dc.contributorLópez Vallejo, Fabián Harvey
dc.contributorGrupo de Investigación en Química de Productos Naturales Vegetales Bioactivos (Quipronab)
dc.creatorLópez Piñeros, Laura Patricia
dc.date.accessioned2022-07-19T16:22:37Z
dc.date.available2022-07-19T16:22:37Z
dc.date.created2022-07-19T16:22:37Z
dc.date.issued2022-07-15
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/81710
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.description.abstractVarios mecanismos están implicados en el desarrollo de la resistencia en cepas de Pseudomonas aeruginosa. Presiones selectivas han promovido numerosas estrategias de supervivencia bacteriana que han favorecido su adaptación a diversos ambientes (Lu et al., 2019, Tacconelli et al., 2018; Zhong et al., 2020). Uno de los mecanismos de interés es el sistema conocido como quorum sensing (QS) por el que las bacterias se comunican a través de moléculas de señalización (Ouyang et al., 2016; Vasavi et al., 2017). Una vez que las bacterias han alcanzado una alta densidad poblacional, éstas controlan la producción de varios factores de virulencia extracelular y la formación de biopelículas proporcionando mayor resistencia a los antibióticos al superar las defensas del huésped. Debido a que el QS regula múltiples factores de virulencia y a que no regula procesos esenciales, bloquearlo conllevaría a la atenuación de bacterias patógenas sin ejercer presiones selectivas (Tan 2013). El sistema comprende el coordinador transcripcional LasR el cual al ser activado por su molécula autoinductora N-3-oxo-dodecanoil homoserina lactona (3-oxo-C12 HSL) se une a la región promotora del ácido desoxirribonucleico (ADN), regulando la activación de genes causantes de la infección. Es así como este estudio tiene por objetivo la búsqueda e identificación de moléculas como potenciales antagonistas del factor transcripcional LasR. El estudio quimioinformático comprendió un estudio del espacio químico basado en propiedades fisicoquímicas para obtener un perfil de viabilidad respecto a fármacos aprobados a partir del curado de una base de 5514 compuestos únicos. Se utilizaron tres programas de acoplamiento molecular incluyendo un método de puntuación por consenso y un cálculo de huellas digitales de interacción proteína-ligando (PLIF) en la búsqueda de similitud y diversidad en los modos de unión. Fueron seleccionados 12 compuestos para los ensayos de bioactividad con las cepas American Type Culture Collection (ATCC) BAA047 y 27853. Primero, se determinó la concentración en la que no se afectaba el crecimiento bacteriano (12,5 a 200 µg/mL) y posteriormente la cuantificación de la formación de biopelícula por dilución seriada. La prueba de Duncan fue usada para el análisis estadístico. La cepa bioindicadora Chromobacterium violaceum ATCC 12472 se empleó para los ensayos de inhibición del QS. Las moléculas con los mejores resultados antibiopelícula fueron evaluadas por ensayos de expresión génica contra los genes lasR y lasI. Los resultados mostraron la similitud en el espacio químico de los compuestos de la librería con los fármacos aprobados del DrugBank, incluyendo algunas excepciones. Los compuestos candidatos mediante SBVS mostraron un valor de consenso por autoescalado en un rango entre 0,54 y 0,75, superior al del ligando nativo de 0,39. Los ensayos experimentales sugirieron a los compuestos Z2, Z4, Z6, Z9 y Z12 como inhibidores de la formación de biopelícula en concentraciones de 3,1 a 100 µg/mL, y de estos, la flavanona isoglabranina (Z4) y la xantona gamma mangostina (Z9) como inhibidores en la expresión de los genes lasR y lasI. Se demostró que el compuesto Z4 presentó un efecto sobre la expresión de los genes del 61,4 (lasR) y 56,1 % (lasI) en la cepa 27853 y del 32,3 y 10,6 % en la BAA047, respectivamente, que el compuesto (Z9) afectó la expresión del gen lasI (44,7 %) y lasR (48,1 %) únicamente en la cepa 27853 y el (Z12) afectó significativamente la expresión del gen lasR (80,6 %) en la cepa BAA047. Este tipo de estudios permite aproximaciones en la identificación de moléculas inhibidoras de la proteína LasR a partir de extensas librerías de compuestos con la reducción en los tiempos y los costos asociados en su investigación, así como el reporte de compuestos promisorios de origen natural como inhibidores del sistema QS. (Texto tomado de la fuente)
dc.description.abstractSeveral mechanisms are involved in the development of resistance in P. aeruginosa strains. Selective pressures have promoted numerous bacterial survival strategies that have favored their adaptation to diverse environments (Lu et al., 2019, Tacconelli et al., 2018; Zhong et al., 2020). One such mechanism of interest is the system known as quorum sensing (QS) by which bacteria communicate through signaling molecules (Ouyang et al., 2016; Vasavi et al., 2017). Once bacteria have reached a high population density, they control the production of various extracellular virulence factors and biofilm formation providing increased antibiotic resistance by overcoming host defenses. Because the QS regulates multiple virulence factors and does not regulate essential processes, blocking it would lead to attenuation of pathogenic bacteria without exerting selective pressures (Tan 2013). The system comprises the transcriptional coordinator LasR which when activated by its autoinducer molecule N-3-oxo-dodecanoyl homoserine lactone (3-oxo-C12 HSL) binds to the promoter region of deoxyribonucleic acid (DNA), regulating the activation of infection-causing genes. Thus, this study aims to search for and identify molecules as potential antagonists of the transcriptional factor LasR. The chemoinformatics study included a chemical space study based on physicochemical properties to obtain a viability profile with respect to approved drugs from the curation of a base of 5514 compounds. Three molecular docking programs including a consensus scoring method and a protein-ligand interaction fingerprinting (PLIF) calculation were used in the search for similarity and diversity in binding modes. Twelve compounds were selected for bioactivity assays with American Type Culture Collection (ATCC) strains BAA047 and 27853. First, the concentration at which bacterial growth was not affected (12,5 to 200 µg/mL) was determined, followed by quantification of biofilm formation by serial dilution. Duncan's test was used for statistical analysis. The bioindicator strain Chromobacterium violaceum ATCC 12472 was used for QS inhibition assays. The molecules with the best antibiofilm results were evaluated by gene expression assays against lasR and lasI genes. The results showed the similarity in chemical space of the library compounds to the approved drugs from DrugBank, including some exceptions. The candidate compounds by SBVS showed a consensus value by autoscaling in the range of 0,54 to 0,75, higher than that of the native ligand 0,39. Experimental assays suggested compounds Z2, Z4, Z6, Z9 and Z12 as inhibitors of biofilm formation at concentrations from 3,1 to 100 µg/mL and flavanone isoglabranin (Z4) and xanthone gamma mangosteen (Z9) as inhibitors of lasR and lasI gene expression. It was shown that compound Z4 presented an effect on gene expression of 61,4 (lasR) and 56,1 % (lasI) in strain 27853 and 32,3 and 10,6 % in BAA047, respectively and that compound (Z9) affected lasI (44,7 %) and lasR (48,1 %) gene expression only in strain 27853 and (Z12) significantly affected lasR gene expression (80,6 %) in strain BAA047. This type of study allows approaches in the search for molecules that inhibit the LasR protein from extensive libraries of compounds with a reduction in the time and costs associated with their research, as well as the report of promising compounds of natural origin as inhibitors of the QS system.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ciencias - Maestría en Ciencias - Bioquímica
dc.publisherDepartamento de Química
dc.publisherFacultad de Ciencias
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relation• Ahmed, S. A., Rudden, M., Smyth, T. J., Dooley, J. S., Marchant, R., & Banat, I. M. (2019). Natural quorum sensing inhibitors effectively downregulate gene expression of Pseudomonas aeruginosa virulence factors. Applied microbiology and biotechnology, 103(8), 3521-3535. • Álvarez, C., Cortés, J., Sánchez, R., Castillo, J., Buitrago, G., & Meneses, A. (2010). Resultados del Proyecto: “Impacto Clínico y Económico de la Resistencia Bacteriana en hospitales del Distrito. Boletín Informativo GREBO, (2027), 1–35. • Ansori, A. N. M., Fadholly, A., Hayaza, S., Susilo, R. J. K., Inayatillah, B., Winarni, D., & Husen, S. A. (2020). A review on medicinal properties of mangosteen (Garcinia mangostana L.) Research Journal of Pharmacy and Technology, 13(2), 974-982. • Balasubramanian, et. al. (2013). A dynamic and intricate regulatory network determines Pseudomonas aeruginosa virulence. Nucleic Acids Research, 41(1), 1–20. • Borges, A., Abreu, A. C., Dias, C., Saavedra, M. J., Borges, F., & Simões, M. (2016). New perspectives on the use of phytochemicals as an emergent strategy to control bacterial infections including biofilms. Molecules, 21(7), 877. • Borges, A., Sousa, P., Gaspar, A., Vilar, S., Borges, F., & Simões, M. (2017). Furvina inhibits the 3-oxo-C12-HSL-based quorum sensing system of Pseudomonas aeruginosa and QS- dependent phenotypes. Biofouling, 33(2), 156–168. • Bottomley, et. al. (2007). Molecular insights into quorum sensing in the human pathogen Pseudomonas aeruginosa from the structure of the virulence regulator LasR bound to its autoinducer. Journal of Biological Chemistry, 282(18), 13592–13600. • Callejas-Díaz, A., Fernández-Pérez, C., Ramos-Martínez, A., Múñez-Rubio, E., Sánchez-Romero, I., & Núñez, J. A. V. (2019). Impact of Pseudomonas aeruginosa bacteraemia in a tertiary hospital: Mortality and prognostic factors. Medicina Clínica (English Edition), 152(3), 83-89. • Chaudhary, K. K., & Mishra, N. (2016). A review on molecular docking: novel tool for drug discovery. databases, 3(4), 1029. • Cho, H. S., Lee, J. H., Ryu, S. Y., Joo, S. W., Cho, M. H., & Lee, J. (2013). Inhibition of Pseudomonas aeruginosa and Escherichia coli O157: H7 biofilm formation by plant metabolite ε-viniferin. Journal of agricultural and food chemistry, 61(29), 7120-7126. • Chowdhury, N., & Bagchi, A. (2016). Molecular insight into the activity of LasR protein from Pseudomonas aeruginosa in the regulation of virulence gene expression by this organism. Gene, 580(1), 80–87. • Cushnie, T. T., Cushnie, B., & Lamb, A. J. (2014). Alkaloids: An overview of their antibacterial, antibiotic-enhancing and antivirulence activities. International journal of antimicrobial agents, 44(5), 377-386. • D'almeida, R. E., Molina, R. D. I., Viola, C. M., Luciardi, M. C., Peñalver, C. N., Bardón, A., & Arena, M. E. (2017). Comparison of seven structurally related coumarins on the inhibition of quorum sensing of Pseudomonas aeruginosa and Chromobacterium violaceum. Bioorganic chemistry, 73, 37-42. • Das, T., Das, M. C., Das, A., Bhowmik, S., Sandhu, P., Akhter, Y., & De, U. C. (2018). Modulation of S. aureus and P. aeruginosa biofilm: an in vitro study with new coumarin derivatives. World Journal of Microbiology and Biotechnology, 34(11), 1-18. • De Kievit, T. R. (2009). Quorum sensing in Pseudomonas aeruginosa biofilms. Environmental microbiology, 11(2), 279-288. • Ding, X., Yin, B., Qian, L., Zeng, Z., Yang, Z., Li, H., & Zhou, S. (2011). Screening for novel quorum-sensing inhibitors to interfere with the formation of Pseudomonas aeruginosa biofilm. Journal of medical microbiology, 60(12), 1827-1834. • Du, Q. H., Peng, C., & Zhang, H. (2013). Polydatin: a review of pharmacology and pharmacokinetics. Pharmaceutical biology, 51(11), 1347-1354. • El-Mowafy, S., Abd El Galil, K., El-Messery, S., & Shaaban, M. (2014). Aspirin is an efficient inhibitor of quorum sensing, virulence and toxins in Pseudomonas aeruginosa. Microbial Pathogenesis, 74(1), 25–32. • Fan, H., Dong, Y., Wu, D., Bowler, M. W., Zhang, L., & Song, H. (2013). QsIA disrupts LasR dimerization in antiactivation of bacterial quorum sensing. Proceedings of the National Academy of Sciences, 110(51), 20765–20770. • Geng, Y. F., Yang, C., Zhang, Y., Tao, S. N., Mei, J., Zhang, X. C., & Zhao, B. T. (2021). An innovative role for luteolin as a natural quorum sensing inhibitor in Pseudomonas aeruginosa. Life Sciences, 274, 119325. • Gimeno, A., Ojeda-Montes, M. J., Tomás-Hernández, S., Cereto-Massagué, A., Beltrán-Debón, R., Mulero, M., & Garcia-Vallvé, S. (2019). The light and dark sides of virtual screening: what is there to know? International journal of molecular sciences, 20(6), 1375. • Gomes, M. N., Muratov, E. N., Pereira, M., Peixoto, J. C., Rosseto, L. P., Cravo, P. V., & Neves, B. J. (2017). Chalcone derivatives: promising starting points for drug design. Molecules, 22(8), 1210. • Gorlenko, C. L., Kiselev, H. Y., Budanova, E. V., Zamyatnin, A. A., & Ikryannikova, L. N. (2020). Plant Secondary Metabolites in the Battle of Drugs and Drug-Resistant Bacteria: New Heroes or Worse Clones of Antibiotics? Antibiotics, 9(4), 170. • Górniak, I., Bartoszewski, R., & Króliczewski, J. (2019). Comprehensive review of antimicrobial activities of plant flavonoids. Phytochemistry Reviews, 18(1), 241-272. • Gupta, P., Chhibber, S., & Harjai, K. (2016). Subinhibitory concentration of ciprofloxacin targets quorum sensing system of Pseudomonas aeruginosa causing inhibition of biofilm formation & reduction of virulence. The Indian journal of medical research, 143(5), 643. • Guzzo, F., Scognamiglio, M., Fiorentino, A., Buommino, E., & D’Abrosca, B. (2020). Plant Derived Natural Products against Pseudomonas aeruginosa and Staphylococcus aureus: Antibiofilm Activity and Molecular Mechanisms. Molecules, 25(21), 5024. • Hernando-Amado, S., Alcalde-Rico, M., Gil-Gil, T., Valverde, J. R., & Martínez, J. L. (2020). Naringenin Inhibition of the Pseudomonas aeruginosa Quorum Sensing Response Is Based on Its Time-Dependent Competition With N-(3-Oxo-dodecanoyl)-L-homoserine Lactone for LasR Binding. Frontiers in molecular biosciences, 7, 25. • Hevener, K. E., Zhao, W., Ball, D. M., Babaoglu, K., Qi, J., White, S. W., & Lee, R. E. (2009). Validation of molecular docking programs for virtual screening against dihydropteroate synthase. Journal of chemical information and modeling, 49(2), 444-460. • HM Berman, K. Henrick, H. Nakamura (2003) Anunciando el Banco Mundial de Datos de Proteínas Nature Structural Biology 10(12), 980. • Huang, T. T., Liu, F. G., Wei, C. F., Lu, C. C., Chen, C. C., Lin, H. C., & Lai, H. C. (2011). Activation of multiple apoptotic pathways in human nasopharyngeal carcinoma cells by the prenylated isoflavone, osajin. PLoS One, 6(4), e18308. • Imperi, F., Leoni, L., & Visca, P. (2014). Antivirulence activity of azithromycin in Pseudomonas aeruginosa. Frontiers in microbiology, 5, 178. • Inamori, Y., Baba, K., Tsujibo, H., Taniguchi, M., Nakata, K., & Kozwaga, M. (1991). Antibacterial activity of two chalcones, xanthoangelol and 4-hydroxyderricin, isolated from the root of Angelica keiskei KOIDZUMI. Chemical and pharmaceutical bulletin, 39(6), 1604-1605. • Jadaun, V., Prateeksha, Singh, B. R., Paliya, B. S., Upreti, D. K., Rao, C. V., Singh, B. N. (2015). Honey enhances the anti-quorum sensing activity and anti-biofilm potential of curcumin. RSC Advances, 5(87), 71060–71070. • Jayalekshmi, H., Omanakuttan, A., Pandurangan, N., S. Vargis, V., Maneesh, M., G. Nair, B., & B. Kumar, G. (2016). Clove bud oil reduces kynurenine and inhibits pqs A gene expression in P. aeruginosa. Applied Microbiology and Biotechnology, 100(8), 3681–3692. • Kadri, S. S., Adjemian, J., Lai, Y. L., Spaulding, A. B., Ricotta, E., Prevots, D. R., & National Institutes of Health Antimicrobial Resistance Outcomes Research Initiative (NIH–ARORI). (2018). Difficult-to-treat resistance in gram-negative bacteremia at 173 US hospitals: retrospective cohort analysis of prevalence, predictors, and outcome of resistance to all first-line agents. Clinical Infectious Diseases, 67(12), 1803-1814. • Kalia, M., Yadav, V. K., Singh, P. K., Sharma, D., Narvi, S. S., & Agarwal, V. (2018). Exploring the impact of parthenolide as anti-quorum sensing and anti-biofilm agent against Pseudomonas aeruginosa. Life Sciences, 199(2017), 96–103. • Gilbert, K. B., Kim, T. H., Gupta, R., Greenberg, E. P., & Schuster, M. (2009). Global position analysis of the Pseudomonas aeruginosa quorum‐sensing transcription factor LasR. Molecular microbiology, 73(6), 1072-1085. • Khalil, A. A. K., Park, W. S., Kim, H. J., Akter, K. M., & Ahn, M. J. (2016). Anti-Helicobacter pylori compounds from Polygonum cuspidatum. Natural Product Sciences, 22(3), 220-224. • Kim, C., Kim, J., Park, H. Y., Park, H. J., Lee, J. H., Kim, C. K., & Yoon, J. (2008). Furanone derivatives as quorum-sensing antagonists of Pseudomonas aeruginosa. Applied microbiology and biotechnology, 80(1), 37-47. • Kim, H. S., Lee, S. H., Byun, Y., & Park, H. D. (2015). 6-Gingerol reduces Pseudomonas aeruginosa biofilm formation and virulence via quorum sensing inhibition. Scientific reports, 5(1), 1-11. • Kolouchová, I., Maťátková, O., Paldrychová, M., Kodeš, Z., Kvasničková, E., Sigler, K., & Masák, J. (2018). Resveratrol, pterostilbene, and baicalein: Plant-derived anti-biofilm agents. Folia microbiologica, 63(3), 261-272. • Kragh, K. N., Alhede, M., Kvich, L., & Bjarnsholt, T. (2019). Into the well—A close look at the complex structures of a microtiter biofilm and the crystal violet assay. Biofilm, 1, 100006. • Leal, A. L., Álvarez, C., Cortés, J., Sánchez, R., Castillo, J., & Buitrago, G. (2010). Impacto clínico y económico de la resistencia bacteriana en hospitales del Distrito. Boletín Grebo, 1, 3-13. • Lee, J., & Zhang, L. (2015). The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein & Cell, 6(1), 26–41. • Li, Q., & Shah, S. (2017). Structure-based virtual screening. In Protein Bioinformatics (pp. 111-124). Humana Press, New York, NY. • Li, T., Mei, Y., He, B., Sun, X., & Li, J. (2019). Reducing Quorum Sensing-Mediated Virulence Factor Expression and Biofilm Formation in Hafnia alvei by Using the Potential Quorum Sensing Inhibitor L-Carvone. Frontiers in microbiology, 9, 3324. • Lipinski, C. A. (2004). Lead-and drug-like compounds: the rule-of-five revolution. Drug discovery today: Technologies, 1(4), 337-341. • Luo, J., Dong, B., Wang, K., Cai, S., Liu, T., Cheng, X., & Chen, Y. (2017). Baicalin inhibits biofilm formation, attenuates the quorum sensing-controlled virulence and enhances Pseudomonas aeruginosa clearance in a mouse peritoneal implant infection model. PloS one, 12(4), e0176883. • Luo, J., Kong, J. L., Dong, B. Y., Huang, H., Wang, K., Wu, L. H., & Chen, Y. Q. (2016). Baicalein attenuates the quorum sensing-controlled virulence factors of Pseudomonas aeruginosa and relieves the inflammatory response in P. aeruginosa-infected macrophages by downregulating the MAPK and NFκB signal-transduction pathways. Drug design, development and therapy, 10, 183. • Ma, L., Conover, M., Lu, H., Parsek, M. R., Bayles, K., & Wozniak, D. J. (2009). Assembly and development of the Pseudomonas aeruginosa biofilm matrix. PLoS pathogens, 5(3), e1000354. • Machado, I., Silva, L. R., Giaouris, E. D., Melo, L. F., & Simões, M. (2020). Quorum sensing in food spoilage and natural-based strategies for its inhibition. Food Research International, 127, 108754. • Madhavi Sastry, G., Adzhigirey, M., Day, T., Annabhimoju, R., & Sherman, W. (2013). Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. Journal of Computer-Aided Molecular Design, 27(3), 221–234. • Maestro, Schrödinger, LLC, Nueva York, NY, 2019. • Manefield, M., Rasmussen, T. B., Henzter, M., Andersen, J. B., Steinberg, P., Kjelleberg, S., & Givskov, M. (2002). Halogenated furanones inhibit quorum sensing through accelerated LuxR turnover. Microbiology, 148(4), 1119-1127. • Mantilla, R. (2006). Manual de Técnicas Básicas en Biología Molecular. Laboratorio de epidemiología molecular. Instituto de Biotecnología. Universidad Nacional de Colombia. • Marmolejo, A. F., Medina-Franco, J. L., Giulianotti, M., & Martinez-Mayorga, K. (2015). Interaction fingerprints and their applications to identify hot spots. In G Protein-Coupled Receptors in Drug Discovery (pp. 313-324). Humana Press, New York, NY. • Matos, E. C. O. D., Andriolo, R. B., Rodrigues, Y. C., Lima, P. D. L. D., Carneiro, I. C. D. R. S., & Lima, K. V. B. (2018). Mortality in patients with multidrug-resistant Pseudomonas aeruginosa infections: a meta-analysis. Revista da Sociedade Brasileira de Medicina Tropical, 51(4), 415-420. • Mattio, L. M., Catinella, G., Dallavalle, S., & Pinto, A. (2020). Stilbenoids: A natural arsenal against bacterial pathogens. Antibiotics, 9(6), 336. • McInnis, C. E., & Blackwell, H. E. (2011). Design, synthesis, and biological evaluation of abiotic, non-lactone modulators of LuxR-type quorum sensing. Bioorganic and Medicinal Chemistry, 19(16), 4812–4819. • Merritt, J. H., Kadouri, D. E., & O'Toole, G. A. (2006). Growing and analyzing static biofilms. Current protocols in microbiology, (1), 1B-1. • Moradali, M. F., Ghods, S., & Rehm, B. H. (2017). Pseudomonas aeruginosa lifestyle: a paradigm for adaptation, survival, and persistence. Frontiers in cellular and infection microbiology, 7, 39. • Morris, G., & Huey, R. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Comput Chem, 30(16), 2785–2791. • Müh, U., Schuster, M., Heim, R., Singh, A., Olson, E. R., & Greenberg, E. P. (2006). Novel Pseudomonas aeruginosa quorum-sensing inhibitors identified in an ultra-high-throughput screen. Antimicrobial agents and chemotherapy, 50(11), 3674-3679. • Musthafa, K. S., Sianglum, W., Saising, J., Lethongkam, S., & Voravuthikunchai, S. P. (2017). Evaluation of phytochemicals from medicinal plants of Myrtaceae family on virulence factor production by Pseudomonas aeruginosa. Apmis, 125(5), 482–490. • Nadal Jimenez, P., Koch, G., Thompson, J. A., Xavier, K. B., Cool, R. H., & Quax, W. J. (2012). The multiple signaling systems regulating virulence in Pseudomonas aeruginosa. Microbiology and Molecular Biology Reviews, 76(1), 46-65. • Nielsen, S. F., Boesen, T., Larsen, M., Schønning, K., & Kromann, H. (2004). Antibacterial chalcones––bioisosteric replacement of the 4′-hydroxy group. Bioorganic & medicinal chemistry, 12(11), 3047-3054. • Nithya, C., Begum, M. F., & Pandian, S. K. (2010). Marine bacterial isolates inhibit biofilm formation and disrupt mature biofilms of Pseudomonas aeruginosa PAO1. Applied microbiology and biotechnology, 88(1), 341-358. • O’Neill, J. (2014). Tackling a crisis for the health and wealth of nations. Antimicrobial Resistance. • Olsen, I. (2015). Biofilm-specific antibiotic tolerance and resistance. European Journal of Clinical Microbiology & Infectious Diseases, 34(5), 877-886. • Osamudiamen, P. M., Oluremi, B. B., Oderinlo, O. O., & Aiyelaagbe, O. O. (2020). Trans-resveratrol, piceatannol and gallic acid: Potent polyphenols isolated from Mezoneuron benthamianum effective as anticaries, antioxidant and cytotoxic agents. Scientific African, 7, e00244. • O'Toole, G. A. (2011). Microtiter dish biofilm formation assay. JoVE (Journal of Visualized Experiments), (47), e2437. • Ouyang, J., Sun, F., Feng, W., Sun, Y., Qiu, X., Xiong, L., Chen, Y. (2016). Quercetin is an effective inhibitor of quorum sensing, biofilm formation and virulence factors in Pseudomonas aeruginosa. Journal of Applied Microbiology, 120(4), 966–974. • Paczkowski, J. E., Mukherjee, S., McCready, A. R., Cong, J. P., Aquino, C. J., Kim, H., & Bassler, B. L. (2017). Flavonoids suppress Pseudomonas aeruginosa virulence through allosteric inhibition of quorum-sensing receptors. Journal of Biological Chemistry, 292(10), 4064-4076. • Parai, D., Banerjee, M., Dey, P., Chakraborty, A., Islam, E., & Mukherjee, S. K. (2018). Effect of reserpine on Pseudomonas aeruginosa quorum sensing mediated virulence factors and biofilm formation. Biofouling, 34(3), 320-334. • Plyuta, V., Zaitseva, J., Lobakova, E., Zagoskina, N., Kuznetsov, A., & Khmel, I. (2013). Effect of plant phenolic compounds on biofilm formation by Pseudomonas aeruginosa. Apmis, 121(11), 1073-1081. • Pons, M.J., de Toro, M., Medina, S., Sáenz, Y. y Ruiz, J. (2020). «Antimicrobianos, resistencia antibacteriana y salud sostenible». South Sustainability, 1(1), e001. • Rajkumari, J., Borkotoky, S., Murali, A., Suchiang, K., Mohanty, S. K., & Busi, S. (2018). Cinnamic acid attenuates quorum sensing associated virulence factors and biofilm formation in Pseudomonas aeruginosa PAO1. Biotechnology letters, 40(7), 1087-1100. • Ramesh, M., Ahlawat, P., & Srinivas, N. R. (2010). Irinotecan and its active metabolite, SN‐38: review of bioanalytical methods and recent update from clinical pharmacology perspectives. Biomedical chromatography, 24(1), 104-123. • Rasul, A., Millimouno, F. M., Ali Eltayb, W., Ali, M., Li, J., & Li, X. (2013). Pinocembrin: a novel natural compound with versatile pharmacological and biological activities. BioMed research international, 2013. • Reen, F. J., Gutiérrez-Barranquero, J. A., & Parages, M. L. (2018). Coumarin: a novel player in microbial quorum sensing and biofilm formation inhibition. Applied Microbiology and Biotechnology, 102(5), 2063-2073. • Repasky, M. P., Shelley, M., & Friesner, R. A. (2007). Flexible ligand docking with Glide. Current protocols in bioinformatics, 18(1), 8-12. • Requena Triguero, Carlos; Roca Magadán, Carlos; Sebastián Pérez, Victor; Campillo Martín, Nuria E. (2016) Aplicaciones quimioinformáticas en el descubrimiento de fármacos. Dianas 5 (2): e20160901. ISSN 1886-8746. • Rizaldy, D., Hartati, R., Nadhifa, T., & Fidrianny, I. (2021). Chemical Compounds and Pharmacological Activities of Mangosteen (Garcinia mangostana L.)-Updated Review. • Sánchez-García, E., Castillo-Hernández, S.L., & García-Palencia, P. (2016). Actividad antimicrobiana. En Rivas-Morales, C., Oranday-Cardenas, M.A., & Verde-Star, M.J. (Eds.). Investigación en plantas de importancia médica. Barcelona, España: OmniaScience. 77-100. • Sharland, M., Pulcini, C., Harbarth, S., Zeng, M., Gandra, S., Mathur, S., Magrini, N. (2018). «Classifying antibiotics in the WHO Essential Medicines List for optimal use-be AWaRe». Lancet Infectious Diseases, 18, pp. 18-20. • Sharma, G., Rao, S., Bansal, A., Dang, S., Gupta, S., & Gabrani, R. (2014). Pseudomonas aeruginosa biofilm: potential therapeutic targets. Biologicals, 42(1), 1-7. • She, P., Luo, Z., Chen, L., & Wu, Y. (2019). Efficacy of levofloxacin against biofilms of Pseudomonas aeruginosa isolated from patients with respiratory tract infections in vitro. MicrobiologyOpen, 8(5), e00720. • Sheng, J. Y., Chen, T. T., Tan, X. J., Chen, T., & Jia, A. Q. (2015). The quorum-sensing inhibiting effects of stilbenoids and their potential structure–activity relationship. Bioorganic & medicinal chemistry letters, 25(22), 5217-5220. • Shin, J., Prabhakaran, V. S., & Kim, K. S. (2018). The multi-faceted potential of plant-derived metabolites as antimicrobial agents against multidrug-resistant pathogens. Microbial pathogenesis, 116, 209-214. • Singh, P., Anand, A., & Kumar, V. (2014). Recent developments in biological activities of chalcones: A mini review. European journal of medicinal chemistry, 85, 758-777. • Skindersoe, M. E., Alhede, M., Phipps, R., Yang, L., Jensen, P. O., Rasmussen, T. B., Givskov, M. (2008). Effects of antibiotics on quorum sensing in Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 52(10), 3648–3663. • Skinnider, M. A., Dejong, C. A., Franczak, B. C., McNicholas, P. D., & Magarvey, N. A. (2017). Comparative analysis of chemical similarity methods for modular natural products with a hypothetical structure enumeration algorithm. Journal of Cheminformatics, 9(1), 46. • Slobodníková, L., Fialová, S., Rendeková, K., Kováč, J., & Mučaji, P. (2016). Antibiofilm activity of plant polyphenols. Molecules, 21(12), 1717. • Şöhretoğlu, D., Baran, M. Y., Arroo, R., & Kuruüzüm-Uz, A. (2018). Recent advances in chemistry, therapeutic properties and sources of polydatin. Phytochemistry Reviews, 17(5), 973-1005. • Sterling, T., & Irwin, J. J. (2015). ZINC 15–ligand discovery for everyone. Journal of chemical information and modeling, 55(11), 2324-2337. • Stover, C. K., Pham, X. Q., Erwin, A. L., Mizoguchi, S. D., Warrener, P., Hickey, M. J., & Olson, M. V. (2000). Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature, 406(6799), 959-964. • Suresh, D., Sabir, S., Yu, T. T., Wenholz, D., Das, T., Black, D. S., & Kumar, N. (2021). Natural Product Rottlerin Derivatives Targeting Quorum Sensing. Molecules, 26(12), 3745. • Tacconelli, E., Carrara, E., Savoldi, A., Harbarth, S., Mendelson, M., Monnet, D. L., Zorzet, A. (2018). Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. The Lancet Infectious Diseases, 18(3), 318–327. • Tapia-Rodriguez, M. R., Hernandez-Mendoza, A., Gonzalez-Aguilar, G. A., Martinez-Tellez, M. A., Martins, C. M., & Ayala-Zavala, J. F. (2017). Carvacrol as potential quorum sensing inhibitor of Pseudomonas aeruginosa and biofilm production on stainless steel surfaces. Food Control, 75, 255–261. • Trott, O., & Olson, A. J. (2010). Software news and update AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. • Tsai, W. C., Hershenson, M. B., Zhou, Y., & Sajjan, U. (2009). Azithromycin increases survival and reduces lung inflammation in cystic fibrosis mice. Inflammation Research, 58(8), 491–501. • Ulrey, R. K., Barksdale, S. M., Zhou, W., & van Hoek, M. L. (2014). Cranberry proanthocyanidins have anti-biofilm properties against Pseudomonas aeruginosa. BMC complementary and alternative medicine, 14(1), 1-12. • Ušjak, D., Ivković, B., Božić, D. D., Bošković, L., & Milenković, M. (2019). Antimicrobial activity of novel chalcones and modulation of virulence factors in hospital strains of Acinetobacter baumannii and Pseudomonas aeruginosa. Microbial pathogenesis, 131, 186-196. • Valderrama, S., González, P., Caro, M., Ardila, N., Ariza, B., Gil, F., & Álvarez, C. (2016). Factores de riesgo para bacteriemia por Pseudomonas aeruginosa resistente a carbapenémicos adquirida en un hospital colombiano. Biomédica: Revista Del Instituto Nacional de Salud, 36, 69–77. • Vandeputte, O. M., Kiendrebeogo, M., Rajaonson, S., Diallo, B., Mol, A., El Jaziri, M., & Baucher, M. (2010). Identification of catechin as one of the flavonoids from Combretum albiflorum bark extract that reduces the production of quorum-sensing-controlled virulence factors in Pseudomonas aeruginosa PAO1. Applied and environmental microbiology, 76(1), 243-253. • Vasavi, H. S., Sudeep, H. V., Lingaraju, H. B., & Prasad, K. S. (2017). Bioavailability-enhanced Resveramax™ modulates quorum sensing and inhibits biofilm formation in Pseudomonas aeruginosa PAO1. Microbial pathogenesis, 104, 64-71. • Vetrivel, A., Natchimuthu, S., Subramanian, V., & Murugesan, R. (2021). High-throughput virtual screening for a new class of antagonist targeting LasR of Pseudomonas aeruginosa. ACS omega, 6(28), 18314-18324. • Wagner, S., Sommer, R., Hinsberger, S., Lu, C., Hartmann, R. W., Empting, M., & Titz, A. (2016). Novel Strategies for the Treatment of Pseudomonas aeruginosa Infections. Journal of Medicinal Chemistry, 59(13). • Wang, Y., Gao, L., Rao, X., Wang, J., Yu, H., Jiang, J., & Hua, Z. (2018). Characterization of lasR-deficient clinical isolates of Pseudomonas aeruginosa. Scientific reports, 8(1), 1-10. • Yang, D., Hao, S., Zhao, L., Shi, F., Ye, G., Zou, Y., & Tang, H. (2021). Paeonol Attenuates Quorum-Sensing Regulated Virulence and Biofilm Formation in Pseudomonas aeruginosa. Frontiers in Microbiology, 12. • Yang, L., Rybtke, M. T., Jakobsen, T. H., Hentzer, M., Bjarnsholt, T., Givskov, M., & Tolker- Nielsen, T. (2009). Computer-aided identification of recognized drugs as Pseudomonas aeruginosa quorum-sensing inhibitors. Antimicrobial Agents and Chemotherapy, 53(6), 2432– 2443. • Zeng, J., Zhang, N., Huang, B., Cai, R., Wu, B., E, S., Chen, C. (2016). Mechanism of azithromycin inhibition of HSL synthesis in Pseudomonas aeruginosa. Scientific Reports, 6, 1–10. • Zeng, Z., Qian, L., Cao, L., Tan, H., Huang, Y., Xue, X., & Zhou, S. (2008). Virtual screening for novel quorum sensing inhibitors to eradicate biofilm formation of Pseudomonas aeruginosa. Applied microbiology and biotechnology, 79(1), 119-126. • Zhong, L., Ravichandran, V., Zhang, N., Wang, H., Bian, X., Zhang, Y., & Li, A. (2020). Attenuation of Pseudomonas aeruginosa quorum sensing by natural products: virtual screening, evaluation and biomolecular interactions. International journal of molecular sciences, 21(6), 2190. • Zhong, S., Zhang, Y., & Xiu, Z. (2010). Rescoring ligand docking poses. Curr Opin Drug Discov Devel, 13(3), 326-334. • Zhou, L., Zheng, H., Tang, Y., Yu, W., & Gong, Q. (2013). Eugenol inhibits quorum sensing at sub-inhibitory concentrations. Biotechnology letters, 35(4), 631-637. • Zhou, J. W., Luo, H. Z., Jiang, H., Jian, T. K., Chen, Z. Q., & Jia, A. Q. (2018). Hordenine: a novel quorum sensing inhibitor and antibiofilm agent against Pseudomonas aeruginosa. Journal of agricultural and food chemistry, 66(7), 1620-1628. • Zhuang, C., Zhang, W., Sheng, C., Zhang, W., Xing, C., & Miao, Z. (2017). Chalcone: a privileged structure in medicinal chemistry. Chemical reviews, 117(12), 7762-7810. • Zou, Y., & Nair, S. K. (2009). Molecular Basis for the Recognition of Structurally Distinct Autoinducer Mimics by the Pseudomonas aeruginosa LasR Quorum-Sensing Signaling Receptor. Chemistry and Biology, 16(9), 961–970.
dc.rightsReconocimiento 4.0 Internacional
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleIdentificación de moléculas inhibidoras en la expresión de lasR como regulador del sistema Quorum Sensing en Pseudomonas aeruginosa
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución