dc.relation | [1] AHN, Minkyu ; JUN, Sung C.: Performance variation in motor imagery brain–computer interface: a brief review. In: Journal of neuroscience methods 243 (2015), S. 103–110 [2] AL-ANI, A. ; AL-SUKKER, A.: Effect of Feature and Channel Selection on EEG Classification. In: 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, 2006. – ISSN 1557–170X, S. 2171–2174 [3] AL-ANI, A. ; AL-SUKKER, A.: Effect of Feature and Channel Selection on EEG Classification. In: 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, 2006, S. 2171–2174 [4] ALIMARDani, Fatemeh ; BOOSTANI, Reza ; BLANKERTZ, Benjamin: Weighted spatial based geometric scheme as an efficient algorithm for analyzing single-trial EEGS to improve cue based BCI classification. In: Neural Networks 92 (2017), S. 69–76 [5] A´LVAREZ-MEZA, A.M. ; CA´RDENAS-PEn˜A, D. ; CASTELLANOS-DOM´INGUEZ, G.: Unsupervised Kernel Function Building Using Maximization of Information Potential Va- riability. Cham : Springer International Publishing, 2014. – 335–342 S. – ISBN 978–3– 319–12568–8 [6] A´LVAREZ-MEZA, Andr´es M. ; CA´RDENAS-PEn˜A, David ; CASTELLANOS-DOMINGUEZ, Germ´an: Unsupervised kernel function building using maximization of information potential variability. In: Iberoamerican Congress on Pattern Recognition Springer, 2014, S. 335–342 [7] A´LVAREZ-MEZA, Andr´es M. ; VELA´SQUEZ-MARt´INEZ, Luisa F. ; CASTELLANOS- DOMINGUEZ, Germ´an: Time-series discrimination using feature relevance analysis in motor imagery classification. In: Neurocomputing 151 (2015), S. 122–129 [8] ArvANEH, M. ; GUAN, C. ; ANG, K. K. ; QUEK, C.: Optimizing the Channel Selection and Classification Accuracy in EEG-Based BCI. In: IEEE Transactions on Biomedical Engineering 58 (2011), June, Nr. 6, S. 1865–1873. – ISSN 0018–9294 [9] BRIDWELL, David A. ; RACHAKONDA, Srinivas ; SILVA, Rogers F. ; PEARLSON, God- frey D. ; CALHOUN, Vince D.: Spatiospectral Decomposition of Multi-subject EEG: Evaluating Blind Source Separation Algorithms on Real and Realistic Simulated Data. In: Brain Topography 31 (2018), Jan, Nr. 1, S. 47–61. – ISSN 1573–6792 [10] Cho, Hohyun ; AHN, Minkyu ; AHN, Sangtae ; KwON, Moonyoung ; JUN, Sung C.: EEG datasets for motor imagery brain computer interface. In: GigaScience 6 (2017), 05, Nr. 7. – ISSN 2047–217X [11] DAI, Shengfa ; WEI, Qingguo: Electrode channel selection based on backtracking search optimization in motor imagery brain-computer interfaces. In: Journal of Integrative Neuroscience 16 (2017), feb, Nr. 3, S. 241–254. – ISSN 1757448X [12] DECETY, Jean ; INGVAR, David H.: Brain structures participating in mental simulation of motor behavior: A neuropsychological interpretation. In: Acta psychologica 73 (1990), Nr. 1, S. 13–34 [13] DECETY, Jean ; STEVENS, Jennifer: Action representation and its role in social inter- action. In: The handbook of imagination and mental simulation (2009), S. 3–20 [14] ELASUTY, Basem ; ELDAWLATLy, Seif: Dynamic Bayesian Networks for EEG motor imagery feature extraction. In: 2015 7th International IEEE/EMBS Conference on Neural Engineering (NER) IEEE, 2015, S. 170–173 [15] FRANKLIN ALEX JOSEPH, A. ; GoVINDARAJU, C.: Channel selection using glow swarm optimization and its application in line of sight secure communication. In: Cluster Computing (2017), sep, S. 1–8. – ISSN 15737543 [16] GRETTON, Arthur ; BorgwARDT, Karsten ; RASCH, Malte J. ; SCHOLKOPF, Bernhard ; SMOLA, Alexander J.: A Kernel Method for the Two-Sample Problem. (2008), may [17] GUERRERO-MOSQUERA, C. ; NAVIA-VazquEz, A.: Automatic removal of ocular ar- tefacts using adaptive filtering and independent component analysis for electroencep- halogram data. In: IET Signal Processing 6 (2012), April, Nr. 2, S. 99–106. – ISSN 1751–9675 [18] HANAKAWA, Takashi ; DIMYAN, Michael A. ; HALLETT, Mark: Motor planning, ima- gery, and execution in the distributed motor network: a time-course study with functio- nal MRI. In: Cerebral cortex 18 (2008), Nr. 12, S. 2775–2788 [19] KEE, Chea Y. ; PONNAMBALAM, S. G. ; Loo, Chu K.: Multi-objective genetic algorithm as channel selection method for P300 and motor imagery data set. In: Neurocomputing 161 (2015), aug, S. 120–131. – ISSN 18728286 [20] Krucoff, Max O. ; RAHIMPOUR, Shervin ; SLUTZKY, Marc W. ; EDGERTON, V R. ; TURNER, Dennis A.: Enhancing nervous system recovery through neurobiologics, neural interface training, and neurorehabilitation. In: Frontiers in neuroscience 10 (2016), S. 584 [21] LIANG, Shuang ; Choi, Kup-Sze ; QIN, Jing ; WANG, Qiong ; PANG, Wai-Man ; HENG, Pheng Ann: Discrimination of motor imagery tasks via information flow pattern of brain connectivity. In: Technology and Health Care 24 (2016), Nr. s2, S. S795–S801 [22] LUNA-NARANJO, David ; CA´RDENAS-PEn˜A, David ; CASTELLANOS-DOMINGUEZ, Germ´an: Entropy-Based Relevance Selection of Independent Components Supporting Motor Imagery Tasks. In: International Workshop on Artificial Intelligence and Pattern Recognition Springer, 2018, S. 359–367 [23] LUNA-NARANJO, DF ; HurTADO-RINCON, JV ; CA´RDENAS-PEn˜A, D ; CASTRo, VH ; TORRES, HF ; CASTELLANOS-DOMINGUEZ, G: EEG Channel Relevance Analysis Using Maximum Mean Discrepancy on BCI Systems. In: Iberoamerican Congress on Pattern Recognition Springer, 2018, S. 820–828 [24] MEINICKE, Peter ; RITTER, Helge: Quantizing density estimators. In: Advances in Neural Information Processing Systems, 2002, S. 825–832 [25] MIAo, Minmin ; ZENG, Hong ; WANG, Aimin ; ZHAo, Changsen ; Liu, Feixiang: Dis- criminative spatial-frequency-temporal feature extraction and classification of motor imagery EEG: An sparse regression and Weighted Na¨ıve Bayesian Classifier-based ap- proach. In: Journal of neuroscience methods 278 (2017), S. 13–24 [26] PRINCIPE, Jose C.: Information theoretic learning: Renyi’s entropy and kernel perspec- tives. Springer Science & Business Media, 2010 [27] Qiu, Zhaoyang ; JIN, Jing ; LAM, Hak-Keung ; ZHANG, Yu ; WANG, Xingyu ; CICHOCKI, Andrzej: Improved SFFS method for channel selection in motor imagery based BCI. In: Neurocomputing 207 (2016), S. 519 – 527. – ISSN 0925–2312 [28] SAIOTE, Catarina ; TACCHINO, Andrea ; BRICHETTO, Giampaolo ; ROCCATAGLIAta, Luca ; BOMMARITO, Giulia ; CORDANO, Christian ; BATTAGLIA, Mario ; MANCAR- DI, Giovanni L. ; INGLESE, Matilde: Resting-state functional connectivity and motor imagery brain activation. In: Human brain mapping 37 (2016), Nr. 11, S. 3847–3857 [29] SchO¨LKOPF, Bernhard ; SMOLA, Alexander J. ; BAch, Francis [u. a.]: Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT press, 2002 [30] WOOD, Anthony J. ; BLYTHE, Richard A. ; EvANS, Martin R.: R´enyi entropy of the totally asymmetric exclusion process. In: Journal of Physics A: Mathematical and Theoretical 50 (2017), Nr. 47, S. 475005 [31] YANG, Huijuan ; GUAN, Cuntai ; WANG, Chuan C. ; ANG, Kai K.: Maximum depen- dency and minimum redundancy-based channel selection for motor imagery of walking EEG signal detection. In: ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, IEEE, may 2013. – ISBN 9781479903566, S. 1187– 1191 [32] Zich, Catharina ; DEBENER, Stefan ; KRANCZIOCH, Cornelia ; BLEICHNER, Martin G. ; GUTBERLET, Ingmar ; DE Vos, Maarten: Real-time EEG feedback during simultaneous EEG–fMRI identifies the cortical signature of motor imagery. In: Neuroimage 114 (2015), S. 438–447 | |