dc.contributorZapata Medina, David Guillermo
dc.contributorMonsalve Mejía, Gaspar
dc.creatorGaleano Parra, Diego Iván
dc.date.accessioned2021-10-12T21:45:23Z
dc.date.accessioned2022-09-21T16:17:53Z
dc.date.available2021-10-12T21:45:23Z
dc.date.available2022-09-21T16:17:53Z
dc.date.created2021-10-12T21:45:23Z
dc.date.issued2020
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/80525
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3391096
dc.description.abstractResidual soils are preferentially formed at inter-tropical latitudes where climate conditions favor in situ weathering actions. The tropics constitute approximately 40% of the Earth's surface area and are home to approximately 40% of the world’s population, which is expected to reach 50% by the late 2030s in these zones. Consequently, numerous urban centers and associated infrastructure has been built, or is projected, over residual soil masses. Conversely, these soils are less often studied and published literature dealing with their fundamental behavior is scarce. This research work presents a field and laboratory testing program designed to investigate the: i) performance of the Multichannel Analysis of Surface Waves, MASW, and Cross-correlation, CC, techniques for the determination of dynamic parameters in residual soil masses; ii) in situ state of stresses of the residual soil masses and the ability to reproduce those in a laboratory environment; iii) yield stresses and 1D stress-strain characteristics; and iv) yielding and stiffness degradation characteristics of residual soils at different strain levels. Four residual soil masses were selected to conduct seismic tests with different array configurations and geophone-source offset separations. The frequency-domain cross-correlation technique was also implemented to extract Rayleigh wave phase velocities from passive data. At each sampling site, results of Electrical Resistivity Tomography, downhole and/or seismic dilatometer tests were used to evaluate the plausibility of the Vs profiles obtained using surface wave methods. Additionally, an advance laboratory testing program consisting of Constant Rate of Strain consolidation, pseudo Ko-triaxial, and monotonic and dynamic cyclic triaxial tests equipped with Bender Elements was conducted. Drained and undrained stress probe tests were conducted on specimens reconsolidated to their in situ stress state employing the Ko-recompression technique. Despite the large horizontal and vertical soil heterogeneity, the surface wave techniques succeeded in detecting major interfaces and in providing a reasonable first of soil stiffness. Based on in situ measurements of Ko-values, the Ko recompression technique was found to be adequate for reproducing the in situ stress state of the tested residual soils. A linear variation between small strain shear modulus, Go, and mean normal effective stress, p', was observed. The experimental results indicate that the tested soils exhibit incrementally nonlinear responses, which were adequately described in terms of the successive yield surfaces Y1, Y2, and Y3, proposed by Jardine (1992, 1995). The influence of the pre-shear stress paths on stiffness degradation characteristics and yielding behavior was also investigated. Additionally, for a soil of sedimentary origin and a loose sand treated with Microbially Induced Carbonate Precipitation (MICP), the compressibility characteristics were evaluated. The experimental results show a significant reduction in compressibility of the biotreated material with respect to untreated control samples. Very low Ko-values were obtained for stress levels before the initial cementation bond breakage. Empirical relations for the elastic shear modulus, Go, were developed as a function of the mean normal effective stress, p', and void ratio for clean and MICP-treated sands.
dc.description.abstractLos suelos residuales se forman preferentemente en latitudes intertropicales donde las condiciones climáticas favorecen las acciones de meteorización in situ. Los trópicos constituyen aproximadamente el 40% de la superficie terrestre y albergan aproximadamente al 40% de la población mundial, que se espera alcance el 50% para fines de la década de 2030 en estas zonas. En consecuencia, se han construido, o se proyectan, numerosos centros urbanos e infraestructura asociada sobre depósitos de suelo residual. Por el contrario, estos suelos se estudian con menos frecuencia y la literatura publicada que trata sobre su comportamiento fundamental es escasa. Este trabajo de investigación presenta un programa de pruebas de campo y laboratorio diseñado para investigar: i) el desempeño de las técnicas de Análisis Multicanal de Ondas Superficiales, MASW, y Correlación cruzada, CC, para la determinación de parámetros dinámicos en depósitos de suelo residual; ii) el estado de esfuerzos in situ de depósitos de suelo residual y la capacidad de reproducirlos en un entorno de laboratorio; iii) los esfuerzos de cedencia y las características 1D esfuerzo – deformación; y iv) las características de cedencia y degradación de rigidez en suelos residuales a diferentes niveles de deformación. Cuatro depósitos de suelo residual fueron seleccionados para realizar pruebas sísmicas con diferentes configuraciones de arreglo y separaciones de geófonos y fuente. La técnica de correlación cruzada en el dominio de la frecuencia también fue implementada para extraer velocidades de fase de la onda Rayleigh a partir de datos pasivos. En cada sitio de ensayo, se utilizaron los resultados de Tomografía de Resistividad Eléctrica, pruebas de fondo de pozo y/o dilatómetro sísmico para evaluar la plausibilidad de los perfiles de Vs obtenidos usando métodos de ondas superficiales. Adicionalmente, se llevó a cabo un programa de ensayos avanzados de laboratorio que consistió en pruebas de consolidación a tasa de deformación constante, pseudo Ko-triaxial, y triaxiales monotónicos y dinámicos cíclicos equipados con Bender Elements. Trayectorias de esfuerzo drenadas y no drenadas fueron llevadas a cabo sobre muestras reconsolidadas a su estado de esfuerzos in situ empleando la técnica de recompresión Ko. A pesar de la gran heterogeneidad horizontal y vertical, las técnicas de ondas superficiales lograron detectar las principales interfaces y proporcionar una caracterización razonable de primer orden de la rigidez del suelo. Con base en las mediciones in situ de los valores de Ko, se encontró que la técnica de recompresión Ko es adecuada para reproducir el estado de esfuerzos in situ de los suelos residuales ensayados. Se observó una variación lineal entre el módulo de corte a pequeñas deformaciones, Go, y el esfuerzo normal efectivo medio, p'. Los resultados experimentales indican que los suelos ensayados exhiben respuestas incrementalmente no lineales, las cuales fueron adecuadamente descritas en términos de las superficies de rendimiento sucesivas Y1, Y2 y Y3, propuestas por Jardine (1992, 1995). También se investigó la influencia de las trayectorias de esfuerzo previas al corte en las características de degradación de la rigidez y el comportamiento de fluencia. Adicionalmente, para un suelo de origen sedimentario y una arena suelta tratada con Precipitación de Carbonatos Inducida por Microbios (MICP), se evaluaron las características de compresibilidad. Los resultados experimentales muestran una reducción significativa en la compresibilidad del material biotratado con respecto a las muestras de control sin tratar. Se obtuvieron valores muy bajos de Ko para niveles de esfuerzo antes de la ruptura inicial del enlace de la cementación. Se desarrollaron relaciones empíricas para el módulo de corte elástico, Go, como una función del esfuerzo normal efectivo medio, p', y la relación de vacíos para arenas limpias y tratadas con MICP. (Texto tomado de la fuente)
dc.languageeng
dc.publisherUniversidad Nacional de Colombia
dc.publisherMedellín - Minas - Doctorado en Ingeniería - Ingeniería Civil
dc.publisherDepartamento de Ingeniería Civil
dc.publisherFacultad de Minas
dc.publisherMedellín, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Medellín
dc.relationAki, K. (1957). "Space and time spectra of stationary stochastic waves, with special reference to microtremors". Bull. Earthq. Res. Inst. 35, 415–457.
dc.relationAllman, M. A., and Atkinson, J. H. (1992). “Mechanical properties of reconstituted Bothkennar clay”. Geotechnique, 42, 2, 298-302
dc.relationAl-Shamrani, M. A. (1998). “Application of the Cα/Cc concept to secondary compression of sabkha soils.” Can. Geotech. J., 35, 1, 15–26. https://doi.org/10.1139/t97-053.
dc.relationAl-Tabbaa, A. and D. M. Muir Wood (1989). “An experimentally based bubble model for clay”. Numerical methods in Geomechanics NUMOG III, Elsevier Applied Science, 91-99.
dc.relationAmoroso, S., P. Monaco, D. Marchetti, and G. Totani (2014). "Vs profiles provided by SDMT for soil characterization in numerical seismic response analyses". In: 20th IMEKO TC4 International Symposium and 18th International Workshop, Benevento, Italy, September 15-17.
dc.relationAndresen, A., and Kolstad, P. (1979). “The NGI 54-mm sampler for undisturbed sampling of clays and representative sampling of coarser materials”. Proc. of the Int. Conf. on Soil Sampling, Singapore, 1-9.
dc.relationAristizábal, E., and Yokota, S. (2008). "Evolución geomorfológica del Valle de Aburrá y sus implicaciones en la ocurrencia de movimentos en masa". Boletín de Ciencias de la Tierra, 34, 5-18.
dc.relationAristizabal, E., Roser, B., and Yokota, S. (2005). “Tropical chemical weathering of hillslope deposits and bedrock source in the Aburrá Valley, northern Colombian Andes.” Eng. Geol., 81, 4, 389– 406.
dc.relationAster, R.C., Borchers, B., and Thurber, C. H. (2019). "Parameter Estimation and Inverse Problems". Third Edition, Elsevier, Amsterdam, Netherlands.
dc.relationASTM- D2487. (2011). “Standard practice for classification of soils for engineering purposes (Unified Soil Classification System).” ASTM International, American Society for Testing and Materials, West Conshohocken, PA.
dc.relationASTM- D7400. (2019). "Standard Test Methods for Downhole Seismic Testing. ASTM International". American Society for Testing and Materials, West Conshohocken, PA.
dc.relationASTM- D2435. (2011). "Standard Test Methods for One-Dimensional Consolidation Properties of Soils Using Incremental Loading". ASTM International, American Society for Testing and Materials, West Conshohocken, PA.
dc.relationAtkinson, J. H. (2000). “Non-linear soil stiffness in routine design.” Geotechnique 50, 5, 487–508.
dc.relationAtkinson, J. H., Richardson, D., and Stallebrass, S. E. (1990). “Effect of recent stress history on the stiffness of overconsolidated soil.” Geotechnique, 40, 4, 531–540.
dc.relationBecker, D. E., Crooks, J. H. A., Been, K., and Jefferies, M.G. (1987). “Work as a criterion for determining in situ and yield stresses in clays.” Can. Geotech. J., 24, 4, 549–564. https://doi.org/10.1139/t87-070.
dc.relationBensen, G., Ritzwoller, M., Barmin, M., Levshin, A., Lin, F., Moschetti, M., Shapiro, N., Yang, Y. (2007). "Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements". Geophys. J. Int. 169, 3, 1239–1260.
dc.relationBiot, M. A. (1956a). "Theory of propagation of elastic waves in a fluid saturated porous solid. I. Low-frequency range". J Acoust Soc Am, 28, 168–178.
dc.relationBiot, M. A. (1956b). "Theory of propagation of elastic waves in a fluid saturated porous solid. II. Higher frequency range". J Acoust Soc Am, 28, 179–191.
dc.relationBjerrum, L. (1973). “Problems of soil mechanics and construction on soft clay:” State of art report. In Proceedings, 8th International Conference Soil Mechanics and Foundation Engineering, Moscow, Russia. Balkema,111–159.
dc.relationBlight, G. E., Leong, E. C., Fourie, A. B., Irfan, T Y., Queiroz de Carvalho, J. B., Simmons, J. V., Wesley, L. D., Garga, V. K., Barksdale, R. D., Brenner, R. P. (2012). Mechanics of Residual Soils. 2nd ed. London: Taylor and Francis Ltd.
dc.relationBoaga, J., Vaccari, F., Panza, G.F (2010). "Shear wave structural models of venice plain, Italy, from time cross correlation of seismic noise". Eng. Geol. 116 , 3–4, 189–195.
dc.relationBotero, G. (1963). "Contribución al conocimiento de la geología de la zona central de Antioquia". Anales Facultad de Minas Medellín, 57, 7-101.
dc.relationBrosse, A. M., Jardine, R. J., and Nishimura, S. (2016). “The undrained shear strength anisotropy of four Jurassic to Eocene stiff clays”. Geotechnique, 67, 3, 242–259.
dc.relationBurland, J. B., (1989). “9th Laurits-Bjerrum-Memorial-Lecture— Small Is Beautiful—The Stiffness of Soils at Small Strains,” Can. Geotech. J., Vol. 26, 4, 499–516.
dc.relationCallisto, L., and Calabresi, G. (1998). “Mechanical Behaviour of a Natural Soft Clay,” Geotechnique, Vol. 48, 4, 495–513.
dc.relationCallisto, L., and Rampello, S. (2002). “Shear strength and small-strain stiffness of a natural clay under general stress conditions”. Géotechnique, 52, 8, 547–560.
dc.relationChávez-García, F. J., Rodríguez, M., and Stephenson, W. R. (2005). "An alternative approach to the SPAC analysis of microtremors: Exploiting stationarity of noise". Bull. Seismol. Soc. Am. 95, 1, 277–293.
dc.relationChiu, C. F., and Ng, C. W. W. (2014). “Relationships between chemical weathering indices and physical and mechanical properties of decomposed granite.” Eng. Geol., 179, 76–89. https://doi.org/10.1016/ j.enggeo.2014.06.021
dc.relationCho, W., Holman, T. P., Jung, Y. H., and Finno, R. J. (2007). “Effects of swelling during saturation in triaxial tests in clays.” Geotech. Test. J., 30, 5, 378-386.
dc.relationChristensen, N. I. (1996). "Poisson’s ratio and crustal seismology". J. Geophys. Res., 101, B2, 3139-3156.
dc.relationClayton, C. R. I. (2011) “Stiffness at Small Strain: Research and Practice,” Geotechnique, 61, 1, 5–37.
dc.relationClayton, C. R. I., and Khatrush, S. A. (1986). “A new device for measuring local axial strains on specimens”. Geotechnique 36, 4, 593-597.
dc.relationClayton, C. R. I., and Heymann, G. (2001). “Stiffness of Geomaterials at Very Small Strains,” Geotechnique, 51, 3, 245–255.
dc.relationClayton, C. R. I., Khatrush, S. A., Bica, A. V. D., and Siddique, A. (1989). “The use of Hall effect semiconductors in geotechnical instrumentation.” Geotech. Test. J., 12, 1, 69–76.
dc.relationCorrea, A. M., Martens, U., Restrepo, J. J., Ordóñez-Carmona, O., and Pimentel M. M. (2000). "Subdivisión de las metamorfitas básicas de los alrededores de Medellín – Cordillera Central de Colombia". Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 39, 112, 325-344.
dc.relationCruz, N., Figueiredo, S., and Viana da Fonseca, A. (2004). “Deriving geotechnical parameters of residual soils from granite by interpreting DMT+CPTU tests.” In 2nd Int. Conf. on Site Characterization, edited by Viana da Fonseca and Mayne, 1799-1803. Rotterdam: Millpress.
dc.relationCuccovillo, T., and Coop, M.R. (1997). "The measurement of local axial strains in triaxial test using LVDTs". Géotechnique 47, 1, 167–171.
dc.relationDal Moro, G., Pipan, M., and Gabrielli, P. (2007). "Rayleigh wave dispersion curve inversion via genetic algorithms and Marginal Posterior Probability Density estimation". Journal of Applied Geophysics, 61, 39–55.
dc.relationDal Moro, G., Pipan, M., Forte, E., and Finetti I. (2003). "Determination of Rayleigh wave dispersion curves for near surface applications in unconsolidated sediments". SEG International Exposition and Seventy-Third Annual Meeting, SEG, Expanded Abstracts, 1247-1250.
dc.relationDearman, R. (1991). “Engineering Geological Mapping.” Oxford: Butterworth-Heinemann Ltda.
dc.relationDeGroot, D. J., Landon, M.M., and Ryan, R. M. (2007). “Objective evaluation of preconsolidation stress for soft clays from constant rate of strain pore pressure data.” In Proc., of Sessions of Geo-Denver, Advances in Measurement and Modeling of Soil Behavior (GSP173), 1–10.
dc.relationEikmeier, C. N., Prado, R. L., and Taioli, F. (2016). "Combined use of active and passive surface waves for shallow subsurface investigation in noisy urban area of São Paulo City, Brazil". Revista Brasileira de Geofísica, 34, 1, 13–23.
dc.relationEkström, G. (2014). "Love and rayleigh phase-velocity maps, 5–40 s, of the western and central USA from USArray data". Earth Planet. Sci. Lett. 402, 42–49.
dc.relationEkström, G., Abers, G. A., and Webb S. C. (2009). "Determination of surface- wave phase velocities across US Array from noise and Aki’s spectral formulation". Geophys. Res. Lett. 36, 8, 5-9.
dc.relationElhakim, A. (2005). “Evaluation of shallow foundation displacements using soil small-strain stiffness". Ph.D. Thesis, Georgia Institute of Technology.
dc.relationFeininger, T., and Botero G. (1982). "The Antioquian Batholith, Colombia". Publicación Geológica Especial INGEOMINAS, 12, 1-50.
dc.relationFerreira, C., Viana Da Fonseca, A., and Nash, D. (2011). “Shear wave velocities for sample quality assessment on a residual soil.” Soils and Foundations, 51, 4, 683–692. https://doi.org/10.3208/ sandf.51.683.
dc.relationFinno, R. J. and Kim, T. (2012) “Effects of Stress Path Rotation Angle on Small Strain Responses.” J. Geotech. Geoenv. Eng., 138, 4, 526–534.
dc.relationFinno, R. J., and Tu, X. (2006). “Selected topics in numerical simulation of supported excavations.” In Numerical Modeling of Construction Processes in Geotechnical Engineering for Urban Environment, keynote lecture at the International conference of Construction Processes in Geotechnical Engineering for Urban Environmem, London: Taylor& Francis.
dc.relationFinno, R., and Cho, J. W. (2011). “Recent stress-history effects on compressible Chicago glacial clays.” J. Geotech. Geoenviron. Eng. 137, 3, 197–207.
dc.relationFonseca, A. V. D., Fernandes, M. M., and Cardoso, A. S. (1997). “Interpretation of a footing load test on a saprolitic soil from granite.” Geotechnique. 47, 3, 633–651.
dc.relationFookes, P. (2004). "Suelos residuales tropicales". Hombre Nuevo Editores. Translated by Fabián Hoyos Patiño.
dc.relationFoti, S. (2002). "Multistation Methods for Geotechnical Characterization using Surface Waves". Ph.D. Thesis. Politecnico di Torino.
dc.relationFoti, S., Lai, C., Rix, G., and Strobbia C. (2014). "Surface Wave Methods for Near-Surface Site Characterization". CRC Press: Taylor and Francis Group.
dc.relationFranzius, J. N., Potts, D. M., and Burland, J. B. (2005). “The influence of soil anisotropy and Ko on ground surface movements resulting from tunnel excavation". Geotechnique 55, 3, 189–199
dc.relationGarcía, C. (2008). "Estado del conocimiento de los depósitos de vertiente del Valle de Aburrá". Boletín de Ciencias de la Tierra, 19, 99-112.
dc.relationGasparre, A. (2005). “Advanced Laboratory Characterisation of London Clay,” Ph.D. thesis, Imperial College, London, UK.
dc.relationGasparre, A., Nishimura, S., Minh, N. A., Coop, M. R., and Jardine, R. J. (2007). “The Stiffness of Natural London Clay,” Geotechnique, 5 1, 33–47.
dc.relationGeorgiannou, V. N. (1988). “The behaviour of clayey sands under monotonic and cyclic loading.” PhD. Thesis, Imperial College of Science, Technology and Medicine. University of London.
dc.relationGonzález, H. (2002). "Catálogo de las unidades litoestratigráficas de Colombia. Neis de La Iguaná". INGEOMINAS open report, Bogotá, Colombia.
dc.relationGraham, J., Noonan, M. L., and Lew, K. V. (1983). “Yield States and Stress–Strain Relationships in a Natural Plastic Clay,” Can. Geotech. J., 20, 3, 502–516.
dc.relationGrozic, J. L. H., Lunne, T., and Pande, S. (2003). “An oedometer test study on the preconsolidation stress of glaciomarine clays.” Can. Geotech. J., 40, 5, 857–872. https://doi.org/10.1139/t03-043.
dc.relationGraham, J., and Houlsby, G. T. (1983). “Anisotropic elasticity of a natural clay.” Geotechnique, 33, 2, 165–180.
dc.relationGSM, Grupo de Sismología de Medellín (2006). "Microzonificación sísmica detallada de los municipios de Barbosa, Grardota, Copacabana, Sabaneta,La Estrella, Caldas y Envigado. Technical Report". Área Metropolitana del Valle de Aburrá, Medellín, Colombia.
dc.relationGu, X., Yang, J., and Huang, M. "2013". “DEM simulations of the small strain stiffness of granular soils: Effect of stress ratio.” Granul Matter, 15, 3, 287–298. https://doi.org/10.1007/s10035-013-0407-y
dc.relationHannemann, K., Papazachos, C., Ohrnberger, M., Savvaidis, A., Anthymidis, M., Lontsi, A.M (2014). "Three-dimensional shallow structure from high-frequency ambient noise tomography: new results for the mygdonia basin-euroseistest area, northern Greece". J. Geophys, Res. Solid Earth, 119, 6, 4979–4999.
dc.relationHardin, B. O., and Richard, F. E. J. (1963). “Elastic wave velocities in granular soils.” J. Soil Mech. and Found. Div., 89, 1, 33–65.
dc.relationHoyos, L. R., and Macari, E. J. (1999). "Influence of in-situ factors on dynamic response of Piedmont residual soils". Journal of Geotechnical and Geoenvironmental Engineering, 125, 4, 271-279.
dc.relationHuat, B. K., See, G., and Ali. F. (2009). "Tropical Residual Soils Engineering". A.A. Balkema Publishers: Taylor and Francis Group.
dc.relationJaky, J. (1944). “A nyugalmi nyomas tenyezoje” [The coefficient of earth pressure at rest]. [In Hungarian]. Journal of the Society of Hungarian Engineers and Architects, 355–358.
dc.relationJamiolkowski, H., Ladd, C. C., Germaine, J. T., and Lancellotta, R. H. (1985). “New developments in field and laboratory testing of soils.” In Proceedings, 11th International Conference on Soil Mechanics and Foundation Engineering, San Francisco, Calif. Balkema, 57–153.
dc.relationJardine, R. J., Symes, M. J., and Burland, J. B. (1984). “The measurement of soil stiffness in triaxial apparatus.” Géotechnique, 34, 3, 323–40.
dc.relationJardine, R. J. (1992). “Some observations on the kinematic nature of soil stiffness.” Soils Found., 32, 2, 111–124.
dc.relationJardine, R. J. (1995). “One perspective on the pre-failure deformation characteristics of some geomaterials.” Proc., Int. Symp. on Pre-failure Deformation Characteristics of Geomaterials, Vol. 2, Balkema, Rotterdam, Netherlands, 885–886.
dc.relationJohnson, K. (1985). "Contact Mechanics". London, UK: Cambridge University Press
dc.relationKalinski, M. E., and Stokoe, K. H. I. (2003). "In situ estimate of shear wave velocity using borehole spectral analysis of surface waves tool". J. Geotech. Geoenviron. Eng. 129, 6, 529–535.
dc.relationKim, T., Zapata-Medina, D. G., and Vega-Posada, C. A. (2015). “Analysis of bender elements signals during triaxial testing.” Rev. Fac. Ing. Univ. Antioquia, 76, 107-113.
dc.relationKramer, S. (1996). "Geotechnical Earthquake Engineering". Upper Saddle River: N.J: Prentice Hall.
dc.relationKuo, C. H., Cheng, D. S., Hsieh, H. H., Chang, T. M., Chiang, H. J., Lin, C. M. and Wen, K. L. (2009). "Comparison of three different methods in investigating shallow shear-wave velocity structures in Ilan, Taiwan". Soil Dynamics and Earthquake Engineering, 29, 1, 133–143.
dc.relationKuwano, R. (1999). “The stiffness and yielding anisotropy of sand”. PhD thesis, Imperial College, University of London.
dc.relationLadd, C. C., and DeGroot, D. J. (2003). “Recommended practice for soft ground site characterization.” In Proc., of the 12th Panamerican Conference on Soil Mechanics and Geotechnical Engineering, 3–57. MIT, Cambridge: Massachusetts Institute of Technology.
dc.relationLadd, C. C., and Foott, R. (1974). “New design procedure for stability of soft clays.” J. Geotech. Eng. Div., 100, 7, 763–786.
dc.relationLadd, C. C., Lambe, T. W. (1964). “Strength of “Undisturbed” Clay Determined from Undrained Tests. American Society for Testing and Materials (ASTM), Philadelphia, PA, United States.
dc.relationLeong, E. C., Rahardjo, H., and Cheong, H. K. (2003). "Stiffness-strain relationship of Singapore residual soils". In: Proc. Pacific Conference on Earthquake Engineering, New Zealand Society for Earthquake Engineering, Christchurch, paper 160.
dc.relationLeroueil, S., and Vaughan, P. R. (1990). “The general and congruent effects of structure in natural clays and weak rocks.” Geotechnique, 40, 3, 467–488.
dc.relationLim, J. X., Chong, S. Y., Tanaka, Y., and Lee, M L. (2019). “CI and CKo Triaxial Tests for Tropical Residual Soil in Malaysia.” In 1st Malaysian Geotechnical Society (MGS) and Geotechnical Society of Singapore (GeoSS) Conference 2019.
dc.relationLings, M. L., Pennington, D. S., and Nash, D. F. T. (2000). “Anisotropic stiffness parameters and their measurement in a stiff natural clay.” Géotechnique, 50, 2, 109–125.
dc.relationLoke, M.H. (2003). "RES2DINV: Rapid 2-D Resistivity and IP Inversion Using the Least-Squares Method". Geotomo Software: Penang, Malaysia.
dc.relationLoke, M.H., Acworth, I., Dahlin, T. (2003). "A comparison of smooth and blocky inversion methods in 2D electrical imaging surveys". Explor. Geophys. 34, 182–187.
dc.relationLoke, M.H., Barker, R.D. (1996). "Practical techniques for 3D resistivity surveys and data inversion". Geophysical Prospecting. Wiley. 44, 3, 499–523. doi:10.1111/j.1365-2478.1996.tb00162.x
dc.relationLouie, J. N. (2001). "Faster, better: Shear-wave velocity to 100 meters depth from refraction microtremor arrays". Bull Seismol Soc. Am. 91, 2, 347–364.
dc.relationLunne, T., Berre, T., Andersen, K. H., Strandvik, S., and Sjursen, M. (2006). "Effects of sample disturbance and consolidation procedures on measured shear strength of soft marine Norwegian clays". Canadian Geotechnical Journal, 43, 7, 726-750.
dc.relationMarchetti S., Monaco P., Totani G., and Marchetti D. (2008). "In Situ Tests by Seismic Dilatometer (SDMT)". In: “From Research to Practice in Geotechnical Engineering”, ASCE Geotech. Spec. Publ. n. 180 Honouring John H. Schmertmann, 292-311.
dc.relationMarsland, A., and Randolph, M. F. (1977). “Comparisons of the results from pressuremeter tests and large in situ plate tests in London clay.” Géotechnique, 27, 2, 217–243. https://doi.org/10.1680/ geot.1977.27.2.217.
dc.relationMayne, P. W., and Brown, D. A. (2003). “Site characterization of Piedmont residuum of North America.” Characterization and Engineering Properties of Natural Soils, 2, 1323-1339.
dc.relationMenke, W. (1989). "Geophysical Data Analysis: Discrete Inverse Theory". Academic Press, San Diego, California.
dc.relationMesri, G. (1973). “Coefficient of Secondary Compression.” J. Soil Mech. and Found. Division, 99, 1, 124-128.
dc.relationMesri, G., and Godlewski., P. M. (1977). “Time- and Stress-Compressibility Interrelationship.” J. Geotech. Eng., 103, 5, 417-430.
dc.relationMitchell, J. and Soga, K. (2005). "Fundamentals of Soil Behavior, 3rd ed". John Wiley and Sons, New York.
dc.relationMitchell, R. J. (1970). “On the Yielding and Mechanical Strength of Leda Clays,” Can. Geotech. J., 7, 3, 297–312.
dc.relationNazarian, S., and Stokoe, K. (1984). "In situ shear wave velocities from spectral analysis of surface waves". In: 8th Conference on Earthquake Engineering, San Francisco, CA, July 21–28; 31–38.
dc.relationNg, C. W. W., and Wang, Y. (2001). “Field and laboratory measurements of small strain stiffness of decomposed granites.” Soils Found. 41, 3, 57–71.
dc.relationNg, C. W. W., Akinniyi, D. B., and Chiu, S. F. (2019). “Comparisons of weathered lateritic, granitic and volcanic soils: Compressibility and shear strength.” Eng. Geol., 249, 235-240. https://doi.org/ 10.1016/j.enggeo.2018.12.029.
dc.relationNg, C. W. W., Fung, W. T., Cheuk, C. Y., and Zhang, L. (2004). “Influence of Stress Ratio and Stress Path on Behavior of Loose Decomposed Granite.” J. Geotech. Geoenviron. Eng., 130, 1, 36 - 44. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:1(36).1
dc.relationNg, C., Pun, W., and Pang, R. (2000). “Small strain stiffness of natural granitic saprolite in Hong Kong.” J. Geotech. Geoenviron. Eng. 126, 9, 819–833.
dc.relationOnitsuka, K., Hong, Z., Hara, Y., and Yoshitake, S. (1995). “Interpretation of oedometer test data for natural clays.” Soils and Foundations, 35, 3, 61–70. https://doi.org/10.3208/sandf.35.61.
dc.relationPark, C. B., Miller, R. D., and Xia, J. (1999). "Multichannel analysis of surface waves." Geophysics, 64, 3, 800–808.
dc.relationPoli, P., Pedersen, H., and Campillo, M. (2012). "Emergence of bodywaves fromcross-correlation of short period seismic noise". Geophys. J. Int. 188, 2, 549–558.
dc.relationPuzrin, A. M., and Burland, J. B. (1998). “Non-linear model of small-strain behaviour of soils.” Geotechnique, 48, 2, 217–233.
dc.relationRahardjo, H., Ong, B. H., and Leong, E. C. (2004). “Shear strength of a compacted residual soil from consolidated drained and constant water content triaxial tests.” Can. Geotech J., 41, 3, 421–436. https://doi.org/10.1139/t03-093.
dc.relationRao, S. M., and Revanasiddappa, K. (2002). "Collapse behavior of a residual soil". Geotechnique, 52, 4, 259 – 268. https://doi.org/10.1680/geot.2002.52.4.259
dc.relationRendón, D. A., Toro, G. E., and Hermelín, M. (2006). "Modelo cronoestratigráfico para el emplazamiento de los depósitos de vertiente en el Valle de Aburrá". Boletín de Ciencias de la Tierra, 18, 103-118.
dc.relationRichart, F. E., Hall, J. R., and Woods, R. D. (1970). "Vibrations of Soils and Foundations". Prentice- Hall, Inc.
dc.relationRix, G. J., Lai, C. G. and Foti, S. (2001). "Simultaneous measurement of surface wave dispersion and attenuation curves". Geotechnical Testing Journal, 24, 350–358.
dc.relationRix, G. J., Leipski, E. A. (1991). "Accuracy and resolution of surface wave inversion". In: Bhatia, S.K., Blaney, G.W. (Eds.). Recent Advances in Instrumentation, Data Acquisition and Testing in Soil Dynamics. American Society of Civil Engineers, 17–32.
dc.relationRocchi, I., and Coop, M. R. (2015). “The effects of weathering on the physical and mechanical properties of a granitic saprolite.” Géotechnique, 65, 6, 482–493. https://doi.org/10.1680/geot.14.P.177.
dc.relationRodríguez, G., González, H., and Zapata, G. (2008). "Complejo El Retiro, Cordillera Central, Colombia". Boletín de Ciencias de la Tierra, 22, 101-122.
dc.relationRodríguez, G., González, H., and Zapata. G. (2005). "Geología de la plancha 147 - Medellín Oriental". INGEOMINAS open report, Bogotá, Colombia.
dc.relationSánchez-Sesma, F. J., and Campillo, M. (2006). "Retrieval of the green's function from cross correlation: the canonical elastic problem". Bull. Seismol. Soc. Am. 96, 3, 1182–1191.
dc.relationSantagata, M., Germaine, J. T., and Ladd, C. C. (2005). “Factors Affecting the Initial Stiffness of Cohesive Soils,” J. Geotech. Geoenv. Eng., 131, 4, 430–441.
dc.relationSark, M., and Ansal, A. (2012). "Special Topics in Earthquake Geotechnical Engineering". Springer, Istanbul, Turkey.
dc.relationSeed, H. B., and Idriss I. M. (1969). "Influence of soil conditions on ground motions during earthquakes". ASCE J. Soil Mech. Found. Div., 95, 1, 99–138.
dc.relationSeed, H. B., and Idriss I. M. (1969). "Influence of soil conditions on ground motions during earthquakes". ASCE J. Soil Mech. Found. Div., 95, 1, 99–138.
dc.relationShapiro, N. M., and Campillo, M (2004). "Emergence of broadband rayleigh waves from correlations of the ambient seismic noise". Geophys. Res. Lett. 31, 7..
dc.relationSheriff, R. E. (1984). "Encyclopedic Dictionary of Exploration Geophysics". Society of Exploration Geophysicists, Tulsa, Oklahoma.
dc.relationShiuly, A. and Roy, N. (2018). "A generalized Vs-N correlation using various regression analysis and genetic algorithm". Acta Geodaetica et Geophysica, 53, 3, 479-502.
dc.relationSmith, P. R. (1992). “The properties of high compressibility clay with special reference to construction on soft ground,”. PhD. Thesis, Imperial College of Science, Technology and Medicine, University of London.
dc.relationSmith, P. R., Jardine, R. J., and Hight, D. W. (1992). “The Yielding of Bothkennar Clay,” Geotechnique, 42, 2, 257–274.
dc.relationStallebrass, S. E. and R. N. Taylor (1997). “The development and evaluation of a constitutive model for the prediction of ground movements in overconsolidated clay”. Geotechnique 47, 2, 235-353.
dc.relationState of the Tropics. (2014). "State of the tropics report. James Cook University, Australia". http://stateofthetropics.org/ the‐report
dc.relationStephenson, W. J., Louie, J. N., Pullammanappallil, S., Williams, R. A., and Odum. J. K. (2005). "Blind shear-wave velocity comparison of ReMi and MASW results with boreholes to 200 m in Santa Clara Valley: Implications for earthquake ground-motion assessment". Bulletin of the Seismological Society of America, 95, 6, 2506–2516.
dc.relationStrobbia, C., and Cassiani, G. (2011). "Refraction microtremors: Data analysis and diagnostics of key hypotheses". Geophysics, 76, 3, MA11–MA20.
dc.relationTavenas, F., Des Rosiers, J. P., Leroueil, S., La Rochelle, P., and Roy, M. (1979). “The Use of Strain Energy as a Yield and Creep Criterion for Lightly Overconsolidated Clays,” Geotechnique, 29, 3, 285–303.
dc.relationTeng, F., Arboleda-Monsalve, L. G. , and Finno, E. J. (2018). “Numerical Simulation of Recent Stress-Historu Effects on Excavation Responses in Soft Clays.” J. Geotech. Geoenviron. Eng., 144, 8. 06018005. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001921.
dc.relationTerzaghi, K., Peck, R. B., and Mesri, G. (1996). "Soil Mechanics in Engineering Practice". Hoboken: John Wiley and Sons Ltd.
dc.relationThitimakorn, T. (2010). "Comparison of Shear -Wave Velocity Profiles of Bangkok Subsoils from Multi-Channel Analysis of Surface Wave and Downhole Seismic Methods". J. of Appl. Sciences Research, 6, 12, 1953-1959.
dc.relationUnited Nations Department of Economic and Social Affairs. (2019). "Revision of world population prospects". New York: UN DESA.
dc.relationUpreti, K., and Leong, E. C. (2017). "Dynamic Properties of Residual Soil over a Wide Range of Strain". In: Second Pan-American Conference on Unsaturated Soils, Dallas, TX, November 12-15, 388-397.
dc.relationVaughan, P. R., and C. W. Kwan. (1984). “Weathering, structure and in situ stress in residual soils.” Géotechnique, 34, 1, 43–59. https://doi.org/10.1680/geot.1984.34.1.43.
dc.relationVaughan, P. R. (1988). “Characterising the mechanical properties of the in-situ residual soil”. Proceedings of the 2nd International Conference on Geomechanics in Tropical Soils, Singapore, Balkema, Rotterdam, 2, 469-87.
dc.relationViana da Fonseca, A. (1997). “Interpretation of a footing load test on a saprolitic soil from granite.” Géotechnique, 47, 3, 633–651. https://doi.org/10.1680/geot.1997.47.3.633.
dc.relationViana da Fonseca, A. (2003). “Characterizing and deriving engineering properties of a saprolitic soil from granite, in Porto.” In Proc. Characterization and Engineering Properties of Natural Soils, edited by Tan et al., 1341–1378.
dc.relationViana da Fonseca, A., Carvalho, J., Ferreira, C., Santos, J. A., Almeida, F., Pereira, E., Feliciano, J., Grade, J., and Oliveira. A. (2006). "Characterization of a profile of residual soil from granite combining geological, geophysical and mechanical testing techniques". Geotechnical and Geological Engineering, 24, 1307-1348.
dc.relationVIECO Ingeniería de Suelos ltda (2015). "Estudio de Suelos y Cimentaciones, 15’063 Decameron Módulos Hoteleros". Technical Report, Medellín, Colombia.
dc.relationWang, C. E., and Borden, R. H. (1996). “Deformation Characteristics of Piedmont Residual Soils.” J. Geotech. Eng., 122, 10, 822–830. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:10(822).
dc.relationWang, L., Luo, Y., and Xu, Y., (2012). "Numerical investigation of Rayleigh-wave propagation on topography surface". J. Appl. Geophys. 86, 88–97.
dc.relationWang, L., Xu, Y., Xia, J., and Luo, Y. (2015). "Effect of near-surface topography on high-frequency Rayleigh-wave propagation". J. Appl. Geophys. 116, 93–103.
dc.relationWang, Y., and Ng, C. W. W. (2005). “Effects of stress paths on the small strain stiffness of completely decomposed granite.” Can. Geotech. J., 42, 4, 1200–1211. https://doi.org/10.1139/t05-009.
dc.relationWesley, L. D. (2009). "Fundamentals of soil mechanics for sedimentary and residual soils". John Wiley & Sons, Inc.Hoboken, NewJersey.
dc.relationWesley, L. D. (2010). "Geotechnical Engineering in Residual Soils". Hoboken: John Wiley and Sons Ltd.
dc.relationWesley, L.D. (1990). “Influence of structure and composition on residual soils”. Journal of Geotechnical Engineering, 116, 4, 589–603
dc.relationWissa, A. E. Z., Christian, J. T., Davis, E. H., and Heiberg, S. (1971). “Consolidation at constant rate of strain.” J. Soil Mech. and Found. Division, 97, 10, 1393–1413.
dc.relationXia, J., Miller, R. D., and Park, C. B. (1999). "Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves". Geophysics, 64, 3, 691-700.
dc.relationXia, J., Miller, R. D., Park, C. B., Hunter, J. A., Harris, J. B., and Ivanov, J. (2002). "Comparing shear-wave velocity profiles inverted from multichannel surface wave with borehole measurements". Soil Dynamics and Earthquake Engineering, 22, 3, 181–190.
dc.relationXia, J., Miller, R. D., Park, C. B., Hunter, J.A., and Harris, J. B. (2000) "Comparing shear-wave velocity profiles from MASW with borehole measurements in unconsolidated sediments, Fraser River Delta, B. C. Canada". Journal of Environmental and Engineering Geophysics, 5, 3, 1-13.
dc.relationYan, W. M., and Li, X. S. (2012). “Mechanical response of a medium-fine-grained decomposed granite in Hong Kong.” Eng. Geol., 129-130, 1–8. https://doi.org/10.1016/j.enggeo.2011.12.013.
dc.relationZapata-Medina, D. G. (2012). “Evaluation of dynamic soil parameter changes due to construction-induced stresses.” Ph.D. Thesis, Northwestern Univ., Evanston, IL.
dc.relationZapata-Medina, D. G. and Finno, R. J. (2013). “Defining Y2 Yielding From Cyclic Triaxial Tests,” Geotechnical Testing Journal, 36, 5, 660–669.
dc.rightsReconocimiento 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleEstimation of dynamic parameters in residual soils derived from crystalline rocks based on geophysical multichannel analysis of surface waves tests
dc.typeTesis


Este ítem pertenece a la siguiente institución