dc.contributorAlonso Malaver, Carlos Eduardo
dc.contributorProcesos Estocásticos
dc.creatorDíaz Bonilla, Rafael Eduardo
dc.date.accessioned2020-03-05T18:38:25Z
dc.date.available2020-03-05T18:38:25Z
dc.date.created2020-03-05T18:38:25Z
dc.date.issued2019-12-09
dc.identifierDíaz, R. E. (2019), Métodos bayesianos para modelos ocultos de Markov en series de tiempo con conteo, Tesis maestría, Universidad Nacional de Colombia, sede Bogotá
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/75888
dc.description.abstractThis research is dedicated to two special types of Hidden Markov Models (HMM), the first-one dedicated to Poisson Processes (PHMM) and the second-one dedicated to Zero-Inflated Poisson Processes (ZIP-HMM). The two proposed models are Bayesian models for which a package is developed Bayeshmmcts. The estimation process is done using MCMC, Hamiltonian Monte Carlo, NUTS and a new methodology called "the bridge sampler" which is used to solve the unresolved problem of selecting the best model from the Bayesian approach. Finally, we present two applications, the premier we use PHMM for the number of homicides in Colombia-Southamerica and the ZIP-HMM to model the monthly number of Large wildfires (GIF) in Colombia in the period from January 2002 to December 2016.
dc.description.abstractEsta investigación se dedica a dos tipos especiales de Modelos Ocultos de Markov (HMM), el primero dedicado a Procesos de Poisson (PHMM) y el segundo dedicado a Procesos de Poisson Cero-Inflados (ZIP-HMM), el enfoque se hace desde la perspectiva Bayesiana, desde la cual se construye un paquete Bayeshmmcts con el fin de ajustar los modelos planteados mediante Métodos de Montecarlo MCMC, Monte Carlo Hamiltoniano y NUTS; unido a lo anterior se utiliza "el muestreador por puente" para resolver el problema no resuelto de la selección del mejor modelo desde el enfoque bayesiano. Finalmente se presentan dos aplicaciones con datos reales de los modelos desarrollados, en los que se sugiere el uso del PHMM para la serie del número de homicidios en Colombia para los años 1960 a 2018, y el ZIP-HMM para modelar la serie mensual número de Grandes Incendios Forestales (GIF) en Colombia en el período enero del 2002 a diciembre del 2016.
dc.languagespa
dc.publisherDepartamento de Estadística
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationAlbert, J. H. & Chib, S. (1993), ‘Bayes inference via gibbs sampling of autoregressive time series subject to markov mean and variance shi s’, Journal of Business & Economic Statistics 11(1), 1–15.
dc.relationBasawa, I. V. & Prakasa Rao, B. L. S. (1980), Statistical inference for stochastic processes / Ishwar V.
dc.relationBasawa and B.L.S. Prakasa Rao, Academic Press London ; New York.
dc.relationBaum, L. E. & Petrie, T. (1966), ‘Statistical inference for probabilistic functions of nite state markov chains’, e annals of mathematical statistics 37(6), 1554–1563.
dc.relationBaum, L. E., Petrie, T., Soules, G. & Weiss, N. (1970), ‘A maximization technique occurring in the statistical analysis of probabilistic functions of markov chains’, Ann. Math. Statist. 41(1), 164–171.
dc.relationBerger, J. O. & Molina, G. (2005), ‘Posterior model probabilities via path-based pairwise priors’, Statistica Neerlandica 59(1), 3–15.
dc.relationBerhane, J. (2018), Zero-In ated Hidden Markov Models and Optimal Trading Strategies in High-Frequency Foreign Exchange Trading, Bachelor’s thesis, KTH Royal Institute of Technology School of Engineering Sciences.
dc.relationBickel, P. J., Ritov, Y., Ryden, T. et al. (1998), ‘Asymptotic normality of the maximum-likelihood estimator for general hidden markov models’, The Annals of Statistics 26(4), 1614–1635.
dc.relationBilmes, J. A. et al. (1998), ‘A gentle tutorial of the em algorithm and its application to parameter estimation for gaussian mixture and hidden markov models’, International Computer Science Institute 4(510), 1–13.
dc.relationBrockwell, A. (2007), ‘Universal residuals: A multivariate transformation’, Statistics & probability lett ers 77(14), 1473–1478.
dc.relationCappe, O., Moulines, E. & Ryd´en, T. (2005), Inference in Hidden Markov Models, Springer.
dc.relationCardona, M., Garcia, H. I., Alberto Giraldo, C., Lopez, M. V., Clara Mercedes, S., Corcho, D. C. & Hernán Posada, C. (2005), ‘Escenarios de homicidios en medellín (colombia) entre 1990-2002’, Revista Cubana de Salud Pública 31(3), 202–210.
dc.relationCeleux, G. & Durand, J.-B. (2008), ‘Selecting hidden markov model state number with crossvalidated likelihood’, Computational Statistics 23(4), 541–564.
dc.relationChaari, L., Pesquet, J.-C., Tourneret, J.-Y., Ciuciu, P. & Benazza-Benyahia, A. (2010), ‘A hierarchical bayesian model for frame representation’, IEEE Transactions on Signal Processing 58(11), 5560–5571.
dc.relationChao, W.-L., Solomon, J., Michels, D. & Sha, F. (2015), Exponential integration for hamiltonian monte carlo, in ‘International Conference on Machine Learning’, pp. 1142–1151.
dc.relationChen, M.-H., Shao, Q.-M. & Ibrahim, J. G. (2012), Monte Carlo methods in Bayesian computation, Springer Science & Business Media.
dc.relationChib, S. (1996), ‘Calculating posterior distributions and modal estimates in markov mixture models’, Journal of Econometrics 75(1), 79–97.
dc.relationChurchill, G. A. (1989), ‘Stochastic models for heterogeneous dna sequences’, Bulletin of Mathematical Biology 51(1), 79–94.
dc.relationCongdon, P. (2006), ‘Bayesian model choice based on monte carlo estimates of posterior model probabilities’, Comput. Stat. Data Anal. 50(2), 346–357. URL: h p://dx.doi.org/10.1016/j.csda.2004.08.001
dc.relationConsul, P. C. & Jain, G. C. (1973), ‘A generalization of the poisson distribution’, Technometrics 15(4), 791–799.
dc.relationCox, D. R. & Snell, E. J. (1968), ‘A general de nition of residuals’, Journal of the Royal Statistical Society: Series B (Methodological) 30(2), 248–265.
dc.relationDempster, A. P., Laird, N. M. & Rubin, D. B. (1977), ‘Maximum likelihood from incomplete data via the em algorithm’, Journal of the Royal Statistical Society: Series B (Methodological) 39(1), 1–22.
dc.relationDeSantis, S. M. & Bandyopadhyay, D. (2011), ‘Hidden markov models for zero-in ated poisson counts with an application to substance use’, Statistics in medicine 30(14), 1678–1694.
dc.relationDidelot, X., Everi , R. G., Johansen, A. M., Lawson, D. J. et al. (2011), ‘Likelihood-free estimation of model evidence’, Bayesian analysis 6(1), 49–76.
dc.relationDunn, P. K. & Smyth, G. K. (1996), ‘Randomized quantile residuals’, Journal of Computational and Graphical Statistics 5(3), 236–244.
dc.relationEfron, B. & Tibshirani, R. J. (1993), An Introduction to the Bootstrap, number 57 in ‘Monographs on Statistics and Applied Probability’, Chapman & Hall/CRC, Boca Raton, Florida, USA.
dc.relationFranco, S., Suarez, C. M., Naranjo, C. B., Báez, L. C. & Rozo, P. (2006), ‘The eff ects of the armed confl ict on the life and health in colombia’, Ciencia & Saúde Coletiva 11, 1247–1258.
dc.relationFrühwirth-Schna er, S. (2006), Finite mixture and Markov switching models, Springer Science & Business Media.
dc.relationGamerman, D. & Lopes, H. F. (2006), Markov chain Monte Carlo: stochastic simulation for Bayesian inference, Chapman and Hall/CRC.
dc.relationGelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A. & Rubin, D. B. (2013), Bayesian data analysis, Chapman and Hall/CRC.
dc.relationGeyer, C. J. (2011), ‘Introduction to markov chain monte carlo’, Handbook of markov chain monte carlo 20116022, 1–45.
dc.relationGlassen, T.&Nitsch, V. (2016), ‘Hierarchical bayesian models of cognitive development’, Biological cybernetics 110(2-3), 217–227.
dc.relationGrimmett, G. & Stirzaker, D. (2001), Probability and random processes, Oxford university press.
dc.relationGronau, Q. F., Sarafoglou, A., Matzke, D., Ly, A., Boehm, U., Marsman, M., Leslie, D. S., Forster, J. J., Wagenmakers, E.-J. & Steingroever, H. (2017), ‘A tutorial on bridge sampling’, Journal of mathematical psychology 81, 80–97.
dc.relationGuttorp, P. & Minin, V. N. (1995), Stochastic modeling of scientific data, CRC Press.
dc.relationHairer, E., Lubich, C. & Wanner, G. (2006), Geometric numerical integration: structure-preserving algorithms for ordinary differential equations, Vol. 31, Springer Science & Business Media.
dc.relationHamilton, J. D. (1989), ‘A new approach to the economic analysis of nonstationary time series and the business cycle’, Econometrica: Journal of the Econometric Society pp. 357–384.
dc.relationHoeting, J. A., Madigan, D., Raftery, A. E. & Volinsky, C. T. (1999), ‘Bayesian model averaging: a tutorial’, Statistical science pp. 382–401.
dc.relationHoffman, M. D. & Gelman, A. (2014), ‘The no-u-turn sampler: adaptively setting path lengths in hamiltonian monte carlo.’, Journal of Machine Learning Research 15(1), 1593–1623.
dc.relationJeffreys, H. (1961), Theory of Probability, third edn, Oxford, Oxford, England.
dc.relationKass, R. E. & Raftery, A. E. (1995), ‘Bayes factors’, Journal of the american statistical association 90(430), 773–795.
dc.relationL, S. S., James, G. M. & Sugar, C. A. (2005), ‘Hidden markov models for longitudinal comparisons’, Journal of the American Statistical Association 100(470), 359–369.
dc.relationLambert, D. (1992), ‘Zero-inflated poisson regression, with an application to defects in manufacturing’, Technometrics 34(1), 1–14.
dc.relationLee, M. D. (2008), ‘Three case studies in the bayesian analysis of cognitive models’, Psychonomic Bulletin & Review 15, 1–15.
dc.relationLeroux, B. G. & Puterman, M. L. (1992), ‘Maximum-penalized-likelihood estimation for independent and markov- dependent mixture models’, Biometrics 48(2), 545–558.
dc.relationLewis, S. M. & Raftery, A. E. (1997), ‘Estimating bayes factors via posterior simulation with the laplace—metropolis estimator’, Journal of the American Statistical Association 92(438), 648–655.
dc.relationLinhart, H. & Zucchini, W. (1986), Model selection., John Wiley & Sons.
dc.relationMacDonald, I. L. & Zucchini, W. (2009), Hidden Markov Models for Time Series: An Introduction Using R (Monographs on statistics and applied probability; 110), CRC press.
dc.relationMeng, X.-L. & Hung Wong, W. (1996), ‘Simulating ratios of normalizing constants via a simple identity: A theoretical exploration’, Statistica Sinica 6, 831–860.
dc.relationMeng, X.-L. & Schilling, S. (2002), ‘Warp bridge sampling’, Journal of Computational and Graphical Statistics 11(3), 552–586.
dc.relationMulder, J. & Wagenmakers, E.-J. (2016), ‘Editors’ introduction to the special issue “bayes factors for testing hypotheses in psychological research: Practical relevance and new developments”, Journal of Mathematical Psychology 72, 1–5.
dc.relationNeal, R. M. (1993), Bayesian learning via stochastic dynamics, in ‘Advances in neural information processing systems’, pp. 475–482.
dc.relationNeal, R. M. (2011), ‘Mcmc using hamiltonian dynamics’, Handbook of markov chain monte carlo 2(11), 113–162.
dc.relationNewton, M. & Raftery, A. (1994), ‘Approximate bayesian inference by the weighted likelihood bootstrap’, Journal of the Royal Statistical Society Series B-Methodological 56, 3 – 48.
dc.relationNikovski, D. (2000), ‘Constructing bayesian networks for medical diagnosis from incomplete and partially correct statistics’, IEEE Transactions on Knowledge & Data Engineering 12(4), 509–516.
dc.relationOlteanu, M. & Ridgway, J. (2012), Hidden markov models for time series of counts with excess zeros, in ‘European Symposium on Artificial Neural Networks’, pp. 133–138. hal-00655588.
dc.relationOverstall, A. M. & Forster, J. J. (2010), ‘Default bayesian model determination methods for generalised linear mixed models’, Computational Statistics & Data Analysis 54(12), 3269–3288.
dc.relationParoli, R. (2002), Poisson hidden markov models for time series of overdispersed insurance counts, in ‘di Milano, Universitb Ca olica SC’, pp. 461–474.
dc.relationPécaut, D. (2003), Violencia y Politica en Colombia: Elementos de reflexión, Hombre Nuevo Editores.
dc.relationPitt , M. A., Myung, I. J. & Zhang, S. (2002), ‘Toward a method of selecting among computational models of cognition.’, Psychological review 109(3), 472. Rabiner, L. & Juang, B. (1986), ‘An introduction to hidden markov models’, ieee assp magazine 3(1), 4–16.
dc.relationRabiner, L. R. (1990), Readings in speech recognition, in A.Waibel & K.-F. Lee, eds, ‘University of Michigan’, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, chapter A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition, pp. 267–296.
dc.relationRaftery, Adrian E & Newton, M. A. . S. J. M. . K. P. N. (2006), ‘Estimating the integrated likelihood via posterior simulation using the harmonic mean identity’, Memorial Sloan-Kettering Cancer Center, Dept. of Epidemiology & Biostatistics Working Paper Series 6, 1–41.
dc.relationRomberg, J. K., Choi, H. & Baraniuk, R. G. (2001), ‘Bayesian tree-structured image modeling using wavelet-domain hidden markov models’, IEEE Transactions on image processing 10(7), 1056–1068.
dc.relationRosenblatt, M. (1952), ‘Remarks on a multivariate transformation’, The annals of mathematical statistics 23(3), 470–472.
dc.relationScott, S. L. (2002), ‘Bayesian methods for hidden markov models: Recursive computing in the 21st century’, Journal of the American Statistical Association 97(457), 337–351.
dc.relationSouza, E. R. d. & Lima, M. L. C. d. (2006), ‘Th e panorama of urban violence in brazil and its capitals’, Ciencia & Saúde Coletiva 11, 1211–1222.
dc.relationStadie, A. (2002), Überprüfung stochastischer Modelle mit Pseudo-Residuen, PhD dissertation, Universität Göingen.
dc.relationSundberg, R. (1974), ‘Maximum likelihood theory for incomplete data from an exponential family’, Scandinavian Journal of Statistics pp. 49–58.
dc.relationWasserman, L. (2000), ‘Bayesian model selection and model averaging’, Journal of mathematical psychology 44(1), 92–107.
dc.relationWilkinson, D. J. (2007), ‘Bayesian methods in bioinformatics and computational systems biology’, Briefings in bioinformatics 8(2), 109–116.
dc.relationWu, C. J. et al. (1983), ‘On the convergence properties of the em algorithm’, The Annals of statistics 11(1), 95–103.
dc.relationZhang, Y. (2004), Prediction of financial time series with Hidden Markov Models, PhD thesis, Applied Sciences: School of Computing Science.
dc.relationZucchini, W. (2000), ‘An introduction to model selection’, Journal of mathematical psychology 44(1), 41–61.
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleMétodos Bayesianos para Modelos Ocultos de Markov en series de tiempo con conteo
dc.typeOtro


Este ítem pertenece a la siguiente institución