dc.contributorMangones Matos, Sonia Cecilia
dc.contributorLizarazo Jiménez, Cristhian Guillermo
dc.contributorGrupo de Investigación en Logística para El Transporte Sostenible y la Seguridad Translogyt
dc.creatorGarcía Muñoz, Jaime Alejandro
dc.date.accessioned2022-03-14T15:37:22Z
dc.date.available2022-03-14T15:37:22Z
dc.date.created2022-03-14T15:37:22Z
dc.date.issued2021
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/81200
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.description.abstractLos accidentes de tránsito se encuentran entre las principales causas de muerte y lesiones incapacitantes en carreteras en los países en desarrollo. Las instituciones académicas brindan de manera intensiva esfuerzos constituyentes para comprender y pronosticar la naturaleza de este problema con el fin de cumplir con los objetivos globales de seguridad vial. Además, en los últimos 20 años la literatura ha discutido una gran variedad de métodos utilizados para predecir la frecuencia de siniestros. De manera que, los modelos para la predicción de siniestros calibrados a las zonas de estudio son empleados como una herramienta útil en la gestión y estimación de los riesgos en seguridad vial en entornos urbanos. Teniendo en cuenta este panorama, la presente investigación tiene como objetivo analizar y estimar modelos para predecir las tasas de siniestralidad en la red arterial de la ciudad de Bogotá, en la red de vías troncales del Sistema Integrado de Transporte Público – SITP, y en sus carriles preferenciales. Este objeto se aborda desde la estimación de modelos lineales generalizados multivariados (GLM) y redes bayesianas de probabilidad (PBN), comparando el desempeño de estos modelos para la predicción de tasas de siniestralidad en la ciudad de Bogotá. Este objetivo permite determinar aquellos factores que afectan de manera significativa la ocurrencia de los siniestros en las principales carreteras de la ciudad y brinda funciones eficientes calibradas que pueden ser empleadas para estimación y predicción del número de accidentes en la infraestructura vial de Bogotá. (Texto tomado de la fuente)
dc.description.abstractRoad crashes are among the leading causes of death and incapacitating injuries in developing countries. Academic institutions intensively provide constituent efforts towards understanding and forecasting the nature of this problem in order to meet global traffic safety goals. Furthermore, extensive literature over the past 20 years has discussed a myriad of methods utilized in predicting the frequency of motor vehicle crashes. Safety performance functions calibrated to a specific region are used as an efficient tool to manage and estimate road safety risks in urban roads. The primary objective of this research project corresponds to analyze and estimate crash prediction models applied to (1), the arterial road network (2), Bus Rapid Transit corridors and (3) Of the Integrated Public Transport System (SITP) preferential lanes in Bogota, Colombia. This dissertation provides estimation of safety performance functions via multivariate generalized linear models (GLM) and Probability Bayesian Networks models (PBN). An extensive comparison is assessed on the performance of these models for the prediction of crash counts between 2015 to 2018 in Bogota, Colombia. This allows the understanding of the factors that affect the occurrence of accidents on arterial roads and provides calibrated safety performance functions (SPF) that can be used to estimate crash rates in the city.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ingeniería - Maestría en Ingeniería - Transporte
dc.publisherDepartamento de Ingeniería Civil y Agrícola
dc.publisherFacultad de Ingeniería
dc.publisherBogotá, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationAASHTO. (2010). Highway Safety Manual. 1057.
dc.relationAgresti, A. (2015). Foundations Linear Generalized Linear Models. En John Wiley & Sons, Inc.
dc.relationAlarifi, S. A., Abdel-Aty, M. A., Lee, J., y Park, J. (2017). Crash modeling for intersections and segments along corridors: A Bayesian multilevel joint model with random parameters. Analytic Methods in Accident Research, 16, 48–59. https://doi.org/10.1016/j.amar.2017.08.002
dc.relationAlberti, G. (2021). GmAMisc: “Gianmarco Alberti” Miscellaneous. https://cran.r-project.org/package=GmAMisc
dc.relationArévalo-Támara, A., Orozco-Fontalvo, M., y Cantillo, V. (2020). Factors influencing crash frequency on colombian rural roads. Promet - Traffic - Traffico, 32(4), 449–460. https://doi.org/10.7307/ptt.v32i4.3385
dc.relationAtoche, P. (2017). Modelos de regresión con datos de conteo: aplicación a competiciones deportivas. 5–11. https://idus.us.es/xmlui/handle/11441/63085
dc.relationBerrar, D. (2018). Cross-validation. Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics, 1–3(January 2018), 542–545. https://doi.org/10.1016/B978-0-12-809633-8.20349-X
dc.relationBianchini, M., Maggini, M., y Jain, L. C. (2013). Handbook on Neural Information Processing. [electronic resource]. En Springer eBooks. Springer Berlin Heidelberg. http://ezproxy.unal.edu.co/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=cat02704a&AN=unc.000797003&lang=es&site=eds-live
dc.relationBurnham, K. P., y Anderson, D. R. (2004). Multimodel Inference: Understanding AIC and BIC in Model Selection. SOCIOLOGICAL METHODS AND RESEARCH VO - 33, 2, 261. http://ezproxy.unal.edu.co/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=edsbl&AN=RN157973137&lang=es&site=eds-live
dc.relationCameron, A. C., y Trivedi, P. K. (2013). Regression analysis of count data. (Second edi). Cambridge University Press. http://ezproxy.unal.edu.co/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=cat02704a&AN=unc.000837204&lang=es&site=eds-live
dc.relationCantillo, V., Garcés, P., y Márquez, L. (2016). Factors influencing the occurrence of traffic accidents in urban roads: A combined GIS-Empirical Bayesian approach. Dyna, 83(195), 21–28. https://doi.org/10.15446/dyna.v83n195.47229
dc.relationCatastro Bogotá. (2019). Mapa de Referencia para Bogotá D.C. Infraestructura de Datos Espaciales para el Distrito Capital IDECA. https://www.ideca.gov.co/recursos/mapas/mapa-de-referencia-para-bogota-dc
dc.relationCharles E. McCulloch, y Searle, S. R. (2003). Generalized Linear Mixed Models (7a ed.). %7Blibgen.li/file.php?md5=e06f7a61debbea173e9e52d835abb54e%7D,%0A%7D
dc.relationChen, C. (2017). Analysis and Forecast of Traffic Accident Big Data 2 Data Preprocessing. 04029.
dc.relationCooper, G. F. (1990). The computational complexity of probabilistic inference using bayesian belief networks. Artificial Intelligence, 42(2–3), 393–405. https://doi.org/10.1016/0004-3702(90)90060-D
dc.relationCousineau, D., y Chartier, S. (2010). Outliers detection and treatment: a review. International Journal of Psychological Research, 3(1), 58–67. https://doi.org/10.21500/20112084.844
dc.relationDagum, P., y Luby, M. (1993). Approximating probabilistic inference in Bayesian belief networks is NP-hard. Artificial Intelligence, 60(1), 141–153. https://doi.org/10.1016/0004-3702(93)90036-B
dc.relationDash, R., Paramguru, R. L., y Dash, R. (2015). Comparative Analysis of Supervised and Unsupervised Discretization Techniques. April 2011.
dc.relationde Leeuw, J., y Meijer, E. (2008). Handbook of Multilevelanalyse. En Journal of Chemical Information and Modeling (Vol. 53, Número 9). https://psycnet.apa.org/record/2008-02337-000
dc.relationde Oliveira, E. C., de Faro Orlando, A., dos Santos Ferreira, A. L., y de Oliveira Chaves, C. E. (2016). Comparison of different approaches for detection and treatment of outliers in meter proving factors determination. Flow Measurement and Instrumentation, 48, 29–35. http://10.0.3.248/j.flowmeasinst.2016.02.002
dc.relationDeublein, M., Schubert, M., Adey, B. T., y de Soto, B. G. (2015). A Bayesian network model to predict accidents on Swiss highways. Infrastructure Asset Management, 2(4), 145–158. https://doi.org/10.1680/jinam.15.00008
dc.relationDeublein, M., Schubert, M., Adey, B. T., Köhler, J., y Faber, M. H. (2013). Prediction of road accidents: A Bayesian hierarchical approach. Accident Analysis and Prevention, 51, 274–291. https://doi.org/10.1016/j.aap.2012.11.019
dc.relationGallo, P. P., y Longford, N. T. (1995). Random Coefficient Models. Technometrics, 37(1), 120. https://doi.org/10.2307/1269168
dc.relationGoldstein, H. (1986). Generalized Least Squares. Generalized Least Squares, 1–296. https://doi.org/10.1002/0470866993
dc.relationGoldstein, H. (2010). Multilevel statistical models. (4th ed.). Wiley. http://ezproxy.unal.edu.co/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=cat01725a&AN=unc.000430724&lang=es&site=eds-live
dc.relationGoldstein, H., Bryk, A. S., y Raudenbush, S. W. (1993). Hierarchical Linear Models: Applications and Data Analysis Methods. Journal of the American Statistical Association, 88(421), 386. https://doi.org/10.2307/2290750
dc.relationGómez, F., y Bocarejo, J. P. (2015). Accident Prediction Models for Bus Rapid Transit Systems: Generalized Linear Models Compared with a Neural Network. Transportation Research Record, 2512(1), 38–45. https://doi.org/10.3141/2512-05
dc.relationGuerrero-Barbosa, T., Espinel-Bayona, Y., y Palacio-Sánchez, D. (2015). Efectos de los atributos asociados a geometría vial, volúmenes vehiculares y velocidades en la incidencia de accidentes en una ciudad intermedia. Ingenieria y Universidad, 19(2), 351–367. https://doi.org/10.11144/Javeriana.iyu19-2.eaar
dc.relationHall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., y Witten, I. H. (2009). The {WEKA} data mining software: an update. SIGKDD Explorations, 11(1), 10–18.
dc.relationHastie, T. J., Friedman, J., y Tibshirani, R. J. (2009). The elements of statistical learning : data mining, inference, and prediction. (Segunda ed). http://ezproxy.unal.edu.co/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=cat02704a&AN=unc.000660993&lang=es&site=eds-live
dc.relationHyndman, R., Athanasopoulos, G., Bergmeir, C., Caceres, G., Chhay, L., O’Hara-Wild, M., Petropoulos, F., Razbash, S., Wang, E., y Yasmeen, F. (2021). {forecast}: Forecasting functions for time series and linear models. https://pkg.robjhyndman.com/forecast/
dc.relationJensen, F. V., Lauritzen, S. L., y Olesen, K. G. (1990). Bayesian updating in causal probabilistic networks by local computations.
dc.relationKjærulff, U. B., y Madsen, A. L. (2013). Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis. [electronic resource]. En Springer eBooks (Second Edi). Springer New York. http://ezproxy.unal.edu.co/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=cat02704a&AN=unc.000783739&lang=es&site=eds-live
dc.relationKoski, T., y Noble, J. M. (2009). Bayesian networks : an introduction. John Wiley. http://ezproxy.unal.edu.co/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=cat02704a&AN=unc.000766023&lang=es&site=eds-live
dc.relationKratzer, G., y Furrer, R. (2018). varrank: an R package for variable ranking based on mutual information with applications to observed systemic datasets. arXiv preprint arXiv:1804.07134.
dc.relationLaird, N. M., y Ware, J. H. (1982). Random-effects models for longitudinal data. Biometrics, 38(4), 963–974.
dc.relationLambert, D. (1992). Zero-inflated poisson regression, with an application to defects in manufacturing. Technometrics, 34(1), 1–14. https://doi.org/10.1080/00401706.1992.10485228
dc.relationLauritzen, S. L., y Spiegelhalter, D. J. (1988). Local Computations with Probabilities on Graphical Structures and Their Application to Expert Systems. Journal of the Royal Statistical Society. Series B: Methodological, 50(2), 157–224.
dc.relationLord, D., y Mannering, F. (2010). The statistical analysis of crash-frequency data: A review and assessment of methodological alternatives. Transportation Research Part A: Policy and Practice, 44(5), 291–305. https://doi.org/10.1016/j.tra.2010.02.001
dc.relationLord, D., Washington, S., y Ivan, J. N. (2007). Further notes on the application of zero-inflated models in highway safety. Accident Analysis and Prevention, 39(1), 53–57. http://10.0.3.248/j.aap.2006.06.004
dc.relationMalyshkina, N. V. (2008). Markov switching models: an application to roadway safety. December, 122. http://arxiv.org/abs/0808.1448
dc.relationMannering, F. L., y Bhat, C. R. (2014). Analytic methods in accident research: Methodological frontier and future directions. Analytic Methods in Accident Research, 1, 1–22. http://10.0.3.248/j.amar.2013.09.001
dc.relationMarchionna, A., Perco, P., y Falconetti, N. (2012). Evaluation of the Applicability of IHSDM Crash Prediction Module on Italian Two-Lane Rural Roads. Procedia - Social and Behavioral Sciences, 53, 932–941. https://doi.org/10.1016/j.sbspro.2012.09.942
dc.relationMartínez Rodríguez, M. (2005). Errores frecuentes en la interpretación del coeficiente de determinación lineal. Anuario Juridico y Economico Escurialense, 38, 315–331.
dc.relationMeyer, D., Zeileis, A., y Hornik, K. (2020). vcd: Visualizing Categorical Data.
dc.relationMiaou, S. P. (1994). The relationship between truck accidents and geometric design of road sections: Poisson versus negative binomial regressions. Accident Analysis and Prevention, 26(4), 471–482. https://doi.org/10.1016/0001-4(94)9003-8
dc.relationMiller, J. N. (1993). Tutorial review—Outliers in experimental data and their treatment. The Analyst ; volume 118, issue 5, page 455-461 ; ISSN 0003-2654 1364-5528. https://doi.org/10.1039/an9931800455
dc.relationMinisterio de Transporte. (2012). Resolucion_0011268.
dc.relationNeapolitan, R. E. (2004). Learning Bayesian networks. Pearson Prentice Hall. http://ezproxy.unal.edu.co/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=cat02704a&AN=unc.000351209&lang=es&site=eds-live
dc.relationOlmsted, S. M. (1983). Reproduced with permission of the copyright owner . Further reproduction prohibited without [Stanford University, Stanford, CA.]. En PhD thesis. http://dx.doi.org/10.1016/j.jaci.2012.05.050
dc.relationP. Mc Cullagh, J. A. N. (1986). Generalized Linear Models (P. Mccullagh and J. A. Nelder). En SIAM Review (Vol. 28, Número 1). https://doi.org/10.1137/1028043
dc.relationPalaniappan, S., Jaya, P., y Hong, T. K. (2008). Discretization of Continuous Valued Dimensions in OLAP Data Cubes. International Journal of Computer Science and Network Security, 8(11), 116–126.
dc.relationR Core Team. (2019). R: A Language and Environment for Statistical Computing. https://www.r-project.org/
dc.relationRamírez, A. F., y Valencia, C. (2021). Spatiotemporal correlation study of traffic accidents with fatalities and injuries in Bogota (Colombia). Accident Analysis and Prevention, 149(November 2020), 1-18.https://doi.org/10.1016/j.aap.2020.105848
dc.relationRefaeilzadeh, P., Tang, L., y Liu, H. (2009). Cross-Validation BT - Encyclopedia of Database Systems (L. LIU & M. T. ÖZSU (eds.); pp. 532–538). Springer US. https://doi.org/10.1007/978-0-387-39940-9_565
dc.relationRegistro Unico Nacional de Tránsito. (2021). Registro Unico Nacional de Tránsito - RUNT. https://www.runt.com.co/runt-en-cifras/parque-automotor
dc.relationRevelle, W. (2018). psych: Procedures for Psychological, Psychometric, and Personality Research. https://cran.r-project.org/package=psych
dc.relationRivas, M. E., Suárez-Alemán, A., y Serebrisky, T. (2019). Hechos estilizados de transporte urbano en América Latina y el Caribe. Nota Técnica No. IDB-TN-1640, 1-14.https://publications.iadb.org/publications/spanish/document/Hechos_estilizados_de_transporte_urbano_en_América_Latina_y_el_Caribe_es_es.pdf
dc.relationRodríguez-polo, K. A. (2019). Funciones de desempeño de seguridad en carriles de uso exclusivos del BRT sobre el corredor de la Avenida Caracas en la ciudad de Bogotá. 15(2), 66–77.
dc.relationSalgado, C. M., Azevedo, C., Proença, H., y Vieira, S. M. (2016). Noise Versus Outliers BT - Secondary Analysis of Electronic Health Records (M. I. T. C. Data (ed.); pp. 163–183). Springer International Publishing.https://doi.org/10.1007/978-3-319-43742-2_14
dc.relationSalinas Rodríguez, A., Manrique Espinoza, B., y Sosa Rubí, S. G. (2009). Análisis estadístico para datos de conteo: Aplicaciones para el uso de los servicios de salud. Salud Publica de Mexico, 51(5), 397–406.
dc.relationSAS Institute, I. (2008). The GLIMMIX procedure. SAS/STAT 9.2 User’s Guide, 2075–2420.
dc.relationSavolainen, P. T., Mannering, F. L., Lord, D., y Quddus, M. A. (2011). The statistical analysis of highway crash-injury severities : A review and assessment of methodological alternatives. Accident Analysis and Prevention, 43(5), 1666-1676. https://doi.org/10.1016/j.aap.2011.03.025
dc.relationScutari, M. (2017). Bayesian Network Constraint-Based Structure Learning Algorithms: Parallel and Optimized Implementations in the {bnlearn} {R} Package. Journal of Statistical Software, 77(2), 1–20. https://doi.org/10.18637/jss.v077.i02
dc.relationSecretaría Distrital de movilidad. (2018). Volumnes vehiculares a partir del modelo de transporte de Bogota año 2018.
dc.relationSecretaría Distrital de movilidad. (2019). Velocidades Bitcarrier 2018-2019. Datos Abiertos Secretaría Distrital de Movilidad. https://www.movilidadbogota.gov.co/web/simur
dc.relationSecretaría Distrital de Movilidad. (2015a). Resolución 182 de 2015. 3–5.
dc.relationSecretaría Distrital de Movilidad. (2015b). Resolución 402 de 2015. 3–5.
dc.relationSecretaría Distrital de Movilidad. (2015c). Resolución 560 de 2015. 3–5.
dc.relationSecretaría Distrital de Movilidad. (2015d). Resolución 833 del 2015.
dc.relationSecretaría Distrital de Movilidad. (2015e). Resolución 946 de 2015. 67–69.
dc.relationSecretaría Distrital de Movilidad. (2016). Resolución 258 de 2016. 5–7.
dc.relationSecretaría Distrital de Movilidad. (2017). Resolución 093 del 2017.
dc.relationSecretaría Distrital de Movilidad. (2018a). Anuario de Siniestralidad vial de Bogotá 2018.
dc.relationSecretaría Distrital de Movilidad. (2018b). Resolución 233 del 2018. 37.
dc.relationSecretaría Distrital de Movilidad. (2018c). Sistema Geográfico de Accidentes de Tránsito SIGAT (II). https://www.movilidadbogota.gov.co/web/SIMUR/sigatjs/consultaPlaca/
dc.relationSecretaría Distrital de Movilidad. (2019). Resultados de la Encuesta de Movilidad de Bogotá y municipios vecinos 2019.
dc.relationSecretaría Distrital de Movilidad. (2020). Anuario de siniestralidad vial de Bogotá 2020.
dc.relationShachter, R. D. (1986). Evaluating Influence Diagrams. Operations Research, 34(6), 871–882. https://doi.org/10.1287/opre.34.6.871
dc.relationShankar, V., Mannering, F., y Barfield, W. (1995). Effect of roadway geometrics and environmental factors on rural freeway accident frequencies. ACCIDENT ANALYSIS AND PREVENTION VO - 27, 3, 371. http://ezproxy.unal.edu.co/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=edsbl&AN=EN027767539&lang=es&site=eds-live
dc.relationSnijders, T. A. B., y Bosker, R. J. (2011). Multilevel analysis. An introduction to basic and advanced multilevel modeling. SAGE Publications Inc.
dc.relationSoler Flores, F. J., Pardillo Mayora, J. M., Jurado Piña, R., y Coruña, A. del V. C. de I. del T. | V. C. de I. del T. | 02/07/2008-04/07/2008 | La. (2008). Tratamiento de outliers en los modelos de predicción de accidentes de tráfico. En Actas del VIII Congreso de Ingeniería del Transporte | VIII Congreso de Ingeniería del Transporte | 02/07/2008-04/07/2008 | La Coruña, España. E.T.S.I. Caminos, Canales y Puertos (UPM). http://ezproxy.unal.edu.co/login url=http://search.ebscohost.com/login.aspx?direct=true&db=edsbas&AN=edsbas.5F3C06B&lang=es&site=eds-live
dc.relationSrinivasan, R., y Bauer, K. (2013). Safety Performance Function Development Guide: Developing Jurisdiction-Specific SPFs. FHWA-SA-14-005, September, 1–47.
dc.relationTarko, A. P., Romero, M., Thomaz, J., Ramos, J., Sultana, A., Pineda, R., Chen, E., Purdue, U., Indiana Department of, T., y Federal Highway, A. (2016). Updating RoadHAT: Collision Diagram Builder and HSM Elements. https://doi.org/10.5703/1288284316334
dc.relationTaylor, R. (2015). Interpretation of the Correlation Coefficient : A Basic Review. 35–39.
dc.relationTransmilenio S.A. (2021). Datos abiertos Bogota - Transmilenio. Datos abiertos Bogota. https://datosabiertos.bogota.gov.co/organization/transmilenio
dc.relationValencia-Alaix, V. G., Restrepo-Betancur, B., Lizarazo-Jimenez, C., y Pineda-Mendez, R. A. (2020). Estimation of safety performance functions (SPF) at signalized intersections in Medellín, Colombia. DYNA (Colombia), 87(214), 215–220. https://doi.org/10.15446/DYNA.V87N214.83880
dc.relationVenables, W. N., y Ripley, B. D. (2002). Modern Applied Statistics with S (Fourth). Springer. https://www.stats.ox.ac.uk/pub/MASS4/
dc.relationVieira Gomes, S. (2013). The influence of the infrastructure characteristics in urban road accidents occurrence. Accident Analysis and Prevention, 60, 289–297. https://doi.org/10.1016/j.aap.2013.02.042
dc.relationWang, H., y Song, M. (2011). Ckmeans.1d.dp: Optimal $k$-means clustering in one dimension by dynamic programming. The R Journal, 3(2), 29–33. https://doi.org/10.32614/RJ-2011-015
dc.relationWang, J., y Huang, H. (2016). Road network safety evaluation using Bayesian hierarchical joint model. Accident Analysis and Prevention, 90, 152–158. https://doi.org/10.1016/j.aap.2016.02.018
dc.relationWei, T., y Simko, V. (2021). R package “corrplot”: Visualization of a Correlation Matrix. https://github.com/taiyun/corrplot
dc.relationWilliamson, M., y Zhou, H. (2012). Develop Calibration Factors for Crash Prediction Models for Rural Two-Lane Roadways in Illinois. Procedia - Social and Behavioral Sciences, 43, 330–338. https://doi.org/10.1016/j.sbspro.2012.04.106
dc.relationWinkelmann, R. (2008). Econometric Analysis of Count Data. [electronic resource]. En Springer eBooks (Fifth edit). Springer Berlin Heidelberg. http://ezproxy.unal.edu.co/login?url=http://search.ebscohost.com/login.aspx direct=true&db=cat02704a&AN=unc.000787976&lang=es&site=eds-live
dc.relationWorld Health Organization. (2018). Global status report on road safety 2018 (Paprika).
dc.relationZeileis, A., Kleiber, C., y Jackman, S. (2008). Regression Models for Count Data in {R}. Journal of Statistical Software, 27(8). http://www.jstatsoft.org/v27/i08/
dc.relationZeng, Q., y Huang, H. (2014). Bayesian spatial joint modeling of traffic crashes on an urban road network. Accident Analysis and Prevention, 67, 105–112. https://doi.org/10.1016/j.aap.2014.02.018
dc.relationZou, K. H., Tuncali, K., y Silverman, S. G. (2003). Correlation and Simple Linear Regression. Radiology, 617–622. https://doi.org/10.1148/radiol.2273011499
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleModelo para predicción de siniestros viales basado en redes bayesianas para corredores de la red vial arterial de la ciudad de Bogotá
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución