildings in Mediterranean climates,” Appl. Energy, vol. 211, pp. 929–953, Feb. 2018.
dc.relation[148] A. Castell and M. M. Farid, “Experimental validation of a methodology to assess PCM effectiveness in cooling building envelopes passively,” Energy Build., vol. 81, pp. 59–71, Oct. 2014.
dc.relation[149] B. A. Young, G. Falzone, Z. Wei, G. Sant, and L. Pilon, “Reduced-scale experiments to evaluate performance of composite building envelopes containing phase change materials,” Constr. Build. Mater., vol. 162, pp. 584–595, Feb. 2018.
dc.relation[150] M. Saffari, A. de Gracia, C. Fernández, and L. F. Cabeza, “Simulation-based optimization of PCM melting temperature to improve the energy performance in buildings,” Appl. Energy, vol. 202, pp. 420–434, Sep. 2017.
dc.relation[151] A. Pasupathy, R. Velraj, and R. V. Seeniraj, “Phase change material-based building architecture for thermal management in residential and commercial establishments,” Renew. Sustain. Energy Rev., vol. 12, no. 1, pp. 39–64, Jan. 2008.
dc.relation[152] A. Kylili and P. A. Fokaides, “Life Cycle Assessment (LCA) of Phase Change Materials (PCMs) for building applications: A review,” J. Build. Eng., vol. 6, pp. 133–143, Jun. 2016.
dc.relation[153] V. Bobnar, A. Levstik, C. Huang, and Q. M. Zhang, “Enhanced dielectric response in all-organic polyaniline–poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene) composite,” J. Non-Cryst. Solids, vol. 353, no. 2, pp. 205–209, Feb. 2007.
dc.relation[154] H. Meng and G. Li, “Reversible switching transitions of stimuli-responsive shape changing polymers,” J. Mater. Chem. A, vol. 1, no. 27, p. 7838, 2013.
dc.relation[155] P. Kolodziej and R. Josef, “Responsive Building Envelope as a Material System of Autonomous Agents,” presented at the 19th Conference on Computer-Aided Architectural Design Research in Asia, Singapore, 2013, pp. 945–954.
dc.relation[156] B. Krietemeyer, “An Interactive Simulation Environment for Adaptive Architectural Systems,” in Architecture and Interaction, N. S. Dalton, H. Schnädelbach, M. Wiberg, and T. Varoudis, Eds. Cham: Springer International Publishing, 2016, pp. 231–252.
dc.relation[157] E. A. Krietemeyer and D. Anna H., “Electropolymeric Technology for Dynamic Building Envelopes,” presented at the Parametricism (SPC) ACADIA Regional 2011 Conferenc, Lincoln, Nebraska, 2011, pp. 75–83.
dc.relation[158] J. S. E. M. Svensson and C. G. Granqvist, “Electrochromic coatings for ‘smart windows,’” Sol. Energy Mater., vol. 12, no. 6, pp. 391–402, Dec. 1985.
dc.relation[159] A. Azens et al., “Flexible foils with electrochromic coatings: science, technology and applications,” Mater. Sci. Eng. B, vol. 119, no. 3, pp. 214–223, Jun. 2005.
dc.relation[160] S. K. Deb, “Optical and photoelectric properties and colour centres in thin films of tungsten oxide,” Philos. Mag., vol. 27, no. 4, pp. 801–822, Apr. 1973.
dc.relation[161] C. G. Granqvist, Handbook of inorganic electrochromic materials. Amsterdam; New York: Elsevier, 1995.
dc.relation[162] M. Pittaluga, “Electrochromic glazing and walls for reducing building cooling needs,” in Eco-Efficient Materials for Mitigating Building Cooling Needs, Elsevier, 2015, pp. 473–497.
dc.relation[163] A. Malekafzali Ardakan, E. Sok, and J. Niemasz, “Electrochromic glass vs. fritted glass: an analysis of glare control performance,” Energy Procedia, vol. 122, pp. 343–348, Sep. 2017.
dc.relation[164] E. S. Lee, D. L. DiBartolomeo, J. Klems, M. Yazdanian, and S. E. Selkowitz, “Monitored Energy Performance of Electrochromic Windows Controlled for Daylight and Visual Comfort,” presented at the ASHRAE 2006 Summer Meeting, Quebec, Canada, 2006.
dc.relation[165] T. Aslihan and S. L. Eleanor, “The impact of overhang design on the performance of the electrochromic windows,” presented at the International Solar Energy Society (ISES) Solar World Congress, Orlando, Florida, 2018, pp. 199–206.
dc.relation[166] N. DeForest, A. Shehabi, S. Selkowitz, and D. J. Milliron, “A comparative energy analysis of three electrochromic glazing technologies in commercial and residential buildings,” Appl. Energy, vol. 192, pp. 95–109, Apr. 2017.
dc.relation[167] J. Leng and S. Du, Eds., Shape-memory polymers and multifunctional composites. Boca Raton: CRC Press/Taylor & Francis, 2010.
dc.relation[168] L. Sun et al., “Stimulus-responsive shape memory materials: A review,” Mater. Des., vol. 33, pp. 577–640, Jan. 2012.
dc.relation[169] J. Hu, Y. Zhu, H. Huang, and J. Lu, “Recent advances in shape–memory polymers: Structure, mechanism, functionality, modeling and applications,” Prog. Polym. Sci., vol. 37, no. 12, pp. 1720–1763, Dec. 2012.
dc.relation[170] Q. Meng and J. Hu, “A review of shape memory polymer composites and blends,” Compos. Part Appl. Sci. Manuf., vol. 40, no. 11, pp. 1661–1672, Nov. 2009.
dc.relation[171] F. Zhang, L. Liu, X. Lv, Y. Liu, and J. Leng, “Properties of smart adaptive composite materials,” in Smart Composite Coatings and Membranes, Elsevier, 2016, pp. 3–31.
dc.relation[172] T. Mu, L. Liu, X. Lan, Y. Liu, and J. Leng, “Shape memory polymers for composites,” Compos. Sci. Technol., Mar. 2018.
dc.relation[173] X. Wang et al., “Improved Self-Healing of Polyethylene/Carbon Black Nanocomposites by Their Shape Memory Effect,” J. Phys. Chem. B, vol. 117, no. 5, pp. 1467–1474, Feb. 2013.
dc.relation[174] A. Lendlein, Ed., Shape-Memory Polymers, vol. 226. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010.
dc.relation[175] Y. Zhou and W. M. Huang, “Shape Memory Effect in Polymeric Materials: Mechanisms and Optimization,” Procedia IUTAM, vol. 12, pp. 83–92, 2015.
dc.relation[176] Q. Zhao, H. J. Qi, and T. Xie, “Recent progress in shape memory polymer: New behavior, enabling materials, and mechanistic understanding,” Prog. Polym. Sci., vol. 49–50, pp. 79–120, Oct. 2015.
dc.relation[177] T. Chung, A. Romo-Uribe, and P. T. Mather, “Two-Way Reversible Shape Memory in a Semicrystalline Network,” Macromolecules, vol. 41, no. 1, pp. 184–192, Jan. 2008.
dc.relation[178] Y. Bai, X. Zhang, Q. Wang, and T. Wang, “A tough shape memory polymer with triple-shape memory and two-way shape memory properties,” J. Mater. Chem. A, vol. 2, no. 13, p. 4771, 2014.
dc.relation[179] J. Hu et al., “Epoxy shape memory polymer (SMP): Material preparation, uniaxial tensile tests and dynamic mechanical analysis,” Polym. Test., vol. 62, pp. 335–341, Sep. 2017.
dc.relation[180] M. Balk, M. Behl, C. Wischke, J. Zotzmann, and A. Lendlein, “Recent advances in degradable lactide-based shape-memory polymers,” Adv. Drug Deliv. Rev., vol. 107, pp. 136–152, Dec. 2016.
dc.relation[181] M. Farhan, S. R. Chaganti, U. Nöchel, K. Kratz, and A. Lendlein, “Reversible shape-memory properties of surface functionalizable, crystallizable crosslinked terpolymers: Reversible Actuation of Surface Modified Crosslinked Terpolymers,” Polym. Adv. Technol., vol. 26, no. 12, pp. 1421–1427, Dec. 2015.
dc.relation[182] B. Yang, W. M. Huang, C. Li, and L. Li, “Effects of moisture on the thermomechanical properties of a polyurethane shape memory polymer,” Polymer, vol. 47, no. 4, pp. 1348–1356, Feb. 2006.
dc.relation[183] E. Hornbogen, “Comparison of Shape Memory Metals and Polymers,” Adv. Eng. Mater., vol. 8, no. 1–2, pp. 101–106, Feb. 2006.
dc.relation[184] W. Wang, Y. Liu, and J. Leng, “Recent developments in shape memory polymer nanocomposites: Actuation methods and mechanisms,” Coord. Chem. Rev., vol. 320–321, pp. 38–52, Aug. 2016.
dc.relation[185] M. Behl and A. Lendlein, “Actively moving polymers,” Soft Matter, vol. 3, no. 1, pp. 58–67, 2007.
dc.relation[186] T. Xie, “Recent advances in polymer shape memory,” Polymer, vol. 52, no. 22, pp. 4985–5000, Oct. 2011.
dc.relation[187] M. Behl, K. Kratz, J. Zotzmann, U. Nöchel, and A. Lendlein, “Reversible Bidirectional Shape-Memory Polymers,” Adv. Mater., vol. 25, no. 32, pp. 4466–4469, Aug. 2013.
dc.relation[188] I. Kolesov, O. Dolynchuk, D. Jehnichen, U. Reuter, M. Stamm, and H.-J. Radusch, “Changes of Crystal Structure and Morphology during Two-Way Shape-Memory Cycles in Cross-Linked Linear and Short-Chain Branched Polyethylenes,” Macromolecules, vol. 48, no. 13, pp. 4438–4450, Jul. 2015.
dc.relation[189] S. Pandini, D. Dioni, K. Paderni, M. Messori, M. Toselli, and T. Riccò, “The network density as tailoring parameter for the two-way shape memory response of crosslinked poly(ε-caprolactone),” 2014, pp. 270–273.
dc.relation[190] G. Lugito, E. Woo, and W.-T. Chuang, “Interior Lamellar Assembly and Optical Birefringence in Poly(trimethylene terephthalate) Spherulites: Mechanisms from Past to Present,” Crystals, vol. 7, no. 2, p. 56, Feb. 2017.
dc.relation[191] T. Chung, A. Romo-Uribe, and P. T. Mather, “Two-Way Reversible Shape Memory in a Semicrystalline Network,” Macromolecules, vol. 41, no. 1, pp. 184–192, Jan. 2008.
dc.relation[192] K. K. Westbrook et al., “Constitutive Modeling of Shape Memory Effects in Semicrystalline Polymers With Stretch Induced Crystallization,” J. Eng. Mater. Technol., vol. 132, no. 4, p. 041010, 2010.
dc.relation[193] J. Kunzelman, T. Chung, P. T. Mather, and C. Weder, “Shape memory polymers with built-in threshold temperature sensors,” J. Mater. Chem., vol. 18, no. 10, p. 1082, 2008.
dc.relation[194] J. Li, W. R. Rodgers, and T. Xie, “Semi-crystalline two-way shape memory elastomer,” Polymer, vol. 52, no. 23, pp. 5320–5325, Oct. 2011.
dc.relation[195] C. Qian, Y. Dong, Y. Zhu, and Y. Fu, “Two-way shape memory behavior of semi-crystalline elastomer under stress-free condition,” Smart Mater. Struct., vol. 25, no. 8, p. 085023, Aug. 2016.
dc.relation[196] J. Fan and G. Li, “High performance and tunable artificial muscle based on two-way shape memory polymer,” RSC Adv, vol. 7, no. 2, pp. 1127–1136, 2017.
dc.relation[197] I. Kolesov, O. Dolynchuk, and H.-J. Radusch, “Shape-memory behavior of cross-linked semi-crystalline polymers and their blends,” Express Polym. Lett., vol. 9, no. 3, pp. 255–276, 2015.
dc.relation[198] O. Dolynchuk, I. Kolesov, R. Androsch, and H.-J. Radusch, “Kinetics and dynamics of two-way shape-memory behavior of crosslinked linear high-density and short-chain branched polyethylenes with regard to crystal orientation,” Polymer, vol. 79, pp. 146–158, Nov. 2015.
dc.relation[199] L. Ma et al., “Effects of carbon black nanoparticles on two-way reversible shape memory in crosslinked polyethylene,” Polymer, vol. 56, pp. 490–497, Jan. 2015.
dc.relation[200] A. Biswas, V. K. Aswal, P. U. Sastry, D. Rana, and P. Maiti, “Reversible Bidirectional Shape Memory Effect in Polyurethanes through Molecular Flipping,” Macromolecules, vol. 49, no. 13, pp. 4889–4897, Jul. 2016.
dc.relation[201] Q. Li, J. Zhou, M. Vatankhah-Varnoosfaderani, D. Nykypanchuk, O. Gang, and S. S. Sheiko, “Advancing Reversible Shape Memory by Tuning the Polymer Network Architecture,” Macromolecules, vol. 49, no. 4, pp. 1383–1391, Feb. 2016.
dc.relation[202] J. Zhou et al., “Shapeshifting: Reversible Shape Memory in Semicrystalline Elastomers,” Macromolecules, vol. 47, no. 5, pp. 1768–1776, Mar. 2014.
dc.relation[203] S. Pandini et al., “Two-way reversible shape memory behaviour of crosslinked poly(ε-caprolactone),” Polymer, vol. 53, no. 9, pp. 1915–1924, Apr. 2012.
dc.relation[204] S. Pandini et al., “One-way and two-way shape memory behaviour of semi-crystalline networks based on sol–gel cross-linked poly(ε-caprolactone),” Polymer, vol. 54, no. 16, pp. 4253–4265, Jul. 2013.
dc.relation[205] L. Lu and G. Li, “One-Way Multishape-Memory Effect and Tunable Two-Way Shape Memory Effect of Ionomer Poly(ethylene- co -methacrylic acid),” ACS Appl. Mater. Interfaces, vol. 8, no. 23, pp. 14812–14823, Jun. 2016.
dc.relation[206] M. Bothe and T. Pretsch, “Bidirectional actuation of a thermoplastic polyurethane elastomer,” J. Mater. Chem. A, vol. 1, no. 46, p. 14491, 2013.
dc.relation[207] H. Xie et al., “Creating Poly(tetramethylene oxide) Glycol-Based Networks with Tunable Two-Way Shape Memory Effects via Temperature-Switched Netpoints,” Macromolecules, vol. 50, no. 13, pp. 5155–5164, Jul. 2017.
dc.relation[208] B. Q. Y. Chan, S. J. W. Heng, S. S. Liow, K. Zhang, and X. J. Loh, “Dual-responsive hybrid thermoplastic shape memory polyurethane,” Mater. Chem. Front., vol. 1, no. 4, pp. 767–779, 2017.
dc.relation[209] M. Y. Razzaq, M. Behl, U. Nöchel, and A. Lendlein, “Magnetically controlled shape-memory effects of hybrid nanocomposites from oligo( ω -pentadecalactone) and covalently integrated magnetite nanoparticles,” Polymer, vol. 55, no. 23, pp. 5953–5960, Nov. 2014.
dc.relation[210] S. Pandini et al., “The two-way shape memory behaviour of crosslinked poly(ε-caprolactone) systems with largely varied network density,” J. Intell. Mater. Syst. Struct., vol. 27, no. 10, pp. 1388–1403, Jun. 2016.
dc.relation[211] U. Nöchel, K. Kratz, M. Behl, and A. Lendlein, “Relation -between Nanostructural Changes and Macroscopic Effects during Reversible Temperature-Memory Effect under Stress-Free Conditions in Semicrystalline Polymer Networks,” MRS Proc., vol. 1718, 2015.
dc.relation[212] O. Dolynchuk, I. Kolesov, and H.-J. Radusch, “Theoretical Description of an Anomalous Elongation During Two-Way Shape-Memory Effect in Crosslinked Semicrystalline Polymers,” Macromol. Symp., vol. 346, no. 1, pp. 48–58, Dec. 2014.
dc.relation[213] M. Huang, X. Dong, L. Wang, J. Zhao, G. Liu, and D. Wang, “Two-way shape memory property and its structural origin of cross-linked poly(ε-caprolactone),” RSC Adv, vol. 4, no. 98, pp. 55483–55494, Oct. 2014.
dc.relation[214] S. Pandini, D. Dioni, K. Paderni, M. Messori, M. Toselli, and T. Riccò, “The network density as tailoring parameter for the two-way shape memory response of crosslinked poly(ε-caprolactone),” 2014, pp. 270–273.
dc.relation[215] D. L. Safranski and K. Gall, “Effect of chemical structure and crosslinking density on the thermo-mechanical properties and toughness of (meth)acrylate shape memory polymer networks,” Polymer, vol. 49, no. 20, pp. 4446–4455, Sep. 2008.
dc.relation[216] M. Bothe and T. Pretsch, “Two-Way Shape Changes of a Shape-Memory Poly(ester urethane),” Macromol. Chem. Phys., vol. 213, no. 22, pp. 2378–2385, Nov. 2012.
dc.relation[217] A. L. Sisson, D. Ekinci, and A. Lendlein, “The contemporary role of ε-caprolactone chemistry to create advanced polymer architectures,” Polymer, vol. 54, no. 17, pp. 4333–4350, Aug. 2013.
dc.relation[218] M. Behl, J. Zotzmann, and A. Lendlein, “One-Way and Reversible Dual-Shape Effect of Polymer Networks Based on Polypentadecalactone Segments,” Int. J. Artif. Organs, vol. 34, no. 2, pp. 231–237, Feb. 2011.
dc.relation[219] I. Bellin, S. Kelch, R. Langer, and A. Lendlein, “Polymeric triple-shape materials,” Proc. Natl. Acad. Sci., vol. 103, no. 48, pp. 18043–18047, Nov. 2006.
dc.relation[220] I. Kolesov, O. Dolynchuk, S. Borreck, and H.-J. Radusch, “Morphology-controlled multiple one- and two-way shape-memory behavior of cross-linked polyethylene/poly(ε-caprolactone) blends: SHAPE-MEMORY BEHAVIOR OF POLYETHYLENE/POLY(ε-CAPROLACTONE) BLENDS,” Polym. Adv. Technol., vol. 25, no. 11, pp. 1315–1322, Nov. 2014.
dc.relation[221] K. Y. Mya, H. B. Gose, T. Pretsch, M. Bothe, and C. He, “Star-shaped POSS-polycaprolactone polyurethanes and their shape memory performance,” J. Mater. Chem., vol. 21, no. 13, p. 4827, 2011.
dc.relation[222] G. Rabani, H. Luftmann, and A. Kraft, “Synthesis and characterization of two shape-memory polymers containing short aramid hard segments and poly(ε-caprolactone) soft segments,” Polymer, vol. 47, no. 12, pp. 4251–4260, May 2006.
dc.relation[223] J. Zhao et al., “Triple Shape Memory Effects of Cross-Linked Polyethylene/Polypropylene Blends with Cocontinuous Architecture,” ACS Appl. Mater. Interfaces, vol. 5, no. 12, pp. 5550–5556, Jun. 2013.
dc.relation[224] J. Zotzmann, M. Behl, Y. Feng, and A. Lendlein, “Copolymer Networks Based on Poly(ω-pentadecalactone) and Poly(ϵ-caprolactone)Segments as a Versatile Triple-Shape Polymer System,” Adv. Funct. Mater., vol. 20, no. 20, pp. 3583–3594, Oct. 2010.
dc.relation[225] J. Zotzmann, M. Behl, D. Hofmann, and A. Lendlein, “Reversible Triple-Shape Effect of Polymer Networks Containing Polypentadecalactone- and Poly(ε-caprolactone)-Segments,” Adv. Mater., vol. 22, no. 31, pp. 3424–3429, Apr. 2010.
dc.relation[226] Y. Meng, J. Jiang, and M. Anthamatten, “Shape Actuation via Internal Stress-Induced Crystallization of Dual-Cure Networks,” ACS Macro Lett., vol. 4, no. 1, pp. 115–118, Jan. 2015.
dc.relation[227] M. Y. Razzaq, M. Behl, and A. Lendlein, “Thermally Controlled Shape-Memory Investigations of Nanocomposites Based on Oligo(ω-pentadecalactone) and Magnetic Nanoparticles Acting as Crosslinks,” MRS Proc., vol. 1718, 2015.
dc.relation[228] W. Li, Y. Liu, and J. Leng, “Shape memory polymer nanocomposite with multi-stimuli response and two-way reversible shape memory behavior,” RSC Adv, vol. 4, no. 106, pp. 61847–61854, Nov. 2014.
dc.relation[229] A. H. Torbati, H. B. Nejad, M. Ponce, J. P. Sutton, and P. T. Mather, “Properties of triple shape memory composites prepared via polymerization-induced phase separation,” Soft Matter, vol. 10, no. 17, pp. 3112–3121, 2014.
dc.relation[230] X. Li, Y. Wang, R. Wu, Y. Pan, Z. Zheng, and X. Ding, “Slide-ring shape memory polymers with movable cross-links,” React. Funct. Polym., vol. 119, pp. 26–36, Oct. 2017.
dc.relation[231] Y. M. Chen, P. Lin, Y. He, J. Q. He, J. Zhang, and X. L. Li, “Fast quantifying collision strength index of ethylene-vinyl acetate copolymer coverings on the fields based on near infrared hyperspectral imaging techniques,” Sci. Rep., vol. 6, no. 1, Aug. 2016.
dc.relation[232] Z. Zhang et al., “Tunable shape memory behaviors of poly(ethylene vinyl acetate) achieved by adding poly(L-lactide),” Smart Mater. Struct., vol. 24, no. 12, p. 125002, Dec. 2015.
dc.relation[233] H. Xie, L. Li, X.-Y. Deng, C.-Y. Cheng, K.-K. Yang, and Y.-Z. Wang, “Reinforcement of shape-memory poly(ethylene- co -vinyl acetate) by carbon fibre to access robust recovery capability under resistant condition,” Compos. Sci. Technol., vol. 157, pp. 202–208, Mar. 2018.
dc.relation[234] C. Qian, Y. Zhu, Y. Dong, and Y. Fu, “Vapor-grown carbon nanofiber/poly(ethylene-co-vinyl acetate) composites with electrical-active two-way shape memory behavior,” J. Intell. Mater. Syst. Struct., vol. 28, no. 19, pp. 2749–2756, Nov. 2017.
dc.relation[235] U. Nöchel, U. N. Kumar, K. Wang, K. Kratz, M. Behl, and A. Lendlein, “Triple-Shape Effect with Adjustable Switching Temperatures in Crosslinked Poly[ethylene- co -(vinyl acetate)],” Macromol. Chem. Phys., vol. 215, no. 24, pp. 2446–2456, Dec. 2014.
dc.relation[236] M. Behl, K. Kratz, U. Noechel, T. Sauter, and A. Lendlein, “Temperature-memory polymer actuators,” Proc. Natl. Acad. Sci., vol. 110, no. 31, pp. 12555–12559, Jul. 2013.
dc.relation[237] L. Ionov, “Polymeric Actuators,” Langmuir, vol. 31, no. 18, pp. 5015–5024, May 2015.
dc.relation[238] S. Iamsaard et al., “Conversion of light into macroscopic helical motion,” Nat. Chem., vol. 6, no. 3, pp. 229–235, Mar. 2014.
dc.relation[239] Q. Ge, C. K. Dunn, H. J. Qi, and M. L. Dunn, “Active origami by 4D printing,” Smart Mater. Struct., vol. 23, no. 9, p. 094007, Sep. 2014.
dc.relation[240] O. Dolynchuk, I. Kolesov, and H.-J. Radusch, “Shape-memory actuators on the basis of binary and ternary blends of polyethylenes,” 2015, p. 030002.
dc.relation[241] K. K. Westbrook et al., “Two-way reversible shape memory effects in a free-standing polymer composite,” Smart Mater. Struct., vol. 20, no. 6, p. 065010, Jun. 2011.
dc.relation[242] J. Brandrup, Polymer handbook. Norwich, NY: Knovel, 2005.
dc.relation[243] A. Lendlein and M. Behl, Eds., Shape-memory polymers. Heidelberg ; New York: Springer, 2010.
dc.relation[244] D. Hull and T. W. Clyne, An introduction to composite materials. Cambridge: Cambridge University Press, 2003.
dc.relation[245] E. N. Bolbasov et al., “Surface modification of poly(l-lactide) and polycaprolactone bioresorbable polymers using RF plasma discharge with sputter deposition of a hydroxyapatite target,” Mater. Lett., vol. 132, pp. 281–284, Oct. 2014.
dc.relation[246] L. S. Barbarash et al., “Surface modification of poly-ε-caprolactone electrospun fibrous scaffolds using plasma discharge with sputter deposition of a titanium target,” Mater. Lett., vol. 171, pp. 87–90, May 2016.
dc.relation[247] S. I. Tverdokhlebov et al., “Modification of polylactic acid surface using RF plasma discharge with sputter deposition of a hydroxyapatite target for increased biocompatibility,” Appl. Surf. Sci., vol. 329, pp. 32–39, Feb. 2015.
dc.relation[248] E. M. Liston, L. Martinu, and M. R. Wertheimer, “Plasma surface modification of polymers for improved adhesion: a critical review,” J. Adhes. Sci. Technol., vol. 7, no. 10, pp. 1091–1127, Jan. 1993.
dc.relation[249] S. Yoshida, K. Hagiwara, T. Hasebe, and A. Hotta, “Surface modification of polymers by plasma treatments for the enhancement of biocompatibility and controlled drug release,” Surf. Coat. Technol., vol. 233, pp. 99–107, Oct. 2013.
dc.relation[250] C. Cepedajimenez, “Surface modifications of EVA copolymers by using RF oxidizing and non-oxidizing plasmas,” Surf. Coat. Technol., vol. 174–175, pp. 94–99, Sep. 2003.
dc.relation[251] M. D. Landete-Ruiz and J. M. Martı́n-Martı́nez, “Surface modification of EVA copolymer by UV treatment,” Int. J. Adhes. Adhes., vol. 25, no. 2, pp. 139–145, Apr. 2005.
dc.relation[252] K. K. Chawla, Composite materials: science and engineering, 3rd ed. New York: Springer Science+Business Media, 2012.
dc.relation[253] S. Chen, J. Hu, and H. Zhuo, “Properties and mechanism of two-way shape memory polyurethane composites,” Compos. Sci. Technol., vol. 70, no. 10, pp. 1437–1443, Sep. 2010.
dc.relation[254] S. Chen, J. Hu, H. Zhuo, and Y. Zhu, “Two-way shape memory effect in polymer laminates,” Mater. Lett., vol. 62, no. 25, pp. 4088–4090, Sep. 2008.
dc.relation[255] H. Tamagawa, “Thermo-responsive two-way shape changeable polymeric laminate,” Mater. Lett., vol. 64, no. 6, pp. 749–751, Mar. 2010.
dc.relation[256] T.-H. Kang, J.-M. Lee, W.-R. Yu, J. H. Youk, and H. W. Ryu, “Two-way actuation behavior of shape memory polymer/elastomer core/shell composites,” Smart Mater. Struct., vol. 21, no. 3, p. 035028, Mar. 2012.
dc.relation[257] C. Hirschl et al., “In-line determination of the degree of crosslinking of ethylene vinyl acetate in PV modules by Raman spectroscopy,” Sol. Energy Mater. Sol. Cells, vol. 152, pp. 10–20, Aug. 2016.
dc.relation[258] X. Zhang, Q. Zhou, H. Liu, and H. Liu, “UV light induced plasticization and light activated shape memory of spiropyran doped ethylene-vinyl acetate copolymers,” Soft Matter, vol. 10, no. 21, p. 3748, 2014.
dc.relation[259] A. . Vaughan, Y. Zhao, L. . Barré, S. . Sutton, and S. . Swingler, “On additives, morphological evolution and dielectric breakdown in low density polyethylene,” Eur. Polym. J., vol. 39, no. 2, pp. 355–365, Feb. 2003.
dc.relation[260] C. Jiao, Z. Wang, X. Liang, and Y. Hu, “Non-isothermal crystallization kinetics of silane crosslinked polyethylene,” Polym. Test., vol. 24, no. 1, pp. 71–80, Feb. 2005.
dc.relation[261] Y.-I. Yoo, Y.-J. Kim, D.-K. Shin, and J.-J. Lee, “Development of martensite transformation kinetics of NiTi shape memory alloys under compression,” Int. J. Solids Struct., vol. 64–65, pp. 51–61, Jul. 2015.
dc.relation[262] P. S. Lobo, J. Almeida, and L. Guerreiro, “Shape Memory Alloys Behaviour: A Review,” Procedia Eng., vol. 114, pp. 776–783, 2015.
dc.relation[263] R. J. Good, “Contact angle, wetting, and adhesion: a critical review,” J. Adhes. Sci. Technol., vol. 6, no. 12, pp. 1269–1302, Jan. 1992.
dc.relation[264] D. K. Owens and R. C. Wendt, “Estimation of the surface free energy of polymers,” J. Appl. Polym. Sci., vol. 13, no. 8, pp. 1741–1747, Aug. 1969.
dc.relation[265] K. A. Vijayalakshmi, M. Mekala, C. P. Yoganand, and K. Navaneetha Pandiyaraj, “Studies on Modification of Surface Properties in Polycarbonate (PC) Film Induced by DC Glow Discharge Plasma,” Int. J. Polym. Sci., vol. 2011, pp. 1–7, 2011.
dc.relation[266] D. G. Petlin, S. I. Tverdokhlebov, and Y. G. Anissimov, “Plasma treatment as an efficient tool for controlled drug release from polymeric materials: A review,” J. Controlled Release, vol. 266, pp. 57–74, Nov. 2017.
dc.relation[267] M. Walo, G. Przybytniak, K. Łyczko, and M. Piątek-Hnat, “The effect of hard/soft segment composition on radiation stability of poly(ester-urethane)s,” Radiat. Phys. Chem., vol. 94, pp. 18–21, Jan. 2014
dc.relation[268] A. Menges and S. Reichert, “Performative Wood: Physically Programming the Responsive Architecture of the HygroScope and HygroSkin Projects,” Archit. Des., vol. 85, no. 5, pp. 66–73, Sep. 2015.
dc.relation[269] J. Lim, Bio-structural: analogues in architecture. Amsterdam: BIS-Publishers, 2009.
dc.relation[270] K. M. Al-Obaidi, M. Azzam Ismail, H. Hussein, and A. M. Abdul Rahman, “Biomimetic building skins: An adaptive approach,” Renew. Sustain. Energy Rev., vol. 79, pp. 1472–1491, Nov. 2017.
dc.relation[271] N. Oxman, Design at the intersection of technology and biology. 2016.
dc.relation[272] M. Garcia-Holguera, O. G. Clark, A. Sprecher, and S. Gaskin, “Ecosystem biomimetics for resource use optimization in buildings,” Build. Res. Inf., vol. 44, no. 3, pp. 263–278, Apr. 2016.
dc.relation[273] Y. Xing, P. Jones, M. Bosch, I. Donnison, M. Spear, and G. Ormondroyd, “Exploring design principles of biological and living building envelopes: what can we learn from plant cell walls?,” Intell. Build. Int., pp. 1–25, Nov. 2017.
dc.relation[274] S. Poppinga et al., “Toward a New Generation of Smart Biomimetic Actuators for Architecture,” Adv. Mater., vol. 30, no. 19, p. 1703653, May 2018.
dc.relation[275] L. L. Howell, Compliant mechanisms. New York: Wiley, 2001.
dc.relation[276] L. L. Howell, S. P. Magleby, and B. M. Olsen, Eds., Handbook of compliant mechanisms. Chichester, West Sussex, United Kingdom ; Hoboken: John Wiley & Sons, Inc, 2013.
dc.relation[277] A. Müller, “Generic mobility of rigid body mechanisms,” Mech. Mach. Theory, vol. 44, no. 6, pp. 1240–1255, Jun. 2009.
dc.relation[278] V. Kumar, J. Schmiedeler, S. V. Sreenivasan, and H.-J. Su, Eds., Advances in Mechanisms, Robotics and Design Education and Research, vol. 14. Heidelberg: Springer International Publishing, 2013.
dc.relation[279] A. G. Volkov, J. C. Foster, K. D. Baker, and V. S. Markin, “Mechanical and electrical anisotropy in Mimosa pudica pulvini,” Plant Signal. Behav., vol. 5, no. 10, pp. 1211–1221, Oct. 2010.
dc.relation[280] Q. Xu and Y. Li, “Analytical modeling, optimization and testing of a compound bridge-type compliant displacement amplifier,” Mech. Mach. Theory, vol. 46, no. 2, pp. 183–200, Feb. 2011.
dc.relation[281] A. G. Volkov and V. S. Markin, “Active and Passive Electrical Signaling in Plants,” in Progress in Botany, vol. 76, U. Lüttge and W. Beyschlag, Eds. Cham: Springer International Publishing, 2015, pp. 143–176.
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleThermo-sensitive actuator capabilities assessment of a composite material based on a two-way shape memory semicrystalline polymer
dc.typeTesis


Este ítem pertenece a la siguiente institución