dc.contributorIzquierdo, Ebroul
dc.contributorMoreno Cañadas, Agustín
dc.contributorTERENUFIA-UNAL
dc.creatorOsorio Angarita, María Alejandra
dc.date.accessioned2020-03-11T13:05:57Z
dc.date.available2020-03-11T13:05:57Z
dc.date.created2020-03-11T13:05:57Z
dc.date.issued2019-11-20
dc.identifierAngarita, M.A.O. Human Interaction Proofs Based on Emerging and Multistable Images: A Practical Application of the Theory of Representation of Algebras. Tesis doctoral presentada en los Estudios de Doctorado en Ciencias Matemáticas. Universidad Nacional de Colombia. 2019
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/76055
dc.description.abstractWe explore the use of the theory of representation of algebras to construct emerging image-repositories, such emerging images are used in different types of human interaction proofs (HIPs). These tests are able to tell apart human from bots (or robots) in order to protect online environments (as social networks, wikis, ticket sellers, free-email providers, etc) from different kind of security threats. We introduce novel algorithms to model emerging and multistable images from tiled orders, Brauer configurations, posets together with tools and techniques arising from TDA (point clouds, simplicial complexes and spatial triangulations, among others), in order to create shapes which can be identified by humans as recognizable images hard to detect by machines.
dc.description.abstractSe explora el uso de la Teoría de Representaciones de Álgebras para construir repositorios de imágenes emergentes, dichas imágenes se usan en diferentes tipos de pruebas interactivas con humanos. Estos tests pueden diferenciar humanos de bots o robots, con el fin de proteger ambientes en línea (tales como redes sociales, wikis, ventas de tiquetes, proveedores de correo gratis, etc), de diferentes tipos de amenazas de seguridad. Se introducen algoritmos novedosos para modelar imágenes emergentes y multiestables a partir de órdenes tejados, configuraciones de Brauer, posets, junto con herramientas y técnicas que provienen del Análisis topológico de datos (nubes de puntos, complejos simpliciales y triangulaciones del espacio, entre otras), con el fin de crear formas que puedan ser reconocibles por los humanos pero difíciles para las máquinas.
dc.languageeng
dc.publisherDepartamento de Matemáticas
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relation[1] L. Von Ahn, M. Blum, N.J. Hopper, and J. Langford, CAPTCHA:Using hard AI problems for security, In: Biham E. (eds) Advances in Criptology - EUROCRYPT 2003 ; Lecture Notes in Comput. Sci. 2656 (2003), 294–311. Springer, Berlin, Heidelberg. [2] L. Von Ahn, M. Blum, and J. Langford, Telling humans and computers apart automatically, Commun. ACM 47 (2004), no. 2, 57-60. [3] L. Von Ahn, B. Maurer, C. McMillen, D. Abraham, and M. Blum, reCAPTCHA: Human-Based Character Recognition via Web Security Measures, Science 321 (2008), 1465–1468. [4] Altavista, Altavista’s ”add-url” site, protected by the earliest known captcha. http://altavista.com/sites/addurl/newurl, 1997. [5] M.A.O. Angarita, E. Izquierdo, and A.M.Cañadas, Human Interaction Proofs (HIPs) based on Emerging Images and Topological Data Analysis (TDA) Techniques, 3rd Cyber Security in Networking Conference to appear (2019). Accepted. [6] , Human Interaction Proofs (HIPs) Based on Multistable Images and Brauer Configuration Algebras (BCA), 9th International Conference on Imaging for Crime Detection and Prevention (ICDP-19) to appear (2019). Accepted. [7] M.A.O. Angarita, A.M.Cañadas, and E. Izquierdo, Algebraic Tools for Multimedia Based Cryptography and Security Applications, ) to appear (2019). Submitted. [8] M.A.O. Angarita and A.M.Cañadas, Brauer Configuration Algebras for Multimedia Based Cryptography and Security Applications, ) to appear (2019). Submitted. [9] G. Arce, Z. Wang, and G. Di Crescenzo, Visual Cryptography from Halftone Error Diffusion: In: S. Cimato and C. Yang (eds)Visual Cryptography and Secret Image Sharing, CRC Press. London, 2012. [10] D.M. Arnold, Abelian Groups and Representations of Finite Partially Ordered Sets, CMS Books in Mathematics. vol. 2, Springer, 2000, 244 p. [11] I. Assem, D. Simson, and A. Skowro´nski, Elements of the Representation Theory of Associative Algebras, Vol. 1, Cambridge University Press, 2006. [12] H. S. Baird and K. Popat, In Proceedings of the 5th International Workshop on Document Analysis Systems, Springer-Verlag, 2002. [13] H. S. Baird, M. A. Moll, and S. Y. Wang, ScatterType: a legible but hard-to-segment CAPTCHA, ICDAR’05, Proc. 8th Int. Conference on Document Analysis and Recognition, IEEE Computer Society (2005), doi: 10.1109/ICDAR.2005.205. [14] S. Battiato, G. Gallo, and G. Puglisi, Digital Imaging for Cultural Heritage Preservation: Analysis, Restoration: Digital Reproduction of Ancient Mosaics. [15] S. Battiato, G. Di Blasi, G. Farinella, and G. Gallo, Digital Mosaic Frameworks-An Overwiew, Computer Graphics forum. DOI:10.1111/j.1467-8659.2007.01021.x. [16] W.A. Beyer, N. Metropolis, and J.R. Neergaard, Statistical study of digits of some square roots of integers in various bases, Math. Comput. 24 (1970), no. 110, 455-473. [17] G. Di Blasi, G. Gallo, M. Petralia, and G. Gallo, Puzzle Image Mosaic, Proc. IASTED/VIIP2005 (2005). [18] M. Blum, J. Langford, and N. Hopper, The captcha project, ”completely automatic public turing test to tell computers and humans apart”, School of Computer Science. Carnegie-Mellon University, http://www. captcha. net, 2000. [19] C. Blundo, P. D’Arco, A. De Santis, and D.R. Stinson, Contrast optimal threshold visual cryptography schemes, SIAM J. Discrete Math. 16 (2003), no. 2, 224-261. [20] B. Bocian, Fritz Perls in Berlin, 1893-1933: Expressionismus, Psychoanalyse, Judentum, EHP Verlag Andreas Kohlhage, 2010. [21] P. Borwein and L. J¨orgenson, Visible structures in Number Theory, A.M.M 108 (2002), no. 5, 897-910. [22] V. Buttigieg, Variable-Length Error-Correcting Codes, Doctoral Thesis, 1995. [23] A.M. Cañadas and N.P.P. Vanegas, Representations of Posets to Generate Emerging Images, Far East J. Math. Sci. (FJMS) Special (2013), no. II, 139-152. [24] A.M. Cañadas, I.D. Mar´ın, and P.F.F. Espinosa, Categorical properties of the algorithm of differentiation VIII, and on the algorithm of differentiation DIX for equipped posets, JP J. Algebra Number Theory Appl. 29 (2013), no. 2, 133-173. [25] A.M. Cañadas, H. Giraldo, and P.F.F. Espinosa, Categorification of some integer sequences, Far East J. Math. Sci. (FJMS) 92 (2014), no. 2, 125-139. [26] A.M. Cañadas, M.A.O. Angarita, and W.G. Salas-Avila, Matrix Problems to Generate Mosaic-Based CAPTCHAs, 6th International Conference on Imaging for Crime Prevention and Detection (ICDP-15) (2015). London. [27] A.M. Cañadas, R.J. Serna, and C.I. Espinosa, On the reduction of some tiled orders, JP J. Algebra Number Theory Appl. 36 (2015), no. 2, 157-176. [28] A.M. Cañadas, V. Cifuentes, and A.F. Gonzalez, On the number of two-point antichains in the powerset of an n-element set ordered by inclusion, JP J. Algebra Number Theory Appl. 38 (2016), no. 3. [29] A.M. Cañadas, R.J. Serna, and H. Giraldo, Matrix problems induced by visual cryptography schemes, Far East J. Math. Sci. (FJMS) 106 (2017), no. 2, 1223-1241. [30] G. Carlsson and V. de Silva, Topological estimation using witness complexes, Symposium on PointBased Graphics (2004). [31] S. Chakrabarti and M. Singbal, Password-based authentication: Preventing dictionary attacks, IEEE Computer 40 (2007), no. 6, 68-74. [32] M. Chandrasekaran, R. Chinchani, and S. Upadhyaya, Phoney: Mimicking user response to detect phishing attacks, In Proceedings of the 2006 International Symposium on a World of Wireless, Mobile and Multimedia Networks, 668-672. IEEE, 2006. [33] K. Chellapilla, K. Larson, P. Simard, and M. Czerwinski, Building Segmentation based human-friendly human interaction proofs (HIPs), In H. Baird and D. Lopresti,edts, Human Interactive Proofs, Volume 3517 of Lecture Notes in Computer Sciencies, 173-185. Springer Berlin / Heidelberg, 2005. [34] , Designing human friendly human interaction proofs (HIPs), In Proceedings of the SIGCHI conference on Human factors in computing systems, 711-720. ACM, 2005. [35] M. Chew and H. Baird, BaffleText: a Human Interactive proof, Proceedings of the SPIE/ISET Document Recognition and Retrieval Conf (2003), 22-23. Santa Clara. [36] D. Cohen-Steiner, H. Edelsbrunner, and J. Harer, Stability of Persistence Diagrams, Discrete Comput. Geom. 37 (2007), no. 1, 103-120. https://doi.org/10.1007/s00454- 006-1276-5. [37] B.A. Davey and H.A. Priestley, Introduction to Lattices and Order, Second edition, Cambridge University Press. Cambridge, 2002. [38] A. Desolneaux, L. Moisan, and J. M. Morel, Gestalt Theory to Image Analysis: A Probabilistic Approach, 2006. [39] J. Dobashi, T. Haga, H. Johan, and T. Nishita, A Method for creating mosaic images using Voronoi Diagrams, Computer Graphics Forum (EG’02), 341-348. 2002. [40] H. Edelsbrunner, J. Harer, and A. Zomorodian, Topological Persistence and Simplification, Discrete Comput. Geom. 28 (2002), 511–533. [41] H. Edelsbrunner and J. Harer, Persistent Homology - a survey, In Twenty Years After. Eds. J.E. Goodman, J. Pach and R. Pollack. AMS, 2007. [42] , Computational Topology, an Introduction, Amer. Math. Soc. Providence, Rhode Island, 2009. [43] H. Edelsbrunner, Persistent Homology in Image Processing, In: W.G.Kropatsch, N.M. Artner, Y. Haxhimusa, X. Jiang (eds). Graph-Based Representations in Pattern Recognition GbRPR. Lecture Notes in Comput. Sci., vol 7877. Springer, Berlin, Heidelberg, 2013. [44] W. Ellis, A source book of Gestalt psychology, Vol. 2, Routledge. Taylor y Francis Group, 1938. Great Britain. [45] E. Fern´andez and M.I. Platzeck, A note on the spectral properties of cluster algebras (2010). Preprint available in: https://arxiv.org/abs/1011.5520v1. [46] I. Fischer and T. Herfet, Visual captchas for document authentication, In IEEE 8th Workshop on Multimedia Signal Processing, 471–474. IEEE, 2006. [47] L. Fritzsche, H. Hellwigt, S. Hiller, and O. Deussen, Interactive design of authentic looking mosaics using Voronoi structures, In 2. International Symposium on Voronoi Diagrams in Science and Engineering (VD). 2005. [48] P. Gabriel and A.V. Roiter, Representations of Finite Dimensional Algebras: Algebra VIII, Encyclopedia of Math. Sc., Vol. 73, Springer-Verlag, 1992. 177p. [49] H. Gao, D. Yao, H. Liu, and L. Wang, A novel Image based CAPTCHA using jigsaw puzzle, In Computational Science and Engineering (CSE),2010 IEEE 13th International Conf., 351-356. dec. 2010. [50] S. Gao, M. Mohamed, N. Saxena, and C. Zhang, Emerging-Image Motion CAPTCHAs: Vulnerabilities of Existing Designs, and Countermeasures, 2015. http://dx.doi.org/10.1145/2818000.2818006. [51] , Emerging Image Game CAPTCHAs for Resisting Automated and Human-Solver relay Attacks, ACSAC’15 (2015). http://dx.doi.org/10.1109/TDSC.2017.2719031. [52] R. Ghrist, Barcodes: The persistent topology of data, Bull. Amer. Math. Soc. 45 (2008), 45-61. http://www.ams.org/bull/2008-45-01/S0273-0979-07-01191-3. 4. [53] P. Golle and N. Ducheneaut, Preventing bots from playing online games, Computers in Entertainment (CIE) 3 (2005), no. 3, 3–3. [54] E.L. Green and S. Schroll, Brauer configuration algebras: A generalization of Brauer graph algebras, Bull. Sci. Math. 141 (2017), 539–572. [55] M. Hazewinkel, N. Gubareni, and V.V. Kirichenko, Algebras, Rings and Modules, First Edition, Vol. 2, Springer, 2007. [56] G. Humphrey, The Psychology of the Gestalt, J. Educ. Psychol. 15 (1924), no. 7, 401. [57] G. Kanizsa, Grammatica del vedere / La Grammaire du voir, Il Mulino Bologna / Editions Diderot, arts et sciences, 1980/1997. ´ [58] E.J. Kartaltepe and S. Xi, Towards blocking outgoing malicious impostor emails, In Proceedings of the 2006 International Symposium on a World of Wireless, Mobile and Multimedia Networks, 5-pp. IEEE, 2006. [59] M.M. Kleiner, Partially ordered sets of finite type, Zap. Nauchn. Semin. LOMI 28 (1972), 32–41 (in Russian); English transl., J. Sov. Math 3 (1975), no. 5, 607–615. [60] K. Koffka, Principles of Gestalt Psychology, Routledge, 2005. 61] Y.M. Kuo, H.K. Chu, M.T. chi, R.R. Lee, and T.Y. Lee, Generating Ambiguous Figure-Ground Images, IEEE Trans. Vis. Comput. Graph. 23 (2017), no. 5, 1534- 1545. [62] S. Lehar, Gestalt isomorphism and the primacy of subjective conscious experience: A Gestalt Bubble model, Behav. Brain Sci 26 (2003), no. 4, 375-408. [63] S. Ming-Shing, H. Wen-Liang, and C. Kuo-Young, Digital imaging for cultural Heritage preservation: Analysis, Restoration, IEEE Transactions on Images Processing focuses and signal-processing aspects of image processing, imaging systems, and images scanning, display and printing ) 13, 952–959. IEEE, 2007. [64] N. J. Mitra, H. K. Chu, T. Y. Lee, L. Wolf, H. Yeshurun, and D. Cohen-Or, Emerging Images, ACM Trans. Graph. 28 (December, 2009), no. 5, 8 pp. [65] P. Moore and Ch. Fitz, Using Gestalt Theory to Teach Document Design and Graphics, Tech. Commun. Q. 2 (Fall 1993), no. 4, 389-410. [66] G. Mori and J. Malik, Recognizing objects in adversarial clutter: Breaking a visual CAPTCHA, Proc. Conf. Computer vision and pattern recognition (2003). Madison. [67] M. Naor and A. Shamir, Visual Cryptography, Advances in Cryptography: EUROCRYPT’94; Lecture Notes in Comput. Sci. 950 (1994). Springer, Berlin, Heidelberg. [68] M. Naor, Verification of a human in the loop or identification via the Turing test (September 13 1996). Unpublished notes; http://www.wisdom.weizmann.ac.il./naor/PAPERS/human.pdf. [69] M. Nayeem, M. Akand, N. Sakib, and W. Kabir, Design of a Human Interaction Proof (HIP) using human cognition in contextual natural conversation, 2014 IEEE 13th International Conference on Cognitive Informatics and Cognitive Computing (2014), 146–154. [70] L.A. Nazarova and A.V. Roiter, Representations of partially ordered sets, Zap. Nauchn. Semin. LOMI 28 (1972), 5–31 (in Russian); English transl., J. Sov. Math. 3 (1975), 585–606. [71] U. Onwudebelu, U. Ugwuoke, and I. Nkechi, A Review and Evaluation of Human Interactive Proof (HIP) Technique for Combating Malicious Automated Scripts, Computer Science and Information Technology 1 (2013), no. 3, 202-207. [72] A. Pinar Saygin, I. Cicekli, and V. Akman, Turing test: 50 years later, Minds Mach. 10 (2000), no. 4, 463–518. [73] G. Reynaga, The usability of CAPTCHAS on mobile devices, Carleton University, 2015. Ottawa, Ontario. [74] C. Rodriguez and A.G. Zavadskij, On corepresentations of equipped posets and their differentiation, Revista Colombiana de Matem´aticas 39 (2006). [75] C. Romero-Macias and E. Izquierdo, Image CAPTCHA based on distorted faces, 4th international conference on imaging for crime prevention and detection; IEEE digital library (2011), doi: 10.1049/ic.2011.0106. London. [76] , A survey of captchas: Are computers getting the better of us?, ACM Surveys (2011). [77] C. Romero-Macias, Image Understanding for Automatic Human and Machine Separation, Queen Mary, University of London. School of Electronic Engineering and Computer Science (2013). PhD Thesis. London. [78] Y. Rui and Z. Liu, ARTiFACIAL: Automated Reverse Turing test using FACIAL features, Proceedings of ACM Multimedia 2003, (2003). [79] S. Saklikar and S. Saha, Public key-embedded graphic captchas, In 5th IEEE Consumer Communications and Networking Conference (CCNC), 262–266. IEEE, 2008. [80] B.S.W. Schr¨oder, Ordered Sets. An Introduction, Birkh¨auser Boston, Inc.,. Boston, MA,2003. [81] S. Shirali-Shahreza and A. Movaghar, A new anti-spam protocol using captcha, In IEEE International Conference on Networking, Sensing and Control (2007), 234–238. IEEE. [82] S. Shirali-Shahreza, M. Shirali-Shahreza, and A. Movaghar, Restricted access to exam grades on the web by HIP, In 6th IEEE/ACIS International Conference on Computer and Information Science (ICIS), 967–971. IEEE, 2007. [83] S. Shirali-Shahreza and M. Shirali-Shahreza, A Survey of Human Interactive Proofs Systems, Int. J. Innov. Comput. 6 (March 2010 ), no. 3A. [84] D. Simson, Linear Representations of Partially Ordered Sets and Vector Space Categories, Gordon and Breach, 1992. London. [85] M. Sonka, V. Hlavak, and R. Boyle, Image Processing, Analysis and Machine Learning, 2nd edn, PSW Publishing. Pacific Grove, 1999. [86] P. Sterzer, A. Kleinschmidt, and G. Rees, The neural bases of multistable perception, Trends Cogn. Sci. 13 (2009), no. 7, 310–318. doi: http://dx.doi.org/10.1016/j.tics.2009.04.006. [87] D.R. Stinson, Cryptography: Theory and Practice, First Edition, CRC Press, 1995. [88] http://www.usm.edu/media/english/fairytales/cinderella/imagesonly.html. [89] techopediA, Internet Bot (2018). https://www.techopedia.com/definition/24063/internetbot. [90] Q. Tong, S. H. Zhang, R. R. Martin, and P. L. Rosin, Nested Images, Preprint. [91] Q. Tong, S. Zhang, H. Martin, R. Ralph, and P. Rosin, Nested Images, Presented at: Asian Conference on Design and Digital Engineering 2011 (ACDDE 2011) (August, 2011), 445-450. [92] J. Tsotsos, On the Relative Complexity of Active Vs. Passive Visual Search, Int. J. Comput. Vis. 7 (1992), no. 2, 127-141. [93] A. M. Turing, Computing Machinery and Intelligence, Mind 49 (1950), 433-460. [94] S. Weinberger, What is · · · Persistent Homology ?, Notices of AMS 58 (2011), no. 1, 36-39. [95] S. Woo, Design and evaluation of 3D CAPTCHAS, Computers & Security 82 (2019), 49-67. https://doi.org/10.1016/j.cose.2018.12.006. [96] Y. Xu, G. Reynaga, S. Chiasson, J. Frahm, F. Monrose, and P.Van Oorschot, Security analysis and related usability of motion-based captchas: Decoding codewords in motion, IEEE Transactions On Dependable And Secure Computing 11, no. 5. 2013. [97] Y. Xu, G. Reynaga, S. Chiasson, J-M. Frahm, F. Monrose, and P. Van Oorschot, Security and usability challenges of moving-object CAPTCHAs: decoding codewords in motion, Proceeding Security’12 Proceedings of the 21st USENIX conference on Security symposium. IEEE TDSC 11 (2014), no. 5, 480–493. doi: 10.1109/TDSC.2013.52. [98] R.V. Yampolskiy, Detecting and controlling cheating in online poker, In 5th IEEE Consumer Communications and Networking Conference (CCNC). IEEE,2008. [99] A.G. Zavadskij, On Two-Point Differentiation and its Generalization, Contemp. Math. 376 (2005). [100] A.G. Zavadskij and V.V. Kirichenko, Semimaximal Rings of finite type, Mat. Sb. (N.S.) 103 (1977), 323-345. (in Russian). [101] , Torsion-free modules over primary rings, J. Sov. Math. 11 (1979), no. 4, 598-612. [102] X. Zhu, Persistent Homology: An Introduction and a New Text Representation for Natural Language Processing, AAAI Press. Beijing, China, August 3-9, 2013. [103] B. Zhu, J. Yan, Q. Li, C. Yang, J. Liu, N. Xu, M. Yi, and K. Cai, Attacks and Design of Image Recognition CAPTCHAs, CCS 2010 ACM (2010). [104] A. J. Zomorodian, Topology for Computing, Cambridge Monographs on Applied and Computational Mathematics (2005). Cambridge University Press, http://www.cs.dartmouth.edu/ afra/book.html. 9,25. [105] A. Zomorodian and G. Carlsson, Computing Persistent Homology, Discrete Comput. Geom. 33 (2005), 249-274.
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleHuman Interaction Proofs Based on Emerging and Multistable Images: A Practical Application of the Theory of Representation of Algebras
dc.typeOtro


Este ítem pertenece a la siguiente institución