dc.contributor | Diaztagle Fernández, Juan José | |
dc.contributor | Grupo de estudio de fisiología aplicada al cuidado crítico | |
dc.creator | Fonseca Arias, Ligia Camila | |
dc.date.accessioned | 2020-02-25T14:52:34Z | |
dc.date.available | 2020-02-25T14:52:34Z | |
dc.date.created | 2020-02-25T14:52:34Z | |
dc.date.issued | 2020-02-24 | |
dc.date.issued | 2020-02-24 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/75721 | |
dc.description.abstract | Introducción: La incidencia de Hipoxia Tisular Global es ampliamente conocida en pacientes en Posoperatorio de cirugía cardíaca y se asocia con mayor mortalidad y peores desenlaces.
Objetivo: Establecer la relación entre la diferencia venoarterial de CO2/Diferencia arteriovenosa de Oxígeno (p v-aCO2/Da-vO2), con variables de perfusión tisular y desenlaces clínicos, en pacientes en Posoperatorio de cirugía cardiaca.
Diseño y métodos: Estudio longitudinal, prospectivo de julio de 2017 a febrero de 2018, en pacientes sometidos a cirugía cardíaca, con mediciones al ingreso a UCI (T0), a las 12 y 24 horas (T12 y T24), de: Saturación venosa central (SvcO2), Base exceso (BEecf), diferencia venoarterial de CO2 (p v-aCO2), diferencia arteriovenosa de Oxígeno (Da-vO2), lactato arterial, Gasto Cardíaco (GC) , tasa p v-aCO2/Da-vO2 y desenlaces : días de soporte vasoactivo, días de ventilación mecánica y días estancia en UCI.
Resultados: No se encontraron correlaciones significativas entre la tasa y los marcadores de perfusión tisular. La tasa no fue predictor independiente para ninguno de los desenlaces. La tasa disminuyó en el 84% de los pacientes; otro 10% presentó elevación simultanea de lactato, con mortalidad de 4%. La curva ROC mostró que en T0 y T12 la tasa mostró mayor AUC para identificar hiperlactatemia, con un punto de corte de 1,0.
Conclusiones: La tasa mostró una tendencia a incrementar en pacientes con peores desenlaces, mostrando variaciones desde momentos iniciales de la reanimación, relacionándose con la importancia para identificar hiperlactatemia. A la luz de la evidencia, se requieren más estudios de evaluación específicos para esta población. | |
dc.description.abstract | Introduction: Tissue Hypoperfusion is widely known in postoperative cardiac surgery patients, and is related with higher mortality and worst outcomes.
Objective: To establish the relationship between the venoarterial pCO2 to arterial-venous oxygen content (p v-aCO2/Da-vO2), with tissue perfusion markers and clinical outcomes, in patients undergoing cardiac surgery.
Methods: Longitudinal and prospective study from July 2017 to February 2018, in postoperative cardiac surgery patients, with measurements on admission to ICU (T0), 12 and 24 hours (T12 and T24), of: Central venous saturation (SvcO2), Base Excess (BEecf), venoarterial pCO2 difference (p v-aCO2), arteriovenous oxygen Content (Da-vO2), arterial lactate, Cardiac output (GC), p-v-aCO2/Da-vO2 rate and outcomes: vasoactive support days, mechanical ventilation days and lenght of stay in ICU.
Results: No significant correlations were found between the rate and markers of tissue perfusion. The rate was not an independent predictor for any of the outcomes. The rate decreased in 84% of patients; another 10% presented simultaneous lactate elevation, with mortality of 4%. The ROC curve showed that in T0 and T12 the rate showed higher AUC to identify hyperlactatemia, with a cut-off point of 1.0.
Conclusions: The rate showed a tendency to increase in patients with worse outcomes, showing variations from the initial moments of resuscitation, relating to the importance of identifying hyperlactatemia. In light of the evidence, is necesary more specific studies for this population. | |
dc.language | spa | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | Cecconi M, De Backer D, Antonelli M, Beale R, Bakker J, Hofer C, et al. Consensus on
circulatory shock and hemodynamic monitoring. Task force of the European Society of
Intensive Care Medicine. Intensive Care Med. diciembre de 2014;40(12):1795-815. | |
dc.relation | Vincent J-L, De Backer D. Oxygen transport-the oxygen delivery controversy. Intensive
Care Med. noviembre de 2004;30(11):1990-6. | |
dc.relation | Lam C, Tyml K, Martin C, Sibbald W. Microvascular perfusion is impaired in a rat model
of normotensive sepsis. J Clin Invest. 1 de noviembre de 1994;94(5):2077-83. | |
dc.relation | Rady MY, Rivers EP, Nowak RM. Resuscitation of the critically ill in the ED: responses
of blood pressure, heart rate, shock index, central venous oxygen saturation, and
lactate. Am J Emerg Med. marzo de 1996;14(2):218-25. | |
dc.relation | Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, et al. Early GoalDirected Therapy in the Treatment of Severe Sepsis and Septic Shock. N Engl J Med.
8 de noviembre de 2001;345(19):1368-77. | |
dc.relation | Mesquida J, Borrat X, Lorente JA, Masip J, Baigorri F. Objetivos de la reanimación
hemodinámica. Med Intensiva. 1 de noviembre de 2011;35(8):499-508. | |
dc.relation | Luna AH, Pérez HRL, González JEE, Olvera Guzmán C, Aguirre Sánchez J, Franco
Granillo J. Delta de dióxido de carbono para valorar perfusión tisular como predictor de
mortalidad en choque séptico. Med Crítica. 2011;25(2):66-70. | |
dc.relation | Ariza M, Gothard JW, Macnaughton P, Hooper J, Morgan CJ, Evans TW. Blood lactate
and mixed venous-arterial PCO2 gradient as indices of poor peripheral perfusion
following cardiopulmonary bypass surgery. Intensive Care Med. 1991;17(6):320-4. | |
dc.relation | Cavaliere F, Martinelli L, Guarneri S, Varano C, Rossi M, Schiavello R. Arterial-venous
PCO2 gradient in early postoperative hours following myocardial revascularization. J
Cardiovasc Surg (Torino). octubre de 1996;37(5):499-503. | |
dc.relation | Ospina-Tascón GA, Hernández G, Cecconi M. Understanding the venous-arterial CO2
to arterial-venous O2 content difference ratio. Intensive Care Med. noviembre de
2016;42(11):1801-4. | |
dc.relation | Mekontso-Dessap A, Castelain V, Anguel N, Bahloul M, Schauvliege F, Richard C,
et al. Combination of venoarterial PCO2 difference with arteriovenous O2 content
difference to detect anaerobic metabolism in patients. Intensive Care Med. marzo de
2002;28(3):272-7. | |
dc.relation | Monnet X, Julien F, Ait-Hamou N, Lequoy M, Gosset C, Jozwiak M, et al. Lactate and
venoarterial carbon dioxide difference/arterial-venous oxygen difference ratio, but not
central venous oxygen saturation, predict increase in oxygen consumption in fluid
responders. Crit Care Med. junio de 2013;41(6):1412-20. | |
dc.relation | Ospina-Tascón GA, Umaña M, Bermúdez W, Bautista-Rincón DF, Hernandez G, Bruhn
A, et al. Combination of arterial lactate levels and venous-arterial CO2 to arterialvenous O 2 content difference ratio as markers of resuscitation in patients with septic
shock. Intensive Care Med. mayo de 2015;41(5):796-805. | |
dc.relation | Mesquida J, Saludes P, Gruartmoner G, Espinal C, Torrents E, Baigorri F, et al. Central
venous-to-arterial carbon dioxide difference combined with arterial-to-venous oxygen
content difference is associated with lactate evolution in the hemodynamic resuscitation
process in early septic shock. Crit Care Lond Engl. 28 de marzo de 2015;19:126. | |
dc.relation | Danin PE, Bendjelid K. The venous-arterial CO2 to arterial-venous O2 content
difference ratio: Easy to monitor? J Crit Care. 2016;35:217-8. | |
dc.relation | He H, Liu D, Long Y, Wang X. High central venous-to-arterial CO2 difference/arterialcentral venous O2 difference ratio is associated with poor lactate clearance in septic
patients after resuscitation. J Crit Care. febrero de 2016;31(1):76-81. | |
dc.relation | Mallat J, Lemyze M, Meddour M, Pepy F, Gasan G, Barrailler S, et al. Ratios of central
venous-to-arterial carbon dioxide content or tension to arteriovenous oxygen content
are better markers of global anaerobic metabolism than lactate in septic shock patients.
Ann Intensive Care. diciembre de 2016;6(1):10. | |
dc.relation | Du W, Long Y, Wang X-T, Liu D-W. The Use of the Ratio between the Veno-arterial
Carbon Dioxide Difference and the Arterial-venous Oxygen Difference to Guide
Resuscitation in Cardiac Surgery Patients with Hyperlactatemia and Normal Central
Venous Oxygen Saturation. Chin Med J (Engl). 20 de mayo de 2015;128(10):1306-13. | |
dc.relation | Shaban M, Salahuddin N, Kolko MR, Sharshir M, AbuRageila M, AlHussain A. The
Predictive Ability of PV-ACO2 Gap and PV-ACO2/CA-VO2 Ratio in Shock: A
Prospective, Cohort Study. Shock Augusta Ga. 2017;47(4):395-401. | |
dc.relation | He H, Long Y, Liu D, Wang X, Tang B. The Prognostic Value of Central Venous-toArterial CO2 Difference/Arterial-Central Venous O2 Difference Ratio in Septic Shock
Patients with Central Venous O2 Saturation ≥80. Shock Augusta Ga. 2017;48(5):551-7. | |
dc.relation | Zhou J, Song J, Gong S, Li L, Zhang H, Wang M. Persistent hyperlactatemia-high
central venous-arterial carbon dioxide to arterial-venous oxygen content ratio is
associated with poor outcomes in early resuscitation of septic shock. Am J Emerg Med.
agosto de 2017;35(8):1136-41. | |
dc.relation | Mukai A, Suehiro K, Kimura A, Funai Y, Matsuura T, Tanaka K, et al. Comparison of
the venous-arterial CO2 to arterial-venous O2 content difference ratio with the venous-
arterial CO2 gradient for the predictability of adverse outcomes after cardiac surgery. J
Clin Monit Comput. 22 de febrero de 2019; | |
dc.relation | De Backer D, Ortiz JA, Salgado D. Coupling microcirculation to systemic
hemodynamics. Curr Opin Crit Care. junio de 2010;16(3):250-4. | |
dc.relation | De Backer D, Dubois M-J, Schmartz D, Koch M, Ducart A, Barvais L, et al.
Microcirculatory alterations in cardiac surgery: effects of cardiopulmonary bypass and
anesthesia. Ann Thorac Surg. noviembre de 2009;88(5):1396-403. | |
dc.relation | Raffan Sanabria F, Kling Gómez JC. Síndrome de reperfusión. Fisiopatología,
prevención y manejo. Rev Colomb Anestesiol [Internet]. 2000 [citado 6 de mayo de
2019];XXVIII(4). Disponible en: http://www.redalyc.org/resumen.oa?id=195118021003 | |
dc.relation | Hu BY, Laine GA, Wang S, Solis RT. Combined central venous oxygen saturation and
lactate as markers of occult hypoperfusion and outcome following cardiac surgery. J
Cardiothorac Vasc Anesth. febrero de 2012;26(1):52-7. | |
dc.relation | Abou-Arab O, Braik R, Huette P, Bouhemad B, Lorne E, Guinot P-G. The ratios of
central venous to arterial carbon dioxide content and tension to arteriovenous oxygen
content are not associated with overall anaerobic metabolism in postoperative cardiac
surgery patients. PloS One. 2018;13(10):e0205950. | |
dc.relation | Trzeciak S, Rivers EP. Clinical manifestations of disordered microcirculatory perfusion
in severe sepsis. Crit Care. 2005;9(Suppl 4):S20-6. | |
dc.relation | Lamia B, Monnet X, Teboul JL. Meaning of arterio-venous PCO2 difference in
circulatory shock. Minerva Anestesiol. junio de 2006;72(6):597-604. | |
dc.relation | Teboul J-L, Scheeren T. Understanding the Haldane effect. Intensive Care Med. enero
de 2017;43(1):91-3. | |
dc.relation | Jakob SM, Groeneveld ABJ, Teboul J-L. Venous-arterial CO2 to arterial-venous O2
difference ratio as a resuscitation target in shock states? Intensive Care Med. mayo de
2015;41(5):936-8. | |
dc.relation | Shaban M, Salahuddin N. Clarification on the Method of Calculating Central Venousto-Arterial CO2 Difference/Arterial-Central Venous O2 Difference Ratio. Shock Augusta
Ga. 2017;48(6):690-1. | |
dc.relation | Leach RM, Treacher DF. The pulmonary physician in critical care • 2: Oxygen delivery
and consumption in the critically ill. Thorax. 1 de febrero de 2002;57(2):170-7. | |
dc.relation | Regueira T, Andresen M. Manipulación del transporte y consumo de oxígeno en la
sepsis. Rev Médica Chile. febrero de 2010;138(2):233-42. | |
dc.relation | Shoemaker WC, Appel PL, Kram HB. Hemodynamic and oxygen transport responses
in survivors and nonsurvivors of high-risk surgery. Crit Care Med. julio de
1993;21(7):977-90 | |
dc.relation | Boron WF, Boulpaep EL. Medical Physiology: A Cellular and Molecular Approach. 2nd
Revised edition edition. Philadelphia, PA: Saunders; 2008. 1352 p. | |
dc.relation | Vallet B, Tavernier B, Lund N. Assessment of tissue oxygenation in the critically-ill. Eur
J Anaesthesiol. abril de 2000;17(4):221-9. | |
dc.relation | Cain SM. Oxygen delivery and uptake in dogs during anemic and hypoxic hypoxia. J
Appl Physiol. febrero de 1977;42(2):228-34. | |
dc.relation | Vincent J-L, De Backer D. My paper 20 years later: effects of dobutamine on the
VO2/DO2 relationship. Intensive Care Med. 1 de noviembre de 2014;40(11):1643-8. | |
dc.relation | Marik PE, Baram M. Noninvasive hemodynamic monitoring in the intensive care unit.
Crit Care Clin. julio de 2007;23(3):383-400. | |
dc.relation | Gruartmoner G, Mesquida J, Baigorri F. Saturación tisular de oxígeno en el paciente
crítico. Med Intensiva. 1 de mayo de 2014;38(4):240-8. | |
dc.relation | Scheeren TWL. Journal of Clinical Monitoring and Computing 2015 end of year
summary: tissue oxygenation and microcirculation. J Clin Monit Comput. abril de
2016;30(2):141-6. | |
dc.relation | De Backer D, Donadello K, Taccone FS, Ospina-Tascon G, Salgado D, Vincent J-L.
Microcirculatory alterations: potential mechanisms and implications for therapy. Ann
Intensive Care. 19 de julio de 2011;1:27. | |
dc.relation | Donoso F A, Arriagada S D, Cruces R P, Díaz R F. La microcirculación en el paciente
crítico: Parte I: generalidades y fisiología en el paciente séptico. Rev Chil Pediatría.
febrero de 2013;84(1):83-92. | |
dc.relation | Ince C. Hemodynamic coherence and the rationale for monitoring the microcirculation.
Crit Care. 2015;19(Suppl 3):S8. | |
dc.relation | Domingo MS, Nacher FJB, Pinillos JLJ, Caro P, Comes RF, Aguilar GA. Medición del
gasto cardíaco en el postoperatorio de cirugía cardíaca: validez de la reinhalación
parcial de CO2 (NICO) frente a la termodilución continua mediante catéter de arteria
pulmonar. Rev Esp Anestesiol Reanim. 2005;52(5):256-62. | |
dc.relation | Teboul J-L, Saugel B, Cecconi M, De Backer D, Hofer CK, Monnet X, et al. Less
invasive hemodynamic monitoring in critically ill patients. Intensive Care Med.
septiembre de 2016;42(9):1350-9. | |
dc.relation | Perz S, Uhlig T, Kohl M, Bredle DL, Reinhart K, Bauer M, et al. Low and «supranormal»
central venous oxygen saturation and markers of tissue hypoxia in cardiac surgery
patients: a prospective observational study. Intensive Care Med. enero de
2011;37(1):52-9. | |
dc.relation | Mak NTJJ, Iqbal S, de Varennes B, Khwaja K. Outcomes of post-cardiac surgery
patients with persistent hyperlactatemia in the intensive care unit: a matched cohort
study. J Cardiothorac Surg [Internet]. 24 de febrero de 2016 [citado 9 de mayo de
2019];11. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4765137/ | |
dc.relation | Attanà P, Lazzeri C, Picariello C, Dini CS, Gensini GF, Valente S. Lactate and lactate
clearance in acute cardiac care patients. Eur Heart J Acute Cardiovasc Care. junio de
2012;1(2):115-21. | |
dc.relation | Hajjar LA, Almeida JP, Fukushima JT, Rhodes A, Vincent J-L, Osawa EA, et al. High
lactate levels are predictors of major complications after cardiac surgery. J Thorac
Cardiovasc Surg. agosto de 2013;146(2):455-60. | |
dc.relation | Stephens RS, Whitman GJR. Postoperative Critical Care of the Adult Cardiac Surgical
Patient. Part I: Routine Postoperative Care. Crit Care Med. julio de 2015;43(7):1477-97. | |
dc.relation | Mustafa I, Roth H, Hanafiah A, Hakim T, Anwar M, Siregar E, et al. Effect of
cardiopulmonary bypass on lactate metabolism. Intensive Care Med. agosto de
2003;29(8):1279-85. | |
dc.relation | Ranucci M, De Toffol B, Isgrò G, Romitti F, Conti D, Vicentini M. Hyperlactatemia during
cardiopulmonary bypass: determinants and impact on postoperative outcome. Crit
Care. 2006;10(6):R167. | |
dc.relation | Habicher M, von Heymann C, Spies CD, Wernecke K-D, Sander M. Central VenousArterial pCO2 Difference Identifies Microcirculatory Hypoperfusion in Cardiac Surgical
Patients With Normal Central Venous Oxygen Saturation: A Retrospective Analysis. J
Cardiothorac Vasc Anesth. 2015;29(3):646-55. | |
dc.relation | Peñasco Y, González-Castro A, Rodríguez-Borregan JC, Llorca J. Exceso de bases,
un marcador útil en el pronóstico del traumatismo torácico en la población geriátrica.
Rev Esp Anestesiol Reanim. 2017;64(5):250-6. | |
dc.relation | Ibrahim I, Chor WP, Chue KM, Tan CS, Tan HL, Siddiqui FJ, et al. Is arterial base deficit
still a useful prognostic marker in trauma? A systematic review. Am J Emerg Med.
marzo de 2016;34(3):626-35. | |
dc.relation | Bhardwaj V, Kapoor PM, Irpachi K, Ladha S, Chowdhury UK. Basic arterial blood gas
biomarkers as a predictor of mortality in tetralogy of Fallot patients. Ann Card Anaesth.
marzo de 2017;20(1):67-71. | |
dc.relation | De Backer D, Hollenberg S, Boerma C, Goedhart P, Büchele G, Ospina-Tascon G,
et al. How to evaluate the microcirculation: report of a round table conference. Crit Care.
2007;11(5):R101. | |
dc.relation | Donoso F A, Arriagada S D, Cruces R P, Díaz R F. La microcirculación en el paciente
crítico: Parte II: evaluación y microcirculación como objetivo terapéutico. Rev Chil
Pediatría. abril de 2013;84(2):194-204. | |
dc.relation | Boerma EC, van der Voort PHJ, Spronk PE, Ince C. Relationship between sublingual
and intestinal microcirculatory perfusion in patients with abdominal sepsis. Crit Care
Med. abril de 2007;35(4):1055-60. | |
dc.relation | Rojas MM, Farías LP, Rojas MV, Opazo CT. Complicaciones asociadas a la transfusión
masiva. Rev Cuba Hematol Inmunol Hemoter [Internet]. 7 de febrero de 2013 [citado
10 de mayo de 2019];29(3). Disponible en:
http://www.revhematologia.sld.cu/index.php/hih/article/view/46 | |
dc.relation | Guerrero B. AF, Camacho M. J, Sandoval NF, Umaña M. JP, Obando CE, Carreño M.
Factores asociados a insuficiencia renal postoperatoria en cirugía de revascularización
miocárdica. Rev Colomb Cardiol. 1 de mayo de 2016;23(3):230-6. | |
dc.relation | Squara P. Mathematic coupling of data: a frequently misused concept. Intensive Care
Med. 2008;34:1916-21. | |
dc.relation | Saludes P, Proença L, Gruartmoner G, Enseñat L, Pérez-Madrigal A, Espinal C, et al.
Central venous-to-arterial carbon dioxide difference and the effect of venous hyperoxia:
A limiting factor, or an additional marker of severity in shock? J Clin Monit Comput.
diciembre de 2017;31(6):1203-11 | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights | Acceso abierto | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Derechos reservados - Universidad Nacional de Colombia | |
dc.title | Relación de p v-aCO2/Da-vO2 con marcadores de hipoperfusión tisular y desenlace clínico, en pacientes en posoperatorio de cirugía cardiaca | |
dc.type | Otro | |