dc.contributorRestrepo Diaz, Hermann
dc.contributorGabriel, Garcés Varón
dc.creatorPantoja Benavides, Alvaro Daniel
dc.date.accessioned2022-08-23T14:48:37Z
dc.date.accessioned2022-09-21T16:17:36Z
dc.date.available2022-08-23T14:48:37Z
dc.date.available2022-09-21T16:17:36Z
dc.date.created2022-08-23T14:48:37Z
dc.date.issued2022-08-21
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/82016
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3391038
dc.description.abstractEl incremento en las temperaturas globales que se ha venido presentando a lo largo de las últimas décadas está afectando los diferentes procesos fisiológicos y bioquímicos de las plantas. Muchos de los cultivos han disminuido sus rendimientos, entre ellos el arroz, el cual ha presentado disminuciones en su rendimiento entre un 6% a un 7%. Se ha observado que la aplicación exógena de diferentes reguladores de crecimiento (fitohormonas), particularmente el uso de auxinas (AUX), giberelinas (GA), citoquininas (CK), y brasinoesteroides (BR) han mostrado potencial para mitigar los efectos de diferentes tipos de estreses abióticos y bióticos en diferentes especies cultivadas, pero en el caso arroz bajo estrés térmico combinado no se ha estudiado al respecto. El objetivo de este trabajo fue evaluar el efecto de la aplicación exógena de diferentes reguladores de crecimiento sobre plantas de arroz expuestas a una condición de alta temperatura diurna y nocturna. En este contexto, se desarrollaron cuatro experimentos, el primero se llevó a cabo en condiciones de invernadero y cámaras de crecimiento el cual tuvo como finalidad conocer cuáles de los reguladores de crecimiento evaluados lograba mitigar los efectos negativos del estrés térmico combinado en diferentes variables fisiológicas y bioquímicas; el segundo y tercer experimento evaluaron que número de aplicaciones de los dos reguladores de crecimiento con la mejor respuesta en el experimento anterior se debía utilizar para mitigar los efectos negativos del estrés térmico combinado en condiciones de invernadero, casa de mallas y cámaras de crecimiento; y el cuarto utilizó la información de los experimentos anteriores y se evaluó en que etapa fenológica (floración o llenado de grano) dichas aplicaciones mitigaban los efectos del estrés térmico combinado en condiciones de casa malla y cámaras de crecimiento. Para esto se evaluaron variables fisiológicas como la fotosíntesis, conductancia estomática, transpiración, uso eficiente del agua, temperatura foliar y parámetros de la fluorescencia de la clorofila en la hoja. Además de variables bioquímicas como el contenido de prolina, producción de malondialdehido y contenido de clorofilas. Adicionalmente para el último experimento las características de la panícula. Los resultados indicaron que: i) El estrés térmico combinado causó afectaciones negativas en plantas de arroz. Lo anterior se evidenció en una menor conductancia estomática, fotosíntesis, transpiración carbono intracelular, CRA, contenido de pigmentos fotosintéticos (clorofila y carotenoides), variables de fluorescencia de la clorofila α, incremento del NPQT y MDA.; ii) El uso de reguladores de crecimiento mitigó los efectos del estrés térmico combinado en las plantas de arroz. Además, la aplicación de estos reguladores de crecimiento generó una respuesta fisiológica positiva lo cual se reflejó en aumento en los valores de conductancia estomática, fotosíntesis, transpiración carbono intracelular, CRA, contenido de pigmentos fotosintéticos (clorofila y carotenoides), variables de fluorescencia de la clorofila α, acumulación de prolina y una reducción en la peroxidación de lípidos (MDA) y del NPQT.; iii) Los mecanismos fisiológicos y bioquímicos medidos ayudaron a ampliar nuestro conocimiento sobre el mecanismo de tolerancia al estrés por calor en genotipos de arroz cultivados en regiones tropicales.; y iv) El uso de reguladores de crecimiento es una herramienta útil en el manejo de condiciones de estrés por calor severo en cultivos de plantas de arroz cuando se esperan períodos de altas temperaturas. (Texto tomado de la fuente)
dc.description.abstractThe increase in global temperatures that has been occurring over the last decades is affecting the different physiological and biochemical processes of plants. Many crops have decreased their yields, including rice, which has shown decreases in its yield between 6% and 7%. It has been observed that the exogenous application of different growth regulators (phytohormones), particularly the use of auxins (AUX), gibberellins (GA), cytokinins (CK), and brassinosteroids (BR) have shown the potential to mitigate the effects of different types of abiotic and biotic stresses in different cultivated species, but in the case of rice under combined heat stress, this has not been studied. The objective of this work was to evaluate the effect of the exogenous application of different growth regulators on rice plants exposed to high daytime and nighttime temperature conditions. In this context, four experiments were developed. The first was carried out under greenhouse conditions and growth chambers, with the purpose to find out which of the evaluated growth regulators managed to mitigate the negative effects of combined heat stress on different physiological and biochemical variables. The second and third experiments evaluated what number of applications of the two growth regulators with the best response in the previous experiment should be used to mitigate the negative effects of combined heat stress in a greenhouse, shade house, and growth chamber conditions. The fourth experiment used the information from the previous experiments and evaluated at which phenological stage (flowering or grain filling) the foliar applications mitigated the effects of combined heat stress in conditions of shade house and growth chambers. For this, physiological variables such as photosynthesis, stomatal conductance, transpiration, efficient use of water, leaf temperature, and chlorophyll fluorescence parameters in the leaf were evaluated. In addition, biochemical variables such as proline content, malondialdehyde production, and chlorophyll content were measured. Additionally, for the last experiment, the characteristics of the panicle also were measured. The results indicated that: i) The combined heat stress caused negative effects on rice plants. This was evidenced in lower stomatal conductance, photosynthesis, intracellular carbon, transpiration, RWC, the content of photosynthetic pigments (chlorophyll and carotenoids), fluorescence variables of chlorophyll α, increase in NPQT and MDA.; ii) The use of growth regulators mitigated the effects of combined heat stress on rice plants. In addition, the application of these growth regulators generated a positive physiological response, which was reflected in an increase in the values of stomatal conductance, photosynthesis, intracellular carbon, transpiration, RWC, the content of photosynthetic pigments (chlorophyll and carotenoids), fluorescence variables of the α-chlorophyll, proline accumulation and a reduction in lipid peroxidation (MDA) and NPQT.; iii) The measured physiological and biochemical mechanisms helped to expand our knowledge on the mechanism of tolerance to heat stress in rice genotypes grown in tropical regions; and iv) The use of growth regulators is a useful tool in managing severe heat stress conditions in rice plant crops when periods of high temperatures are expected.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ciencias Agrarias - Maestría en Ciencias Agrarias
dc.publisherEscuela de posgrados
dc.publisherFacultad de Ciencias Agrarias
dc.publisherBogotá, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationRedCol
dc.relationLaReferencia
dc.relationAbd El-Naby S.K.M., A. Abdelkhalek, M.H.M. Baiea and O.A. Amin (2020). MITIGATION OF HEAT STRESS EFFECTS ON WASHINGTON NAVEL ORANGE BY USING MELATONIN, GIBBERELLIN AND SALICYLIC TREATMENTS. Plant Archives Vol. 20 Supplement 1, 2020 pp. 3523-3534
dc.relationAhammed GJ, Xu W, Liu A, Chen S (2018). COMT1 silencing aggravates heat stress induced reduction in photosynthesis by decreasing chlorophyll content, photosystem II activity, and electron transport efficiency in tomato. Frontiers in Plant Science 9:998. https://doi.org/10.3389/fpls.2018.009998
dc.relationAhammed, G. J., Xia, X. J., Li, X., Shi, K., Yu, J. Q., and Zhou, Y. H. (2015). Role of brassinosteroid in plant adaptation to abiotic stresses and its interplay with other hormones. Current protein and peptide science, 16(5), 462–473. https://doi.org/10.2174/1389203716666150330141427
dc.relationAhmed, J., and Hassan, M. (2011). Evaluation of seedling proline content of wheat genotypes in relation to heat tolerance. Bangladesh Journal of Botany, 40(1). doi:10.3329/bjb.v40i1.7991
dc.relationAllakhverdiev, S. I., Kreslavski, V. D., Klimov, V. V., Los, D. A., Carpentier, R., and Mohanty, P. (2008). Heat stress: an overview of molecular responses in photosynthesis. Photosynthesis Research, 98(1-3), 541–550. doi:10.1007/s11120-008-9331-0
dc.relationAlonso-Ramirez A, Rodriguez D, Reyes D, Jimenez JA, Nicolas G, Lopez-Climent M, GomezCadenas A, and Nicolas, C. (2009). Evidence for a Role of Gibberellins in Salicylic Acid-Modulated Early Plant Responses to Abiotic Stress in Arabidopsis Seeds. PLANT PHYSIOLOGY, 150(3), 1335–1344. doi:10.1104/pp.109.139352
dc.relationAlvarado-Sanabria, O. H., Garces-Varon, G. A., and Restrepo-Diaz, H. (2017). The Effects of Night-time Temperatures on Physiological and Biochemical Traits in Rice. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 45(1), 157-163. https://doi.org/10.15835/nbha45110627
dc.relationAmanullah, Fahad, S., Anwar, S., Baloch, S. K., Saud, S., Alharby, H., … Ihsan, M. Z. (2017). Rice Crop Responses to Global Warming: An Overview. Rice - Technology and Production. doi:10.5772/68035
dc.relationBajaj, S., and Mohanty, A. (2005). Recent advances in rice biotechnology-towards genetically superior transgenic rice. Plant Biotechnology Journal, 3(3), 275–307. doi:10.1111/j.1467-7652.2005.00130.x
dc.relationBaker, N. R. (2008). Chlorophyll Fluorescence: A Probe of Photosynthesis In Vivo. Annual Review of Plant Biology, 59(1), 89–113. doi:10.1146/annurev.arplant.59.032607.092759
dc.relationBates, L. S., Waldren, R. P., and Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205–207. doi:10.1007/bf00018060
dc.relationBielach, A., Hrtyan, M., and Tognetti, V. B. (2017). Plants under Stress: Involvement of Auxin and Cytokinin. International journal of molecular sciences, 18(7), 1427. https://doi.org/10.3390/ijms18071427
dc.relationBita, C. E., and Gerats, T. (2013). Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Frontiers in Plant Science, 4. doi:10.3389/fpls.2013.00273
dc.relationCao, Y-Y., H. Duan, L-N. Yang, Z-Q. Wang, L-J. Liu, and Yang, J-C. (2009). Effect of high temperature during heading and early filling on grain yield and physiological characteristics in Indica rice. Acta Agronomica Sinica 35:512-521.
dc.relationCastro-Duque, N. E., Chávez-Arias, C. C., and Restrepo-Díaz, H. (2020). Foliar Glycine Betaine or Hydrogen Peroxide Sprays Ameliorate Waterlogging Stress in Cape Gooseberry. Plants, 9(5), 644. MDPI AG. Retrieved from http://dx.doi.org/10.3390/plants9050644
dc.relationChaerle, L., Leinonen, I., Jones, H. G., and Van Der Straeten, D. (2007). Monitoring and screening plant populations with combined thermal and chlorophyll fluorescence imaging. Journal of Experimental Botany, 58(4), 773–784. doi:10.1093/jxb/erl257
dc.relationChaturvedi, A. K., Bahuguna, R. N., Shah, D., Pal, M., and Jagadish, S. V. K. (2017). High temperature stress during flowering and grain filling offsets beneficial impact of elevated CO2 on assimilate partitioning and sink-strength in rice. Scientific Reports, 7(1). doi:10.1038/s41598-017-07464-6
dc.relationChávez-Arias, C. C., Gómez-Caro, S., and Restrepo-Díaz, H. (2020). Mitigation of the impact of vascular wilt and soil hypoxia on cape gooseberry plants by foliar application of synthetic elicitors. Hortscience 55, 121–132. doi: 10.21273/HORTSCI14550-19
dc.relationChavez-Arias, C. C., Ligarreto-Moreno, G. A., and Restrepo-Díaz, H. (2018). Evaluation of heat stress period duration and the interaction of daytime temperature and cultivar on common bean. Environmental and Experimental Botany, 155, 600–608. doi:10.1016/j.envexpbot.2018.08.012
dc.relationChen J, Nolan TM, Ye H, Zhang M, Tong H, Xin P, Chu J, Chu C, Li Z, Yin Y. Arabidopsis WRKY46, WRKY54, and WRKY70 Transcription Factors Are Involved in Brassinosteroid-Regulated Plant Growth and Drought Responses. Plant Cell. 2017 Jun;29(6):1425-1439. doi: 10.1105/tpc.17.00364. Epub 2017 Jun 2. PMID: 28576847; PMCID: PMC5502465
dc.relationChernyad’ev, I. I. (2009). The protective action of cytokinins on the photosynthetic machinery and productivity of plants under stress (review). Applied Biochemistry and Microbiology, 45(4), 351–362. doi:10.1134/s0003683809040012
dc.relationDey, A. K., Sharma, M., and Meshram, M. R. (2016). An Analysis of Leaf Chlorophyll Measurement Method Using Chlorophyll Meter and Image Processing Technique. Procedia Computer Science, 85, 286–292. doi:10.1016/j.procs.2016.05.235
dc.relationEl-Bassiony, A. M., Ghoname, A. A., El-Awadi, M. E., Fawzy, Z. F., and Gruda, N. (2012). Ameliorative Effects of Brassinosteroids on Growth and Productivity of Snap Beans Grown Under High Temperature. Gesunde Pflanzen, 64(4), 175–182. doi:10.1007/s10343-012-0286-x
dc.relationFahad S, Bajwa AA, Nazir U, Anjum SA, Farooq A, Zohaib A, Sadia S, Nasim W, Adkins S, Saud S, Ihsan MZ, Alharby H, Wu C, Wang D and Huang J (2017). Crop Production under Drought and Heat Stress: Plant Responses and Management Options. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.01147
dc.relationFahad, S., Hussain, S., Saud, S., Khan, F., Hassan, S., Amanullah, et al., (2016b). Exogenously applied plant growth regulators affect heat-stressed rice pollens. J. Agron. Crop Sci. 202, 139-150. https://doi.org/10.1111/jac.12148
dc.relationFederarroz (Federación Nacional de Arroceros). 2021. On line statistical database: Area, production and yields in Colombia. Retrieved from http://www.fedearroz.com.co/new/apr_public.php
dc.relationFeller, U., and Vaseva, I. I. (2014). Extreme climatic events: impacts of drought and high temperature on physiological processes in agronomically important plants. Frontiers in Environmental Science, 2. doi:10.3389/fenvs.2014.00039
dc.relationFeng, B., Liu, P., Li, G., Dong, S. T., Wang, F. H., Kong, L. A., & Zhang, J. W. (2013). Effect of Heat Stress on the Photosynthetic Characteristics in Flag Leaves at the Grain-Filling Stage of Different Heat-Resistant Winter Wheat Varieties. Journal of Agronomy and Crop Science, 200(2), 143–155. doi:10.1111/jac.12045.
dc.relationGarcés, G. (2020). Adaptación del sector arrocero colombiano al cambio y la variabilidad climática. Arroz 68(547): 38-48.
dc.relationGerhards, M., Rock, G., Schlerf, M., and Udelhoven, T. (2016). Water stress detection in potato plants using leaf temperature, emissivity, and reflectance. International Journal of Applied Earth Observation and Geoinformation, 53, 27–39. doi:10.1016/j.jag.2016.08.004
dc.relationGhoulam, C., Foursy, A., and Fares, K. (2002). Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environmental and Experimental Botany, 47(1), 39–50. doi:10.1016/s0098-8472(01)00109-5
dc.relationHa, S., Vankova, R., Yamaguchi-Shinozaki, K., Shinozaki, K., and Tran, L.-S. P. (2012). Cytokinins: metabolism and function in plant adaptation to environmental stresses. Trends in Plant Science, 17(3), 172–179. doi:10.1016/j.tplants.2011.12.005
dc.relationHanif, S., Saleem, M. F., Sarwar, M., Irshad, M., Shakoor, A., Wahid, M. A., and Khan, H. Z. (2020). Biochemically Triggered Heat and Drought Stress Tolerance in Rice by Proline Application. Journal of Plant Growth Regulation. doi:10.1007/s00344-020-10095-3
dc.relationHarsh A, Sharma YK, Joshi U, Rampuria S, Singh G, Kumar S, Sharma R (2016). Effect of short-term heat stress on total sugars, proline and some antioxidant enzymes in moth bean (Vigna aconitifolia). Annals of Agricultural Sciences 61:57-64. https://doi.org/10.1016/j.aoas.2016.02.001
dc.relationHasanuzzaman M, Nahar K, Alam MM, Roychowdhury R, Fujita M (2013). Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. International Journal of Molecular Sciences 14:9643-9684
dc.relationHodges, D. M., DeLong, J. M., Forney, C. F., and Prange, R. K. (1999). Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 207(4), 604–611. doi:10.1007/s004250050524
dc.relationHolá, D., Rothová, O., Kočová, M., Kohout, L., and Kvasnica, M. (2010). The effect of brassinosteroids on the morphology, development and yield of field-grown maize. Plant Growth Regulation, 61(1), 29–43. doi:10.1007/s10725-010-9446-0
dc.relationIizumi, T., Luo, J.-J., Challinor, A. J., Sakurai, G., Yokozawa, M., Sakuma, H., … Yamagata, T. (2014). Impacts of El Niño Southern Oscillation on the global yields of major crops. Nature Communications, 5(1). doi:10.1038/ncomms4712
dc.relationIPCC (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.
dc.relationJespersen, D., and Huang, B. (2015). Proteins associated with heat-induced leaf senescence in creeping bentgrass as affected by foliar application of nitrogen, cytokinins, and an ethylene inhibitor. PROTEOMICS, 15(4), 798–812. doi:10.1002/pmic.201400393
dc.relationKalaji, H. M., Schansker, G., Brestic, M., Bussotti, F., Calatayud, A., Ferroni, L., Goltsev, V., Guidi, L., Jajoo, A., Li, P., Losciale, P., Mishra, V. K., Misra, A. N., Nebauer, S. G., Pancaldi, S., Penella, C., Pollastrini, M., Suresh, K., Tambussi, E., Yanniccari, M., … Bąba, W. (2017). Frequently asked questions about chlorophyll fluorescence, the sequel. Photosynthesis research, 132(1), 13–66. https://doi.org/10.1007/s11120-016-0318-y
dc.relationKhan A, Bilal S, Khan AL, Imran M, Shahzad R, Al-Harrasi A, Al-Rawahi A, Al-Azhri M, Mohanta TK, Lee I-J. (2020). Silicon and Gibberellins: Synergistic Function in Harnessing ABA Signaling and Heat Stress Tolerance in Date Palm (Phoenix dactylifera L.). Plants, 9(5), 620. doi:10.3390/plants9050620
dc.relationKilasi, N. L., Singh, J., Vallejos, C. E., Ye, C., Jagadish, S. V. K., Kusolwa, P., and Rathinasabapathi, B. (2018). Heat Stress Tolerance in Rice (Oryza sativa L.): Identification of Quantitative Trait Loci and Candidate Genes for Seedling Growth Under Heat Stress. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.01578
dc.relationKothari, A., Lachowiec, J. (2021). "Roles of Brassinosteroids in Mitigating Heat Stress Damage in Cereal Crops" Int. J. Mol. Sci. 22, no. 5: 2706. https://doi.org/10.3390/ijms22052706
dc.relationKumar, P., Yadav, S. and Singh, M.P. (2020). Bioregulators application improved heat tolerance and yield in chickpea (Cicer arietinum L.) by modulating zeaxanthin cycle. Plant Physiol. Rep. 25, 677–688. https://doi.org/10.1007/s40502-020-00555-z
dc.relationLee, W. S., Alchanatis, V., Yang, C., Hirafuji, M., Moshou, D., & Li, C. (2010). Sensing technologies for precision specialty crop production. Computers and Electronics in Agriculture, 74(1), 2–33. doi:10.1016/j.compag.2010.08.005
dc.relationLesk, C., Rowhani, P., and Ramankutty, N. (2016). Influence of extreme weather disasters on global crop production. Nature, 529(7584), 84–87. doi:10.1038/nature16467
dc.relationLiu Q, Wu X, Ma J, Li T, Zhou X, Guo T. 2013. Effects of high air temperature on rice grain quality and yield under field condition. Agronomy Journal105, 446–454. https://doi.org/10.2134/agronj2012.0164
dc.relationLiu, Y., Zhang, M., Meng, Z., Wang, B., & Chen, M. (2020). Research Progress on the Roles of Cytokinin in Plant Response to Stress. International Journal of Molecular Sciences, 21(18), 6574. doi:10.3390/ijms21186574
dc.relationMacková, H., Hronková, M., Dobrá, J., Turečková, V., Novák, O., Lubovská, Z., … Vanková, R. (2013). Enhanced drought and heat stress tolerance of tobacco plants with ectopically enhanced cytokinin oxidase/dehydrogenase gene expression. Journal of Experimental Botany, 64(10), 2805–2815. doi:10.1093/jxb/ert131
dc.relationMathur, S., Agrawal, D., and Jajoo, A. (2014). Photosynthesis: Response to high temperature stress. Journal of Photochemistry and Photobiology B: Biology, 137, 116–126. doi:10.1016/j.jphotobiol.2014.01.010
dc.relationMittler, R., Finka, A., and Goloubinoff, P. (2012). How do plants feel the heat? Trends in Biochemical Sciences, 37(3), 118–125. doi:10.1016/j.tibs.2011.11.007
dc.relationOgweno, J.O., Song, X.S., Shi, K., Hu, W.H., Mao, W.H., Zhou, Y.H., Yu, J.Q., Nogues, S. (2008). Brassinosteroids Alleviate Heat-Induced Inhibition of Photosynthesis by Increasing Carboxylation Efficiency and Enhancing Antioxidant Systems in Lycopersicon esculentum. Journal of Plant Growth Regulation, 27(1), 49–57. doi:10.1007/s00344-007-9030-7
dc.relationPeleg, Z., and Blumwald, E. (2011). Hormone balance and abiotic stress tolerance in crop plants. Current Opinion in Plant Biology, 14(3), 290–295. doi:10.1016/j.pbi.2011.02.001
dc.relationPorch Clay, T.G., Hall,, A.E. 2013. Heat Tolerance. In: Genomics and Breeding for Climate-Resilient Crops. Vol. 2:167-202.
dc.relationQuintero-Calderón, E. H., Sánchez-Reinoso, A. D., Chávez-Arias, C. C., Garces-Varon, G., and Restrepo-Díaz, H. (2021). Rice seedlings showed a higher heat tolerance through the foliar application of biostimulants. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 49(1), 12120. https://doi.org/10.15835/nbha49112120
dc.relationRajewska I, Talarek M, Bajguz A (2016). Brassinosteroids and response of plants to heavy metals action. Frontiers in Plant Science 7:629. https://doi.org/10.3389/fpls.2016.00629
dc.relationRamirez-Villegas, J., Salazar, M., Jarvis, A., and Navarro-Racines, C. E. (2012). A way forward on adaptation to climate change in Colombian agriculture: perspectives towards 2050. Climatic Change, 115(3-4), 611–628. doi:10.1007/s10584-012-0500-y
dc.relationRestrepo-Diaz, H., Garces-Varon, G. (2013). Response of rice plants to heat stress during initiation of panicle primordia or grain-filling phases. Journal of Stress Physiology and Biochemistry 9 (3):319-325.
dc.relationSalehifar, M.; Rabiei, B.; Afshar Mohammadian, M.; and Asghari, J. (2017). Physiological and Fluorescence Reaction of Four Rice Genotypes to Exogenous Application of IAA and Kinetin under Drought Stress. Notulae Scientia Biologicae, 9(3), 378. doi:10.15835/nsb9310091
dc.relationSánchez-Reinoso, A. D., Garcés-Varón, G., and Restrepo-Díaz, H. (2014). Biochemical and physiological characterization of three rice cultivars under different daytime temperature conditions. Chilean Journal of Agricultural Research, 74(4), 373–379. doi:10.4067/s0718-58392014000400001
dc.relationSánchez-Reinoso, A. D., Nieto, M. F., Dossmann, J., Camacho-Tamayo, J. H., and Restrepo-Díaz, H. (2019). Nutrient uptake, partitioning, and removal in two modern high-yielding Colombian rice genotypes. Journal of Plant Nutrition, 1–15. doi:10.1080/01904167.2019.1659334
dc.relationSergiev I, Todorova D, Shopova E, Jankauskienė J, Jankovska-Bortkevič E, Jurkonienė S (2018) Effects of auxin analogues and heat stress on garden pea. Zemdirbyste-Agricult 105(3):243–248. https://doi.org/10.13080/z-a.2018.105.031
dc.relationShah, F., Huang, J., Cui, K., Nie, L., Shah, T., Chen, C., and Wang, K. (2011). Impact of high-temperature stress on rice plant and its traits related to tolerance. The Journal of Agricultural Science, 149(05), 545–556. doi:10.1017/s0021859611000360
dc.relationShi, P., Zhu, Y., Tang, L., Chen, J., Sun, T., Cao, W., & Tian, Y. (2016). Differential effects of temperature and duration of heat stress during anthesis and grain filling stages in rice. Environmental and Experimental Botany, 132, 28-41.
dc.relationSiddiqui, H., Hayat, S., & Bajguz, A. (2018). Regulation of photosynthesis by brassinosteroids in plants. Acta Physiologiae Plantarum, 40(3). doi:10.1007/s11738-018-2639-2
dc.relationSims, D. A., and Gamon, J. A. (2002). Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment, 81(2-3), 337–354. doi:10.1016/s0034-4257(02)00010-x
dc.relationSobol S., Chayut N., Nave N., Kafle D., Hegele M., Kaminetsky R., Wunsche J.N., Samach A. (2013). Genetic variation in yield under hot ambient temperatures spotlights a role for cytokinin in protection of developing floral primordia. Plant, Cell and Environment, 37(3), 643–657. doi:10.1111/pce.12184
dc.relationSonjaroon, W., Jutamanee, K., Khamsuk, O., Thussagunpanit, J., Kaveeta, L., and Suksamrarn, A. (2018). Impact of brassinosteroid mimic on photosynthesis, carbohydrate content and rice seed set at reproductive stage under heat stress. Agriculture and Natural Resources. doi:10.1016/j.anres.2018.09.001
dc.relationSun J, Qi L, Li Y, Chu J, Li C (2012). PIF4–mediated activation of YUCCA8, expression integrates temperature into the auxin pathway in regulating Arabidopsis hypocotyl growth. PLoS Genet 8(3):e1002594
dc.relationThussagunpanit, J., Jutamanee, K., Sonjaroon, W., Kaveeta, L., Chai-Arree, W., Pankean, P., and Suksamrarn, A. (2015). Effects of brassinosteroid and brassinosteroid mimic on photosynthetic efficiency and rice yield under heat stress. Photosynthetica, 53(2), 312–320. doi:10.1007/s11099-015-0106-5
dc.relationWaisi, H., Janković, B., Nikolić, B., Dragičević, V., Panić, I., Tosti, T., & Trifković, J. (2018). Influence of various concentrations of 24-epibrassinolide on the kinetic parameters during isothermal dehydration of two maize hybrids. South African Journal of Botany, 119, 69-79.
dc.relationWahid, A., Gelani, S., Ashraf, M., and Foolad, M.R. (2007). Heat tolerance in plants: An overview. Environmental and Experimental Botany, 61(3), 199–223. doi:10.1016/j.envexpbot.2007.05.011
dc.relationWang, R., Zhang, Y., Kieffer, M., Yu, H., Kepinski, S., and Estelle, M. (2016). HSP90 regulates temperature-dependent seedling growth in Arabidopsis by stabilizing the auxin co-receptor F-box protein TIR1. Nature Communications, 7, 10269. doi:10.1038/ncomms10269
dc.relationWang, Y., Wang, L., Zhou, J., Hu, S., Chen, H., Xiang, J., ... & Zhang, Y. (2019). Research progress on heat stress of rice at flowering stage. Rice Science, 26(1), 1-10.
dc.relationWassie, Misganaw; Zhang, Weihong; Zhang, Qiang; Ji, Kang; Chen, Liang. 2019. "Effect of Heat Stress on Growth and Physiological Traits of Alfalfa (Medicago sativa L.) and a Comprehensive Evaluation for Heat Tolerance" Agronomy 9, no. 10: 597. https://doi.org/10.3390/agronomy9100597
dc.relationWassmann, R., Jagadish, S. V. K., Heuer, S., Ismail, A., Redona, E., Serraj, R., … Sumfleth, K. (2009). Chapter 2 Climate Change Affecting Rice Production. Advances in Agronomy, 59–122. doi:10.1016/s0065-2113(08)00802-x
dc.relationWellburn, A. R. (1994). The Spectral Determination of Chlorophylls a and b, as well as Total Carotenoids, Using Various Solvents with Spectrophotometers of Different Resolution. Journal of Plant Physiology, 144(3), 307–313. doi:10.1016/s0176-1617(11)81192-2
dc.relationWen, F., Zhang, Z., Bai, T., Xu, Q., and Pan, Y. (2010). Proteomics reveals the effects of gibberellic acid (GA3) on salt-stressed rice (Oryza sativa L.) shoots. Plant Science, 178(2), 170–175. doi:10.1016/j.plantsci.2009.11.006
dc.relationWu, C., Tang, S., Li, G., Wang, S., Fahad, S., & Ding, Y. (2019). Roles of phytohormone changes in the grain yield of rice plants exposed to heat: a review. PeerJ, 7, e7792.
dc.relationXu, Y., and Huang, B. (2009). Effects of Foliar-Applied Ethylene Inhibitor and Synthetic Cytokinin on Creeping Bentgrass to Enhance Heat Tolerance. Crop Science, 49(5), 1876. doi:10.2135/cropsci2008.07.0441
dc.relationYang D, Li Y, Shi Y, Cui Z, Luo Y, Zheng M, et al., (2016) Exogenous Cytokinins Increase Grain Yield of Winter Wheat Cultivars by Improving Stay-Green Characteristics under Heat Stress. PLoS ONE 11(5): e0155437. doi:10.1371/journal.pone.0155437
dc.relationYang, J., Miao, W., & Chen, J. (2021). Roles of jasmonates and brassinosteroids in rice responses to high temperature stress–A review. The Crop Journal, 9(5), 977-985.
dc.relationYin, B., Zhang, Y., and Zhang, Y. (2011). Effects of plant growth regulators on growth and yields characteristics in adzuki beans (Phaseolus angularis). Frontiers of Agriculture in China, 5(4), 519–523. doi:10.1007/s11703-011-1150-y
dc.relationYin, Y., Li, S., Liao, W., Lu, Q., Wen, X., and Lu, C. (2010). Photosystem II photochemistry, photoinhibition, and the xanthophyll cycle in heat-stressed rice leaves. Journal of Plant Physiology, 167(12), 959–966. doi:10.1016/j.jplph.2009.12.021
dc.relationYu, J. Q., Huang, L. F., Hu, W. H., Zhou, Y. H., Mao, W. H., Ye, S. F., and Nogués, S. (2004). A role for brassinosteroids in the regulation of photosynthesis in Cucumis sativus. Journal of experimental botany, 55(399), 1135–1143. https://doi.org/10.1093/jxb/erh124
dc.relationZahir, Z. A., Asghar, H. N., and Arshad, M. (2001). Cytokinin and its precursors for improving growth and yield of rice. Soil Biology and Biochemistry, 33(3), 405–408. doi:10.1016/s0038-0717(00)00145-0
dc.relationZhou, J., Wang, J., Li, X., Xia, X.-J., Zhou, Y.-H., Shi, K., Chen, Z., Yu, J.-Q. (2014). H2O2 mediates the crosstalk of brassinosteroid and abscisic acid in tomato responses to heat and oxidative stresses. Journal of Experimental Botany, 65(15), 4371–4383. doi:10.1093/jxb/eru217
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleEfecto de reguladores de crecimiento en la mitigación de estrés térmico en arroz (Oryza sativa)
dc.typeTesis


Este ítem pertenece a la siguiente institución