dc.relation | 1. Aboelazm, E.A.A., Ali, G.A.M., Algarni, H., Yin, H., Zhong, Y.L., Chong, K.F., 2018. Magnetic Electrodeposition of the Hierarchical Cobalt Oxide Nanostructure from Spent Lithium-Ion Batteries: Its Application as a Supercapacitor Electrode. J. Phys. Chem. C. 122, 12200–12206. https://doi.org/10.1021/acs.jpcc.8b03306
2. Abu-Much, R., Meridor, U., Frydman, A., Gedanken, A., 2006. Formation of a three-dimensional microstructure of Fe3O4-Poly(vinyl alcohol) composite by evaporating the hydrosol under a magnetic field. J. Phys. Chem. B. 110, 8194–8203. https://doi.org/10.1021/jp057123w
3. Ai, L., Zeng, Y., 2013. Hierarchical porous NiO architectures as highly recyclable adsorbents for effective removal of organic dye from aqueous solution. Chem. Eng. J. 215–216, 269–278. https://doi.org/10.1016/j.cej.2012.10.059
4. Akbari, A., Amini, M., Tarassoli, A., Eftekhari-Sis, B., Ghasemian, N., Jabbari, E., 2018. Transition metal oxide nanoparticles as efficient catalysts in oxidation reactions. Nano-Structures and Nano-Objects 14, 19–48. https://doi.org/10.1016/j.nanoso.2018.01.006
5. Ashoka, S., Chithaiah, P., Tharamani, C.N., Chandrappa, G.T., 2010. Synthesis and characterisation of microstructural α-Mn2O3 materials. J. Exp. Nanosci. 5, 285–293. https://doi.org/10.1080/17458080903495003
6. Askeland, D.R., Fulay, P.P., Wright, W.J., 2012. Ciencia e ingeniería de materiales.
7. Awol, A., Awol, A., 2017. Transition metal oxides nanoparticles catalysis for sustainable organic synthesis under solvent free conditions. Saudi J. Biomed. Res. 2,10–18. https://doi.org/10.21276/sjbr.2017.2.1.3
8. Baby, R., Subbiah, D.K., Shankar, P., Mani, G.K., Babu, K.J., Rayappan, J.B.B., Kulandaisamy, A.J., 2018. Role of Thermal Energy Sources in Chemical Solution Process to Synthesize V2O5 Nanostructures . J. Nanosci. Nanotechnol. 18, 7923–7926. https://doi.org/10.1166/jnn.2018.15560
9. Bai, J., Han, S.H., Peng, R.L., Zeng, J.H., Jiang, J.X., Chen, Y., 2017. Ultrathin Rhodium Oxide Nanosheet Nanoassemblies: Synthesis, Morphological Stability, and Electrocatalytic Application. ACS Appl. Mater. Interfaces. 9, 17195–17200. https://doi.org/10.1021/acsami.7b04874
10. Bao, Z., Yuan, Y., Leng, C., Li, L., Zhao, K., Sun, Z., 2017. One-Pot Synthesis of Noble Metal/Zinc Oxide Composites with Controllable Morphology and High Catalytic Performance. ACS Appl. Mater. Interfaces. 9, 16417–16425. https://doi.org/10.1021/acsami.7b02667
11. Bauzá, A.C., Freixedas, F.G., Söhnel, O., 2000. cristalización en disolución- conceptos básicos, Reverte. ed.
12. Benbow, E.M., Kelly, S.P., Zhao, L., Reutenauer, J.W., Suib, S.L., 2011. Oxygen reduction properties of bifunctional α-manganese oxide electrocatalysts in aqueous and organic electrolytes. J. Phys. Chem. C. 115, 22009–22017. https://doi.org/10.1021/jp2055443
13. Bergerud, A., Buonsanti, R., Jordan-Sweet, J.L., Milliron, D.J., 2013. Synthesis and Phase Stability of Metastable Bixbyite V2O3 Colloidal Nanocrystals. Chem. Mater. 25, 3172–3179. https://doi.org/10.1021/cm401530t
14. Bhanjana, G., Dilbaghi, N., Kim, K.H., Kumar, S., 2017. Low temperature synthesis of copper oxide nanoflowers for lead removal using sonochemical route. J. Mol. Liq. 244, 506–511. https://doi.org/10.1016/j.molliq.2017.09.034
15. Bhowmik, B., Manjuladevi, V., Gupta, R.K., Bhattacharyya, P., 2016. Highly Selective Low-Temperature Acetone Sensor Based on Hierarchical 3-D TiO2 Nanoflowers. IEEE Sens. J. 16, 3488–3495. https://doi.org/10.1109/JSEN.2016.2530827
16. Bhuvaneshwari, S., Gopalakrishnan, N., 2016. Hydrothermally synthesized Copper Oxide (CuO) superstructures for ammonia sensing. J. Colloid Interface Sci. 480, 76–84. https://doi.org/10.1016/j.jcis.2016.07.004
17. Bora, D.K., Braun, A., Erni, R., Fortunato, G., Graule, T., Constable, E.C., 2011. Hydrothermal treatment of a hematite film leads to highly oriented faceted nanostructures with enhanced photocurrents. Chem. Mater. 23, 2051–2061. https://doi.org/10.1021/cm102826n
18. Burke, M.S., Kast, M.G., Trotochaud, L., Smith, A.M., Boettcher, S.W., 2015. Cobalt-Iron (Oxy)hydroxide Oxygen Evolution Electrocatalysts: The Role of Structure and Composition on Activity, Stability, and Mechanism. J. Am. Chem. Soc. 137, 3638–3648. https://doi.org/10.1021/jacs.5b00281
19. Cai, Q., Gao, Y., Gao, T., Lan, S., Simalou, O., Zhou, X., Zhang, Y., Harnoode, C., Gao, G., Dong, A., 2016. Insight into Biological Effects of Zinc Oxide Nanoflowers on Bacteria: Why Morphology Matters. ACS Appl. Mater. Interfaces 8, 10109–10120. https://doi.org/10.1021/acsami.5b11573
20. Cao, C., Gao, Y., Luo, H., 2008. Pure Single-Crystal rutile vanadium dioxide powders: synthesis, mechanism and phase-transformation Property. J. Phys. Chem.C. 112, 18810–18814. https://doi.org/ 10.1021/jp8073688
21. Cao, F., Liu, Y., Hu, W., Chen, Q., 2008. Morphogenesis of branched coaxial nanorods formed in supercritical carbon dioxide. J. Phys. Chem. C. 112, 2337–2342. https://doi.org/10.1021/jp0755342
22. Cao, M.-S., Hou, Z.-L., Song, W.-L., Yuan, J., Wen, B., 2009. The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon N. Y. 48, 788–796. https://doi.org/10.1016/j.carbon.2009.10.028
23. Chang, L. Te, Wang, C.Y., Tang, J., Nie, T., Jiang, W., Chu, C.P., Arafin, S., He, L., Afsal, M., Chen, L.J., Wang, K.L., 2014. Electric-field control of ferromagnetism in Mn-doped ZnO nanowires. Nano Lett. 14, 1823–1829. https://doi.org/10.1021/nl404464q
24. Chang, Y., Zeng, H.C., 2004. Manipulative synthesis of multipod frameworks for self-organization and self-amplification of Cu2O microcrystals. Cryst. Growth Des. 4, 273–278. https://doi.org/10.1021/cg034146w
25. Chen, C., Lan, Y.T., Chou, M.M.C., Hang, D.R., Yan, T., Feng, H., Lee, C.Y., Chang, S.Y., Li, C.A., 2012. Growth and characterization of vertically aligned nonpolar [11̄00] orientation ZnO nanostructures on (100) γ-LiAlO2 substrate. Cryst. Growth Des. 12, 6208–6214. https://doi.org/10.1021/cg301394x
26. Chen, D., Xiong, S., Ran, S., Liu, B., Wang, L., Shen, G., 2011. One-dimensional iron oxides nanostructures. Sci. China Physics, Mech. Astron. 54, 1190–1199. https://doi.org/10.1007/s11433-011-4372-3
27. Cheng, F., Zhao, J., Song, W., Li, C., Ma, H., Chen, J., Shen, P., 2006. Facile controlled synthesis of MnO2 nanostructures of novel shapes and their application in batteries. Inorg. Chem. 45, 2038–2044. https://doi.org/10.1021/ic051715b
28. Chen, J.S., Zhu, T., Hu, Q.H., Gao, J., Su, F., Qiao, S.Z., Lou, X.W., 2010. Shape-controlled synthesis of cobalt-based nanocubes, nanodiscs, and nanoflowers and their comparative lithium-storage properties. ACS Appl. Mater. Interfaces. 2, 3628–3635. https://doi.org/10.1021/am100787w
29. Chen, Y., Ye, D., Wu, M., Chen, H., Zhang, L., Shi, J., Wang, L., 2014. Break-up of two-dimensional MnO2 nanosheets promotes ultrasensitive pH-triggered theranostics of cancer. Adv. Mater. 26, 7019–7026. https://doi.org/10.1002/adma.201402572
30. Cho, S., Kim, S., Kim, H.J., Lee, B.R., Lee, K.H., 2009. Facile and fast synthesis of single-crystalline fractal zinc structures through a solution phase reaction and their conversion to zinc oxide. Langmuir. 25, 10223–10229. https://doi.org/10.1021/la901006z
31. Cornell, R.M., Schwertmann, U., 2003. Also of interest Iron Oxides in the Laboratory.
32. Das, A., Malakar, P., Nair, R.G., 2018. Engineering of ZnO nanostructures for efficient solar photocatalysis. Mater. Lett. 219, 76–80. https://doi.org/10.1016/j.matlet.2018.02.057
33. Datta, K.J., Rathi, A.K., Kumar, P., Kaslik, J., Medrik, I., Ranc, V., Varma, R.S., Zboril, R., Gawande, M.B., 2017. Synthesis of flower-like magnetite nanoassembly: Application in the efficient reduction of nitroarenes. Sci. Rep. 7, 1–12. https://doi.org/10.1038/s41598-017-09477-7
34. Deng, S., Tjoa, V., Fan, H.M., Tan, H.R., Sayle, D.C., Olivo, M., Mhaisalkar, S., Wei, J., Sow, C.H., 2012. Reduced graphene oxide conjugated Cu2O nanowire mesocrystals for high-performance NO2 gas sensor. J. Am. Chem. Soc. 134, 4905–4917. https://doi.org/10.1021/ja211683m
35. Desai, M.A., Sartale, S.D., 2015. Facile soft solution route to engineer hierarchical morphologies of ZnO nanostructures. Cryst. Growth Des. 15, 4813–4820. https://doi.org/10.1021/acs.cgd.5b00561
36. Dhayal Raj, A., Pazhanivel, T., Suresh Kumar, P., Mangalaraj, D., Nataraj, D., Ponpandian, N., 2010. Self assembled V2O5 nanorods for gas sensors. Curr. Appl. Phys. 10, 531–537. https://doi.org/10.1016/j.cap.2009.07.015
37. Ding, K., Miao, Z., Hu, B., An, G., Sun, Z., Han, B., Liu, Z., 2010. Study on the anatase to rutile phase transformation and controlled synthesis of rutile nanocrystals with the assistance of ionic liquid. Langmuir. 26, 10294–10302. https://doi.org/10.1021/la100468e
38. Dong, X.C., Xu, H., Wang, X.W., Huang, Y.X., Chan-Park, M.B., Zhang, H., Wang, L.H., Huang, W., Chen, P., 2012. 3D graphene-cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. ACS Nano. 6, 3206–3213. https://doi.org/10.1021/nn300097q
39. Duan, X., Yang, J., Gao, H., Ma, J., Jiao, L., Zheng, W., 2012. Controllable hydrothermal synthesis of manganese dioxide nanostructures: Shape evolution, growth mechanism and electrochemical properties. CrystEngComm. 14, 4196–4204. https://doi.org/10.1039/c2ce06587h
40. El-Nagar, G.A., Mohammad, A.M., El-Deab, M.S., El-Anadouli, B.E., 2017. Propitious Dendritic Cu2O-Pt Nanostructured Anodes for Direct Formic Acid Fuel Cells. ACS Appl. Mater. Interfaces. 9, 19766–19772. https://doi.org/10.1021/acsami.7b01565
41. Fageria, P., Gangopadhyay, S., Pande, S., 2014. Synthesis of ZnO/Au and ZnO/Ag nanoparticles and their photocatalytic application using UV and visible light. RSC Adv. 4, 24962–24972. https://doi.org/10.1039/c4ra03158j
42. Flint, E.E., 1960. Principios de cristalografia, Editorial. ed.
43. Fominykh, K., Chernev, P., Zaharieva, I., Sicklinger, J., Stefanic, G., Döblinger, M., Müller, A., Pokharel, A., Böcklein, S., Scheu, C., Bein, T., Fattakhova-Rohlfing, D., 2015. Iron-doped nickel oxide nanocrystals as highly efficient electrocatalysts for alkaline water splitting. ACS Nano. 9, 5180–5188. https://doi.org/10.1021/acsnano.5b00520
44. Fu, Q., Xue, Y., Cui, Z., 2018. Size- and shape-dependent surface thermodynamic properties of nanocrystals. J. Phys. Chem. Solids. 116, 79–85. https://doi.org/10.1016/j.jpcs.2018.01.018
45. Gao, T., Huang, Y., Wang, T., 2004. The synthesis and photoluminescence of multipod-like zinc oxide whiskers. J. Phys. Condens. Matter. 16, 1115–1121. https://doi.org/10.1088/0953-8984/16/7/011
46. Garcia, G., Ventosa, E., Schuhmann, W., 2017. Complete Prevention of Dendrite Formation in Zn Metal Anodes by Means of Pulsed Charging Protocols. ACS Appl. Mater. Interfaces. 9, 18691–18698. https://doi.org/10.1021/acsami.7b01705
47. Gavilán, H., Sánchez, E.H., Brollo, M.E.F., Asín, L., Moerner, K.K., Frandsen, C., Lázaro, F.J., Serna, C.J., Veintemillas-Verdaguer, S., Morales, M.P., Gutiérrez, L., 2017. Formation Mechanism of Maghemite Nanoflowers Synthesized by a Polyol-Mediated Process. ACS Omega. 2, 7172–7184. https://doi.org/10.1021/acsomega.7b00975
48. Green, A.E., Chiang, C.Y., Greer, H.F., Waller, A., Ruszin, A., Webster, J., Niu, Z., Self, K., Zhou, W., 2017. Growth mechanism of dendritic hematite via hydrolysis of ferricyanide. Cryst. Growth Des. 17, 800–808. https://doi.org/10.1021/acs.cgd.6b01655
49. Gross, E., 2017. Tuning Product Selectivity by Changing the Size of Catalytically Active Metallic Nanoparticles. Stud. Surf. Sci. Catal. 177, 57–84. https://doi.org/10.1016/B978-0-12-805090-3.00002-
50. Han, J., Kim, B., Shin, J.Y., Ryu, S., Noh, M., Woo, J., Park, J.S., Lee, Y., Lee, N., Hyeon, T., Choi, D., Kim, B.S., 2015. Iron oxide nanoparticle-mediated development of cellular gap junction crosstalk to improve mesenchymal stem cells’ therapeutic efficacy for myocardial infarction. ACS Nano. 9, 2805–2819. https://doi.org/10.1021/nn506732n
51. Hu, J., Zou, C., Su, Y., Li, M., Han, Y., Kong, E.S.W., Yang, Z., Zhang, Y., 2018. An ultrasensitive NO2 gas sensor based on a hierarchical Cu2O/CuO mesocrystal nanoflower. J. Mater. Chem. A. 6, 17120–17131. https://doi.org/10.1039/c8ta04404j
52. Hu, M., Jiang, J.-S., Li, X., 2008. Surfactant-Assisted Hydrothermal Synthesis of Dendritic Magnetite Microcrystals. Cryst. Growth Des. 9, 820–824. https://doi.org/10.1021/cg8003933
53. Hu, X., Yu, J.C., Gong, J., 2007. Fast production of self-assembled hierarchical α-Fe2O3 nanoarchitectures. J. Phys. Chem. C. 111, 11180–11185. https://doi.org/10.1021/jp073073e
54. Huan, T.N., Rousse, G., Zanna, S., Lucas, I.T., Xu, X., Menguy, N., Mougel, V., Fontecave, M., 2017. A Dendritic Nanostructured Copper Oxide Electrocatalyst for the Oxygen Evolution Reaction. Angew. Chemie - Int. Ed. 56, 4792–4796. https://doi.org/10.1002/anie.201700388
55. Hugounenq, P., Levy, M., Alloyeau, D., Lartigue, L., Dubois, E., Cabuil, V., Ricolleau, C., Roux, S., Wilhelm, C., Gazeau, F., Bazzi, R., 2012. Iron oxide monocrystalline nanoflowers for highly efficient magnetic hyperthermia. J. Phys. Chem. C 116, 15702–15712. https://doi.org/10.1021/jp3025478
56. Jain, S., Mishra, S., Sarma, T.K., 2018. Zn2+ Induced Self-Assembled Growth of Octapodal CuxO-ZnO Microcrystals: Multifunctional Applications in Reductive Degradation of Organic Pollutants and Nonenzymatic Electrochemical Sensing of Glucose. ACS Sustain. Chem. Eng. 6, 9771–9783. https://doi.org/10.1021/acssuschemeng.8b00838
57. Jiang, Y., Liu, X., Cai, F., Liu, H., 2017. Direct Growth of Feather-Like ZnO Structures by a Facile Solution Technique for Photo-Detecting Application. Nanoscale Res. Lett. 12, 1-6. https://doi.org/10.1186/s11671-017-2252-0
58. Jiao, F., Frei, H., 2010. Nanostructured cobalt and manganese oxide clusters as efficient water oxidation catalysts. Energy Environ. Sci. 3, 1018. https://doi.org/10.1039/c002074e
59. Jiao, S., Xu, L., Hu, K., Li, J., Gao, S., Xu, D., 2010. Morphological control of α-FeOOH nanostructures by electrodeposition. J. Phys. Chem. C. 114, 269–273. https://doi.org/10.1021/jp909072m
60. Jordan, V., Dasireddy, V.D.B.C., Likozar, B., Podgornik, A., Rečnik, A., 2018. Material’s Design beyond Lateral Attachment: Twin-Controlled Spatial Branching of Rutile TiO2. Cryst. Growth Des. 18, 4484–4494. https://doi.org/10.1021/acs.cgd.8b00479
61. Jung, S.H., Oh, E., Lee, K.H., Yang, Y., Park, C.G., Park, W., Jeong, S.H., 2008. Sonochemical preparation of shape-selective ZnO nanostructures. Cryst. Growth Des. 8, 265–269. https://doi.org/10.1021/cg070296l
62. Kavosh, M., Moallemian, H., Salmi, S., Dehdashti, M.E., Mehraniya, H., 2013. Synthesis and characterization of cluster flower-like ZnO nanostructure by hydrothermal method. Synth. React. Inorganic, Met. Nano-Metal Chem. 43, 519–523. https://doi.org/10.1080/15533174.2012.740734
63. Kay, A., Cesar, I., Grätzel, M., 2006. New benchmark for water photooxidation by nanostructured α-Fe2O3 films. J. Am. Chem. Soc. 128, 15714–15721. https://doi.org/10.1021/ja064380l
64. Khedir, K.R., Saifaldeen, Z.S., Demirkan, T., Abdulrahman, R.B., Karabacak, T., 2017. Growth of Zinc Oxide Nanorod and Nanoflower Structures by Facile Treatment of Zinc Thin Films in Boiling De-Ionized Water. J. Nanosci. Nanotechnol. 17, 4842–4850. https://doi.org/10.1166/jnn.2017.13432
65. Khusaimi, Z., Ghani, N.A., Noor, F.W.M., Amizam, S., Rafaie, H.A., Mamat, M.H., Sahdan, M.Z., Abdullah, N., Abdullah, S., Rusop, M., 2009. Surface morphology study on effect of deposition temperature on nanostructured zinc oxide by chemical vapour deposition method. Mater. Res. Innov. 13, 196–198. https://doi.org/10.1179/143307509x437608
66. Kibis, L.S., Stadnichenko, A.I., Koscheev, S. V., Zaikovskii, V.I., Boronin, A.I., 2016. XPS Study of Nanostructured Rhodium Oxide Film Comprising Rh4+ Species. J. Phys. Chem. C 120, 19142–19150. https://doi.org/10.1021/acs.jpcc.6b05219
67. Kim, S.I., Lee, J.S., Ahn, H.J., Song, H.K., Jang, J.H., 2013. Facile route to an efficient NiO supercapacitor with a three-dimensional nanonetwork morphology. ACS Appl. Mater. Interfaces. 5, 1596–1603. https://doi.org/10.1021/am3021894
68. Kong, S., Yang, F., Cheng, K., Ouyang, T., Ye, K., Wang, G., Cao, D., 2017. In-situ growth of cobalt oxide nanoflakes from cobalt nanosheet on nickel foam for battery-type supercapacitors with high specific capacity. J. Electroanal. Chem. 785, 103–108. https://doi.org/10.1016/j.jelechem.2016.12.002
69. Kowsari, E., Faraghi, G., 2010. Synthesis by an ionic liquid-assisted method and optical properties of nanoflower Y2O3. Mater. Res. Bull. 45, 939–945. https://doi.org/10.1016/j.materresbull.2010.04.015
70. Kozhummal, R., Yang, Y., Güder, F., Hartel, A., Lu, X., Küçükbayrak, U.M., Mateo-Alonso, A., Elwenspoek, M., Zacharias, M., 2012. Homoepitaxial branching: An unusual polymorph of zinc oxide derived from seeded solution growth. ACS Nano. 6, 7133–7141. https://doi.org/10.1021/nn302188q
71. Kumar, A., Madaria, A.R., Zhou, C., 2010. Growth of Aligned Single-Crystalline Rutile TiO2 nanowires on Arbitrary Substrates and Their Application in Dye-Sensitized Solar Cells. J.Phys. Chem.C. 114, 7787–7792. https://doi.org/ 10.1021/jp100491h
72. Kumar, N., Mittal, H., Reddy, L., Nair, P., Ngila, J.C., Parashar, V., 2015. Morphogenesis of ZnO nanostructures: Role of acetate (COOH-) and nitrate (NO3-) ligand donors from zinc salt precursors in synthesis and morphology dependent photocatalytic properties. RSC Adv. 5, 38801–38809. https://doi.org/10.1039/c5ra04162g
73. Kusano, Y., Fujii, T., Takada, J., Fukuhara, M., Doi, A., Ikeda, Y., Takano, M., 2008. Epitaxial growth of ε-Fe2O3 on mullite found through studies on a traditional Japanese stoneware. Chem. Mater. 20, 151–156. https://doi.org/10.1021/cm7023247
74. Lan, S., Sheng, X., Lu, Y., Li, C., Zhao, S., Liu, N., 2018. Modification of Antibacterial ZnO Nanorods with CeO2 Nanoparticles: Role of CeO2 in Impacting Morphology and Antibacterial Activity. Colloids Interface Sci. Commun. 26, 32–38. https://doi.org/10.1016/j.colcom.2018.08.002
75. Lee, W.W., Yi, J., Kim, S.B., Kim, Y.H., Park, H.G., Park, W. Il, 2011. Morphology-controlled three-dimensional nanoarchitectures produced by exploiting vertical and in-plane crystallographic orientations in hydrothermal ZnO crystals. Cryst. Growth Des. 11, 4927–4932. https://doi.org/10.1021/cg200806a
76. Li, G., Jiang, L., Pang, S., Peng, H., Zhang, Z., 2006. Molybdenum trioxide nanostructures: The evolution from helical nanosheets to crosslike nanoflowers to nanobelts. J. Phys. Chem. B. 110, 24472–24475. https://doi.org/10.1021/jp064855v
77. Li, G.R., Lu, X.H., Qu, D.L., Yao, C.Z., Zheng, F.L., Bu, Q., Dawa, C.R., Tong, Y.X., 2007. Electrochemical growth and control of ZnO dendritic structures. J. Phys. Chem. C. 111, 6678–6683. https://doi.org/10.1021/jp068401+
78. Li, S.S., Li, W.J., Jiang, T.J., Liu, Z.G., Chen, X., Cong, H.P., Liu, J.H., Huang, Y.Y., Li, L.N., Huang, X.J., 2015. Iron Oxide with Different Crystal Phases (α- and γ-Fe2O3) in Electroanalysis and Ultrasensitive and Selective Detection of Lead(II): An Advancing Approach Using XPS and EXAFS, Analytical Chemistry. 88, 906-914. https://doi.org/10.1021/acs.analchem.5b03570
79. Li, W., Bu, Y., Jin, H., Wang, Jian, Zhang, W., Wang, S., Wang, Jichang, 2013. The preparation of hierarchical flowerlike NiO/reduced graphene oxide composites for high performance supercapacitor applications. Energy and Fuels. 27, 6304–6310. https://doi.org/10.1021/ef401190b
80. Li, Y., Tan, H., Lebedev, O., Verbeeck, J., Biermans, E., Van Tendeloo, G., Su, B.L., 2010. Insight into the growth of multiple branched MnOOH nanorods. Cryst. Growth Des. 10, 2969–2976. https://doi.org/10.1021/cg100009k
81. Li, Z., Xu, F., Sun, X., Zhang, W., 2008. Oriented attachment in vapor: Formation of ZnO three-dimensional structures by intergrowth of ZnO microcrystals. Cryst. Growth Des. 8, 805–807. https://doi.org/10.1021/cg060830+
82. Lim, B., Xia, Y., 2011. Metal nanocrystals with highly branched morphologies. Angew. Chemie - Int. Ed. 50, 76–85. https://doi.org/10.1002/anie.201002024
83. Lin, C.K., Lin, P.C., Shih, S.J., Chang, C.J., Shi, J.B., Chen, C.Y., 2017. Pseudocapacitive performance of manganese oxide coated hierarchical cobalt oxide structure prepared by hydrothermal process. Ceram. Int. 43, S739–S746. https://doi.org/10.1016/j.ceramint.2017.05.288
84. Lin, M., Tan, H.R., Tan, J.P.Y., Bai, S., 2013. Understanding the Growth Mechanism of α‑Fe2O3 Nanoparticles through a Controlled Shape Transformation. J. Phys. Chem. C. 117, 11242–11250. https://doi.org/10.1142/s1793292011002846
85. Ling, Y., Lim, S., Chyuan, H., Tong, W., 2016. Research progress on iron oxide-based magnetic materials : Synthesis techniques and photocatalytic applications. Ceram. Int. 42, 9–34. https://doi.org/10.1016/j.ceramint.2015.08.144
86. Liu, H., Shi, L., Li, D., Yu, J., Zhang, H.M., Ullah, S., Yang, B., Li, C., Zhu, C., Xu, J., 2018. Rational design of hierarchical ZnO/Carbon nanoflower for high performance lithium ion battery anodes. J. Power Sources. 387, 64–71. https://doi.org/10.1016/j.jpowsour.2018.03.047
87. Liu, J., Wu, Z., Tian, Q., Wu, W., Xiao, X., 2016. Shape-controlled iron oxide nanocrystals: Synthesis, magnetic properties and energy conversion applications. CrystEngComm. 18, 6303–6326. https://doi.org/10.1039/c6ce01307d
88. Liu, N., Tao, P., Jing, C., Huang, W., Zhang, X., Wu, M., Lei, J., Tang, L., 2018. A facile fabrication of nanoflower-like Co3O4 catalysts derived from ZIF-67 and their catalytic performance for CO oxidation. J. Mater. Sci. 53, 15051–15063. https://doi.org/10.1007/s10853-018-2696-3
89. Liu, R., Zhao, Yuzhen, Huang, R., Zhao, Yongjie, Zhou, H., 2011. Phase transformation and shape evolution of iron oxide nanocrystals synthesized in the ethylene glycol-water system. Sci. China Physics, Mech. Astron. 54, 1271–1276. https://doi.org/10.1007/s11433-011-4369-y
90. Lu, G., Li, C., Shi, G., 2007, Synthesis and characterization of 3D dendritic Gold Nanostructures and their use as substrates for surface-enhances Raman scattering. Chem. Mater. 19, 3433-3440. https://doi.org/10.1021/cm0706393
91. Luo, Y., Li, S., Ren, Q., Liu, J., Xing, L., Wang, Y., Yu, Y., Jia, Z., Li, J., 2007. Facile synthesis of flowerlike Cu2O nanoarchitectures by a solution phase route. Cryst. Growth Des. 7, 87–92. https://doi.org/10.1021/cg060491k
92. Ma, C.Y., Mu, Z., Li, J.J., Jin, Y.G., Cheng, J., Lu, G.Q., Hao, Z.P., Qiao, S.Z., 2010. Mesoporous Co3O4 and Au/Co3O4 Catalysts for Low-Temperature Oxidation of Trace Ethylene. J. Am. Chem. Soc. 132, 2608–2613. https://doi.org/10.1021/ja906274t
93. Ma, Q.L., Huang, J., 2015. Fractal growth of fern-like ZnO nanoleaves and their photocatalytic activities. Mater. Res. Innov. 19, s2–s6. https://doi.org/10.1179/1432891715z.0000000002042
94. Mahajan, H., Bae, J., Yun, K., 2018. Facile synthesis of ZnO-Au nanocomposites for high-performance supercapacitors. J. Alloys Compd. 758, 131–139. https://doi.org/10.1016/j.jallcom.2018.04.238
95. McShane, C.M., Choi, K.S., 2009. Photocurrent enhancement of n-type Cu2O electrodes achieved by controlling dendritic branching growth. J. Am. Chem. Soc. 131, 2561–2569. https://doi.org/10.1021/ja806370s
96. Milošević, S., Stojković, I., Kurko, S., Novaković, J.G., Cvjetićanin, N., 2012. The simple one-step solvothermal synthesis of nanostructurated VO2 (B). Ceram. Int. 38, 2313–2317. https://doi.org/10.1016/j.ceramint.2011.11.001
97. Mishra, A.K., Nayak, A.K., Das, A.K., Pradhan, D., 2018. Microwave-assisted solvothermal synthesis of cupric oxide nanostructures for high-performance supercapacitor. J. Phys. Chem. C. 122, 11249–11261. https://doi.org/10.1021/acs.jpcc.8b02210
98. Mo, M., Wang, D., Du, X., Qian, X., Chen, D., Qian, Y., 2009. Engineering of Nanotips in ZnO Submicrorods and Patterned arrays. Cryst. Growth Des. 9, 797–802. https://doi.org/10.1021/cg800362z
99. Moura Ramos, J.J., Diogo, H.P., 2009. Are Crystallization and Melting the Reverse Transformation of Each Other? J. Chem. Educ. 83, 1389. https://doi.org/10.1021/ed083p1389
100. Navaladian, S., Viswanathan, B., 2012. Synthesis of Different Architectures Like Stars, Multipods, Ellipsoids and Spikes of Zinc Oxide by Surfactantless Precipitation. J. Nanosci. Nanotechnology. 11, 10219–10226. https://doi.org/10.1166/jnn.2011.4997
101. Navrotsky, A., Mazeina, L., Majzlan, J., 2008. Size-driven structural and thermodynamic complexity in iron oxides. Science. 319, 1635–1638. https://doi.org/10.1126/science.1148614
102. Niu, M., Huang, F., Cui, L., Huang, P., Yu, Y., Wang, Y., 2010. Hydritermal synthesis, structural characteristics, and enhanced photocatalysis of SnO2/α-Fe2O3 semiconductor nanohererostructures. 4, 681–688. https://doi.org/ 10.1021/nn901119a
103. Niklasson, G.A., Granqvist, C.G., 2007. Electrochromics for smart windows: thin films of tungsten oxide and nickel oxide, and devices based on these. J. Mater. Chem. 17, 127–156. https://doi.org/10.1039/B612174H
104. Nishinaga, T., 2016. Thermodynamics -for understanding crystal growth-. Prog. Cryst. Growth Charact. Mater. 62, 43–57. https://doi.org/10.1016/j.pcrysgrow.2016.04.001
105. Ould-ely, T., Prieto-centurion, D., Kumar, A., Guo, W., Knowles, W. V, Asokan, S., Wong, M.S., Rusakova, I., Lüttge, A., Whitmire, K.H., 2006. Manganese (II) oxide nanohexapods: Insight into controlling the form of nanocrystals. Chem. Mater. 18, 1821-1829. https://doi.org/ 10.1021/cm052492q
106. Paino, I.M.M., Gonçalves, F.J., Souza, F.L., Zucolotto, V., 2016. Zinc Oxide Flower-Like Nanostructures That Exhibit Enhanced Toxicology Effects in Cancer Cells. ACS Appl. Mater. Interfaces. 8, 32699–32705. https://doi.org/10.1021/acsami.6b11950
107. Pang, H., Gao, F., Lu, Q., 2009. Morphology effect on antibacterial activity of cuprous oxide. Chem. Commun. 9, 1076-1078. https://doi.org/10.1039/b816670f
108. Parida, M.R., Vijayan, C., Rout, C.S., Suchand Sandeep, C.S., Philip, R., Deshmukh, P.C., 2011. Room Temperature Ferromagnetism and Optical Limiting in V2O5 Nanoflowers Synthesized by a Novel Method. J. Phys. Chem. C. 115, 112–117. https://doi.org/10.1143/jpsj.77.023706
109. Parkinson, G.S., 2016. Iron oxide surfaces. Surface Science Reports. 71, 272–365. https://doi.org/10.1016/j.surfrep.2016.02.001
110. Pauling, L., Hendricks, S.B., 1925. The crystal structures of hematite and corundum. J. Am. Chem. Soc. 47, 781–790. https://doi.org/10.1021/ja01680a027
111. Pokropivny, V. V., Skorokhod, V. V., 2007. Classification of nanostructures by dimensionality and concept of surface forms engineering in nanomaterial science. Mater. Sci. Eng. C. 27, 990–993. https://doi.org/10.1016/j.msec.2006.09.023
112. Polshettiwar, V., Baruwati, B., Varma, R.S., 2009. Self-Assembly of Metal Oxides into Synthesis and Application in Catalysis. ACS Nano. 3, 728–736. https://doi.org/10.1021/nn800903p
113. Qiao, L., Swihart, M.T., 2017. Solution-phase synthesis of transition metal oxide nanocrystals: Morphologies, formulae, and mechanisms. Adv. Colloid Interface Sci. 244, 199–266. https://doi.org/10.1016/j.cis.2016.01.005
114. Qiu, G., Dharmarathna, S., Zhang, Y., Opembe, N., Huang, H., Suib, S.L., 2012. Facile microwave-assisted hydrothermal synthesis of CuO nanomaterials and their catalytic and electrochemical properties. J. Phys. Chem. C. 116, 468–477. https://doi.org/10.1021/jp209911k
115. Qiu, J., Guo, M., Wang, X., 2011. Electrodeposition of hierarchical ZnO nanorod-nanosheet structures and their applications in dye-sensitized solar cells. ACS Appl. Mater. Interfaces. 3, 2358–2367. https://doi.org/10.1021/am2002789
116. Qiu, M., Sun, P., Shen, L., Wang, K., Song, S., Yu, X., Tan, S., Zhao, C., Mai, W., 2016. WO3 nanoflowers with excellent pseudo-capacitive performance and the capacitance contribution analysis. J. Mater. Chem. A. 4, 7266–7273. https://doi.org/10.1039/c6ta00237d
117. Qu, X.F., Zhou, G.T., Yao, Q.Z., Fu, S.Q., 2010. A spartic-acid-assisted hydrothermal growth and properties of magnetite octahedrons. J. Phys. Chem. C 114, 284–289. https://doi.org/10.1021/jp909175s
118. Rubiano, G.N., 2000. Fractales para profanos, Universidad Nacional de Colombia.ed.
119. Saifullah, M.S.M., Chong, W.T., Ganesan, R., Yong, J.J., Thian, E.S., Dinachali, S.S., Lim, A.H.H., Lim, S.H., Low, H.Y., He, C., 2012. Direct nanoimprint lithography of Al2O3 using a chelated monomer-based precursor . Nanotechnology. 23, 315304. https://doi.org/10.1088/0957-4484/23/31/315304
120. Self, K., Zhou, W., 2016. Surface charge driven growth of eight-branched Cu2O crystals. Cryst. Growth Des. 16, 5377–5384. https://doi.org/10.1021/acs.cgd.6b00883
121. Selvakumar, K., Senthil Kumar, S.M., Thangamuthu, R., Ganesan, K., Murugan, P., Rajput, P., Jha, S.N., Bhattacharyya, D., 2015. Physiochemical investigation of shape-designed MnO2 nanostructures and their influence on oxygen reduction reaction activity in alkaline solution. J. Phys. Chem. C. 119, 6604–6618. https://doi.org/10.1021/jp5127915
122. Sheng, X., He, D., Yang, J., Zhu, K., Feng, X., 2014. Oriented assembled TiO2 hierarchical nanowire arrays with fast electron transport properties. Nano Lett. 14, 1848–1852. https://doi.org/10.1021/nl4046262
123. Shi, Z., Walker, A. V., 2015. Chemical bath deposition of ZnO on functionalized self-assembled monolayers: Selective deposition and control of deposit morphology. Langmuir. 31, 1421–1428. https://doi.org/10.1021/la5040239
124. Sinha, B., Goswami, T., Paul, S., Misra, A., 2014. The impact of surface structure and band gap on the optoelectronic properties of Cu2O nanoclusters of varying size and symmetry. RSC Adv. 4, 5092. https://doi.org/10.1039/c3ra45387a
125. Song, B., Wang, Y., Cui, X., Kou, Z., Si, L., Tian, W., Yi, C., Wei, T., Sun, Y., 2016. A Series of Unique Architecture Building of Layered Zinc Hydroxides: Self-Assembling Stepwise Growth of Layered Zinc Hydroxide Carbonate and Conversion into Three-Dimensional ZnO. Cryst. Growth Des. 16, 887–894. https://doi.org/10.1021/acs.cgd.5b01450
126. Sounart, T.L., Liu, J., Voigt, J.A., Huo, M., Spoerke, E.D., Mckenzie, B., 2007. Secondary Nucleation and Growth of ZnO. J. Am. Chem. Soc. 129, 15786–15793. https://doi.org/ 10.1021/ja071209g
127. Stolzenburg, P., Freytag, A., Bigall, N.C., Garnweitner, G., 2016. Fractal growth of ZrO2 nanoparticles induced by synthesis conditions. CrystEngComm. 18, 8396–8405. https://doi.org/10.1039/c6ce01916a
128. Subramani, K., Sathish, M., 2019. Facile synthesis of ZnO nanoflowers/reduced graphene oxide nanocomposite using zinc hexacyanoferrate for supercapacitor applications. Mater. Lett. 236, 424–427. https://doi.org/10.1016/j.matlet.2018.10.111
129. Sun, S., Zhang, X., Sun, Y., Yang, S., Song, X., Yang, Z., 2013. Hierarchical CuO nanoflowers: Water-required synthesis and their application in a nonenzymatic glucose biosensor. Phys. Chem. Chem. Phys. 15, 10904–10913. https://doi.org/10.1039/c3cp50922b
130. Sun, Y., Fox, N.A., Riley, D.J., Ashfold, M.N.R., 2008. Hydrothermal growth of ZnO nanorods aligned parallel to the substrate surface. J. Phys. Chem. C. 112, 9234–9239. https://doi.org/10.1021/jp8019107
131. Sun, Yan, Su, Zhang, J., Liao, Yin, 2002. Control of ZnO Morphology via a Simple Solution Route. Chem. Mater. 14, 4172–4177. https://doi.org/10.1021/cm020077h
132. Sun, Z., Kim, J.H., Zhao, Y., Bijarbooneh, F., Malgras, V., Lee, Y., Kang, Y., Dou, S.X., 2011. Rational Design of 3D Dendritic TiO2 Nanostructures with Favorable architectures. J. Am. Chem. Soc. 133, 19314–19317. https://doi.org/10.1021/ja208468d
133. Sunagawa, I., 1999. Growth and morphology of quasicrystals. Phase Transitions. 14, 69–79. https://doi.org/10.1080/01411599308210261
134. Tao, T., Chen, Y., Chen, Y., Fox, D., Zhang, H., Zhou, M., Raveggi, M., Barlow, A. J., Glushenkov, A.M., 2016. Two-dimensional metal oxide nanoflower-like architectures: a general growth method and their applications in energy storage and as model materials for nanofabrication. Chempluschem. 82, 295-302. https://doi.org/ 10.1002/cplu.201600463
135. Teja, A.S., Koh, P., 2009. Synthesis , properties , and applications of magnetic iron oxide nanoparticles. Prog. Cryst. Growth Charact. Mater. 55, 22–45. https://doi.org/10.1016/j.pcrysgrow.2008.08.003
136. Tian, L., Wang, J., Wang, K., Wo, H., Wang, X., Zhuang, W., Li, T., Du, X., 2019. Carbon-quantum-dots-embedded MnO2 nanoflower as an efficient electrocatalyst for oxygen evolution in alkaline media. Carbon N. Y. 143, 457–466. https://doi.org/10.1016/j.carbon.2018.11.041
137. Tiwari, J.N., Tiwari, R.N., Kim, K.S., 2012. Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog. Mater. Sci. 57, 724–803. https://doi.org/10.1016/j.pmatsci.2011.08.003
138. Viswanatha, R., Chakraborty, S., Basu, S., Sarma, D.D., 2006. Blue-emitting copper-doped zinc oxide nanocrystals. J. Phys. Chem. B. 110, 22310–22312. https://doi.org/10.1021/jp065384f
139. Wang, D., Kang, Y., Ye, X., Murray, C.B., 2014. Mineralizer-assisted shape-control of rare earth oxide nanoplates. Chem. Mater. 26, 6328–6332. https://doi.org/10.1021/cm502301u
140. Wang, G.-H., Li, W.-C., Jia, K.-M., Lu, A.-H., Feyen, M., Spliethoff, B., Schüth, F., 2011. A facile synthesis of shape- and size-controlled α-Fe2O3 nanoparticles through hydrothermal method. Nano. 6, 469–479. https://doi.org/10.1142/s1793292011002846
141. Wang, T., Costan, J., Centeno, A., Pang, J.S., Darvill, D., Ryan, M.P., Xie, F., 2015. Broadband enhanced fluorescence using zinc-oxide nanoflower arrays. J. Mater. Chem. C. 3, 2656–2663. https://doi.org/10.1039/c4tc02751e
142. Wang, X.F., Xu, J.J., Chen, H.Y., 2008. Dendritic CdO nanomaterials prepared by electrochemical deposition and their electrogenerated chemilumineseence behaviors in aqueous systems. J. Phys. Chem. C. 112, 7151–7157. https://doi.org/10.1021/jp711093z
143. Watt, J., Cheong, S., Tilley, R.D., 2013. How to control the shape of metal nanostructures in organic solution phase synthesis for plasmonics and catalysis. Nano Today. 8, 198–215. https://doi.org/10.1016/j.nantod.2013.03.001
144. Wen, B., Huang, Y., Boland, J.J., 2008. Controllable growth of ZnO nanostructures by a simple solvothermal process. J. Phys. Chem. C. 112, 106–111. https://doi.org/10.1021/jp076789i
145. Wisitsoraat, A., Pimtara, I., Phokharatkul, D., Jaruwongrangsee, K., Tuantranont, A., 2010. Zinc Oxide Nanopolypods Synthesized by Thermal Evaporation of Carbon Nanotubes and Zinc Oxide Mixed Powder. Curr. Nanosci. 6, 45–53. https://doi.org/10.2174/157341310790226315
146. Wu, H. Bin, Pan, A., Hng, H.H., Lou, X.W., 2013. Template-assisted formation of rattle-type V2O5 hollow microspheres with enhanced lithium storage properties. Adv. Funct. Mater. 23, 5669–5674. https://doi.org/10.1002/adfm.201300976
147. Wu, H., Wang, L., 2014. Applied Surface Science Phase transformation-induced crystal plane effect of iron oxide micropine dendrites on gaseous toluene photocatalytic oxidation. Appl. Surf. Sci. 288, 398–404. https://doi.org/10.1016/j.apsusc.2013.10.046
148. Wu, N., Du, W., Liu, G., Zhou, Z., Fu, H.R., Tang, Q., Liu, X., He, Y.B., 2017. Synthesis of Hierarchical Sisal-Like V2O5 with Exposed Stable {001} Facets as Long Life Cathode Materials for Advanced Lithium-Ion Batteries. ACS Appl. Mater. Interfaces. 9, 43681–43687. https://doi.org/10.1021/acsami.7b13944
149. Wu, Y., Xi, Z., Zhang, G., Zhang, J., Guo, D., 2008. Fabrication of Hierarchical Zinc Oxide Nanostructures through multistage gas-phase reaction. Cryst. Growth Des. 8, 2646-2651. https://doi.org/ 10.1021/cg0702611
150. Xi-Guang, H., Ming-Shang, J., Qin, K., Xi, Z., Zhao-Xiong, X., Lan-Sun, Z., 2009. Directional etching formation of single-crystalline branched nanostructures: A case of six-horn-like manganese oxide. J. Phys. Chem. C. 113, 2867–2872. https://doi.org/10.1021/jp8092836
151. Xie, J., Wu, Q., Zhang, D., Ding, Y., 2009. Biomolecular-induced synthesis of self-assembled hierarchical La(OH)CO3 one-dimensional nanostructures and its morphology-held conversion toward La2O3 and La(OH)3. Cryst. Growth Des. 9, 3889–3897. https://doi.org/10.1021/cg801053p
152. Xu, C.X., Sun, X.W., 2005. Multipod zinc oxide nanowhiskers. J. Cryst. Growth. 277, 330–334. https://doi.org/10.1016/j.jcrysgro.2005.01.052
153. Xu, X., Liu, Z., Zuo, Z., Zhang, M., Zhao, Z., Shen, Y., Zhou, H., Chen, Q., Yang, Y., Wang, M., 2015. Hole Selective NiO Contact for Efficient Perovskite Solar Cells with Carbon Electrode. Nano Lett. 15, 2402–2408. https://doi.org/10.1021/nl504701y
154. Xue, X.Y., Chen, Z.H., Xing, L.L., Ma, C.H., Chen, Y.J., Wang, T.H., 2010. Enhanced optical and sensing properties of one-step synthesized Pt-ZnO nanoflowers. J. Phys. Chem. C. 114, 18607–18611. https://doi.org/10.1021/jp1070067
155. Yan, B., Wang, Y., Jiang, T., Wu, X., 2016. Fabrication of snowflake-like CuO nanostructure via electrodeposition method and its properties. J. Mater. Sci. Mater. Electron. 27, 4035–4042. https://doi.org/10.1007/s10854-015-4258-7
156. Yan, C., Xue, D., 2006. General, spontaneous ion replacement reaction for the synthesis of micro- and nanostructured metal oxides. J. Phys. Chem. B. 110, 1581–1586. https://doi.org/10.1021/jp056373+
157. Yang, D., Liu, H., Zheng, Z., Yuan, Y., Zhao, J., 2009. An Efficient Photocatalyst Structure : TiO2 (B) Nanofibers with a Shell of Anatase Nanocrystals. J. Am. Chem. Soc. 2, 17885–17893. https://doi.org/10.1021/acs.jpcc.6b08842
158. Yan, F., Huang, L., Zheng, J., Huang, J., Lin, Z., Huang, F., Wei, M., 2010. Effect of surface etching on the efficiency of ZnO-based dye-sensitized solar cells. Langmuir. 26, 7153–7156. https://doi.org/10.1021/la904238n
159. Yan, X., Li, Z., Zou, C., Li, S., Yang, J., Chen, R., Han, J., Gao, W., 2010. Renucleation and sequential growth of ZnO complex nano/microstructure: From nano/microrod to ball-shaped cluster. J. Phys. Chem. C. 114, 1436–1443. https://doi.org/10.1021/jp908101z
160. Yang, T., Gordon, Z.D., Chan, C.K., 2013. Synthesis of hyperbranched perovskite nanostructures. Cryst. Growth Des. 13, 3901–3907. https://doi.org/10.1021/cg4005483
161. Yang, X., Zhuang, J., Li, X., Chen, D., Ouyang, G., Mao, Z., Han, Y., He, Z., Liang, C., Wu, M., Yu, J.C., 2009. Hierarchically nanostructured rutile arrays: Acid vapor oxidation growth and tunable morphologies. ACS Nano. 3, 1212–1218. https://doi.org/10.1021/nn900084e
162. Yang, Y., Tian, C., Wang, J., Sun, L., Shi, K., Zhou, W., Fu, H., 2014. Facile synthesis of novel 3D nanoflower-like CuxO/multilayer graphene composites for room temperature NOx gas sensor application. Nanoscale. 6, 7369–7378. https://doi.org/10.1039/c4nr00196f
163. Yao, H., Ma, J., Mu, Y., Chen, Y., Su, S., Lv, P., Zhang, X., Ding, D., Fu, W., Yang, H., 2015. Hierarchical TiO2 nanoflowers/nanosheets array film: Synthesis, growth mechanism and enhanced photoelectrochemical properties. RSC Adv. 5, 6429–6436. https://doi.org/10.1039/c4ra12245c
164. Yuan, J., Li, W., Gomez, S., Suib, S.L., 2005. Shape-Controlled Synthesis of Manganese Oxide Octahedral Molecular Sieve Three-Dimensional Nanostructures. J. Am. Che. 127, 14184–14185. https://doi.org/ 10.1021/ja053463j
165. Zeng, H., Liu, P., Cai, W., Cao, X., Yang, S., 2007. Aging-induced self-assembly of Zn/ZnO treelike nanostructures from nanoparticles and enhanced visible emission. Cryst. Growth Des. 7, 1092–1097. https://doi.org/10.1021/cg0607147
166. Zhang, B., Lu, L., Hu, Q., Huang, F., Lin, Z., 2014. ZnO nanoflower-based photoelectrochemical DNAzyme sensor for the detection of Pb2+. Biosens. Bioelectron. 56, 243–249. https://doi.org/10.1016/j.bios.2014.01.026
167. Zhang, H., Cao, G., Wang, Z., Yang, Y., Shi, Z., Gu, Z., 2008. Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage. Nano Lett. 8, 2664–2668. https://doi.org/10.1021/nl800925j
168. Zhang, H., Duan, G., Li, Y., Xu, X., Dai, Z., Cai, W., 2012. Leaf-like tungsten oxide nanoplatelets induced by laser ablation in liquid and subsequent aging. Cryst. Growth Des. 12, 2646–2652. https://doi.org/10.1021/cg300226r
169. Zhang, J., Sun, L.D., Jiang, X.C., Liao, C.S., Yan, C.H., 2004. Shape evolution of one-dimensional single-crystalline ZnO nanostructures in a microemulsion system. Cryst. Growth Des. 4, 309–313. https://doi.org/10.1021/cg034142r
170. Zhang, L.C., Liu, Z.H., Lv, H., Tang, X., Ooi, K., 2007. Shape-controllable synthesis and electrochemical properties of nanostructured manganese oxides. J. Phys. Chem. C. 111, 8418–8423. https://doi.org/10.1021/jp070982v
171. Zhang, X., Sui, C., Gong, J., Su, Z., Qu, L., 2007. Preparation and formation mechanism of different α-Fe2O3 morphologies from snowflake to paired microplates, dumbbell, and spindle microstructures. J. Phys. Chem. C. 111, 9049–9054. https://doi.org/10.1021/jp0688310
172. Zhang, Y., Zhong, X., Zhu, J., Song, X., 2007. Alcoholysis route to monodisperse CoO nanotetrapods with tunable size. Nanotechnology. 18, 1-6. https://doi.org/10.1088/0957-4484/18/19/195605
173. Zhang, Y., Zhu, J., Song, X., Zhong, X., 2008. Controlling the synthesis of CoO nanocrystals with various morphologies. J. Phys. Chem. C. 112, 5322–5327. https://doi.org/10.1021/jp709943x
174. Zhao, C., E., Y., Fan, L., 2012. Enhanced electrochemical evolution of oxygen by using nanoflowers made from a gold and iridium oxide composite. Microchim. Acta. 178, 107–114. https://doi.org/10.1007/s00604-012-0818-1
175. Zhao, H.Y., Wang, Y.F., Zeng, J.H., 2008. Hydrothermal synthesis of uniform cuprous oxide microcrystals with controlled morphology. Cryst. Growth Des. 8, 3731–3734. https://doi.org/10.1021/cg8003678
176. Zheng, D., Yin, Z., Zhang, W., Tan, X., Sun, S., 2006. Novel branched γ-MnOOH and β-MnO2 multiped nanostructures. Cryst. Growth Des. 6, 1733–1735. https://doi.org/10.1021/cg060223m
177. Zhou, M., Zhang, X., Wei, J., Zhao, S., Wang, L., Feng, B., 2011. Morphology-controlled synthesis and novel microwave absorption properties of hollow urchinlike α-MnO2 nanostructures. J. Phys. Chem. C. 115, 1398–1402. https://doi.org/10.1021/jp106652x
178. Zhou, W.Y., Zhang, X.X., Zhao, D., Gao, M., Xie, S.S., 2013. ZnO nanorods: Morphology control, optical properties, and nanodevice applications. Sci. China Physics, Mech. Astron. 56, 2243–2265. https://doi.org/10.1007/s11433-013-5350-8
179. Zhou, Z., Zhu, X., Wu, D., Chen, Q., Huang, D., Sun, C., Xin, J., Ni, K., Gao, J., 2015. Anisotropic shaped iron oxide nanostructures: Controlled synthesis and proton relaxation shortening effects. Chem. Mater. 27, 3505–3515. https://doi.org/10.1021/acs.chemmater.5b00944
180. Zhu, P., Zhang, J., Wu, Z., Zhang, Z., 2008. Microwave-assisted synthesis of various ZnO hierarchical nanostructures: Effects of heating parameters of microwave oven. Cryst. Growth Des. 8, 3148–3153. https://doi.org/10.1021/cg0704504
181. Zhu, Z., Li, X., Zeng, Y., Sun, W., Zhu, W., Huang, X., 2011. Application of cobalt oxide nanoflower for direct electrochemistry and electrocatalysis of hemoglobin with ionic liquid as enhancer. J. Phys. Chem. C. 115, 12547–12553. https://doi.org/10.1021/jp202500n
182. Zitoun, D., Pinna, N., Frolet, N., Belin, C., 2005. Single crystal manganese oxide multipods by oriented attachment. J. Am. Chem. Soc. 127, 15034–15035. https://doi.org/10.1021/ja0555926
183. Zou, G., Xiong, K., Jiang, C., Li, H., Li, T., Du, J., Qian, Y., 2005. Fe3O4 Nanocrystrals with Novel Fractal. J.Phys. Chem. B. 109, 18356-18360. https://doi.org/10.1088/1674-1056/22/4/047505
184. Zou, J., Song, W., Xie, W., Huang, B., Yang, H., Luo, Z., 2018. A simple way to synthesize large-scale Cu2O/Ag nanoflowers for ultrasensitive surface-enhanced Raman scattering detection. Nanotechnology. 29, 1-10. https://doi.org/10.1088/1361-6528/aaa72b | |