dc.contributor | Bacca Rodríguez, Jan | |
dc.contributor | Villamizar Delgado, Sergio Iván | |
dc.contributor | Grupo de Investigación en Electrónica de Alta Frecuencia y Telecomunicaciones (Cmun) | |
dc.creator | Caballero López, Julian David | |
dc.date.accessioned | 2022-08-29T17:09:02Z | |
dc.date.accessioned | 2022-09-21T16:12:03Z | |
dc.date.available | 2022-08-29T17:09:02Z | |
dc.date.available | 2022-09-21T16:12:03Z | |
dc.date.created | 2022-08-29T17:09:02Z | |
dc.date.issued | 2022 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/82171 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/3389909 | |
dc.description.abstract | Durante el desarrollo de este proyecto se analizaron metodologías para la clasificación de
fonemas del habla silenciosa basadas en EMD (Empirical mode decomposition). Este
análisis tuvo lugar en la Universidad Nacional de Colombia (UNAL) sede Bogotá, con los
datos de la base de datos Emotive-DB tomada con el equipo EMOTIVE EPOC +14, la cual
contiene la información de 16 sujetos, mientras pensaban en los fonemas /a/, /e/, /i/, /o/,
/u/, y las sílabas /fa/, /pe/, /mi/, /lo/, /ru/. En el proceso, se analizó la afectación en los
resultados y el tiempo de procesamiento, en relación con las variables superposición,
frecuencia de muestreo, cantidad de canales, entre otras; tras dicho análisis, se seleccionó
y trató el número de canales, la distribución de electrodos y los vectores de proyección en
la descomposición EMD; con lo cual se logró disminuir el tiempo de procesamiento
promedio por trial de 8.73 segundos hasta 0.06 segundos, permitiendo así la posibilidad
de implementarse en un sistema en línea. (Texto tomado de la fuente) | |
dc.description.abstract | During the development of this project, methodologies for the classification of phonemes
of silent speech based on EMD (Empirical mode decomposition) were analyzed. This
analysis took place at the National University of Colombia (UNAL) in Bogotá, with data from
the Emotive-DB database taken with the EMOTIVE EPOC + 14 equipment, which contains
the information of 16 subjects, while they thought about the phonemes / a /, / e /, / i /, / o /,
/ u /, and the syllables / fa /, / pe /, / mi /, / lo /, / ru /. In the process, the effect on the results
and the processing time were analyzed, in relation to the variables superposition, sampling
frequency, number of channels, among others. After said analysis, the number of channels,
the electrode distribution and the projection vectors in the EMD decomposition were
selected accordingly. As a result, it was possible to reduce the average processing time
per-trial from 8.73 seconds to 0.06 seconds, thus allowing the possibility of being
implemented in an online system. | |
dc.language | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Bogotá - Ingeniería - Maestría en Ingeniería - Automatización Industrial | |
dc.publisher | Departamento de Ingeniería Eléctrica y Electrónica | |
dc.publisher | Facultad de Ingeniería | |
dc.publisher | Bogotá, Colombia | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | RedCol | |
dc.relation | LaReferencia | |
dc.relation | S. U. Arias, “Principales retos del Derecho Internacional Humanitario (DIH) en el
contexto de postconflicto en Colombia,” 2019. | |
dc.relation | “Víctimas de Minas Antipersonal y Municiones sin Explosionar.”
http://www.accioncontraminas.gov.co/estadisticas/Paginas/victimas-minasantipersonal.aspx (accessed Feb. 10, 2020). | |
dc.relation | Kim. Norton, “A brief history of prosthetics,” InMotion, vol. 17, no. 7, pp. 11-3-
undefined, 2007. | |
dc.relation | S. Daniela García and V. María José Espinoza, “Avances en prótesis: una mirada
al presente y al futuro,” Revista Médica Clínica Las Condes, vol. 25, no. 2, pp. 281–
285, Mar. 2014, doi: 10.1016/S0716-8640(14)70039-2. | |
dc.relation | “History | AOPA – AMERICAN ORTHOTIC & PROSTHETIC ASSOCIATION.”
https://www.aopanet.org/about-aopa/history/ (accessed Jul. 11, 2021). | |
dc.relation | J. L. Brito, M. X. Quinde, D. Cuzco, and J. I. Calle, “Estudio del estado del arte de
las prótesis de mano,” 2013, Accessed: Jul. 11, 2021. [Online]. Available:
http://dspace.ups.edu.ec/handle/123456789/8447 | |
dc.relation | H. A. ROMO., J. C. REALPE, and P. E. JOJOA, “ANÁLISIS DE SEÑALES EMG
SUPERFICIALES Y SU APLICACIÓN EN CONTROL DE PRÓTESIS DE MANO,”
Avances en Sistemas e Informática, vol. 4, no. 1, Jan. 2007, Accessed: Jul. 11,
2021. [Online]. Available:
https://revistas.unal.edu.co/index.php/avances/article/view/9725 | |
dc.relation | A. A. Adewuyi, L. J. Hargrove, and T. A. Kuiken, “Evaluating EMG Feature and
Classifier Selection for Application to Partial-Hand Prosthesis Control,” Frontiers in
Neurorobotics, vol. 10, p. 15, Oct. 2016, doi: 10.3389/FNBOT.2016.00015. | |
dc.relation | E. Park and S. G. Meek, “Fatigue compensation of the electromyographic signal for
prosthetic control and force estimation,” IEEE Transactions on Biomedical
Engineering, vol. 40, no. 10, 1993, doi: 10.1109/10.247800. | |
dc.relation | A. Kübler, V. K. Mushahwar, L. R. Hochberg, and J. P. Donoghue, “BCI Meeting
2005 - Workshop on clinical issues and applications,” IEEE Transactions on Neural
Systems and Rehabilitation Engineering, vol. 14, no. 2, pp. 131–134, Jun. 2006, doi:
10.1109/TNSRE.2006.875585. | |
dc.relation | A.-B. Suleiman, T. A. Fathi, A.-B. R. Suleiman, and A.-H. Fatehi, “FEATURES
EXTRACTION TECHNIQES OF EEG SIGNAL FOR BCI APPLICATIONS
FEATURES EXTRACTION TECHNIQES OF EEG SIGNAL FOR BCI
APPLICATIONS”, Accessed: Jul. 11, 2021. [Online]. Available:
https://www.researchgate.net/publication/228450475 | |
dc.relation | C. Park, D. Looney, N. ur Rehman, A. Ahrabian, and D. P. Mandic, “Classification
of Motor Imagery BCI Using Multivariate Empirical Mode Decomposition,” IEEE
Transactions on Neural Systems and Rehabilitation Engineering, vol. 21, no. 1, Jan.
2013, doi: 10.1109/TNSRE.2012.2229296. | |
dc.relation | M. Rohm et al., “Hybrid brain–computer interfaces and hybrid neuroprostheses for
restoration of upper limb functions in individuals with high-level spinal cord injury,”
Artificial Intelligence in Medicine, vol. 59, no. 2, Oct. 2013, doi:
10.1016/j.artmed.2013.07.004. | |
dc.relation | F. Cincotti et al., “Non-invasive brain–computer interface system: Towards its
application as assistive technology,” Brain Research Bulletin, vol. 75, no. 6, Apr.
2008, doi: 10.1016/j.brainresbull.2008.01.007. | |
dc.relation | J. H. Friedman, “Multivariate Adaptive Regression Splines,”
https://doi.org/10.1214/aos/1176347963, vol. 19, no. 1, pp. 1–67, Mar. 1991, doi:
10.1214/AOS/1176347963. | |
dc.relation | N. Rehman and D. P. Mandic, “Multivariate empirical mode decomposition,”
Proceedings of the Royal Society A: Mathematical, Physical and Engineering
Sciences, vol. 466, no. 2117, May 2010, doi: 10.1098/rspa.2009.0502. | |
dc.relation | A. Hemakom, V. Goverdovsky, D. Looney, and D. P. Mandic, “Adaptive-projection
intrinsically transformed multivariate empirical mode decomposition in cooperative
brain–computer interface applications,” Philosophical Transactions of the Royal
Society A: Mathematical, Physical and Engineering Sciences, vol. 374, no. 2065,
Apr. 2016, doi: 10.1098/rsta.2015.0199. | |
dc.relation | S. Zhao and F. Rudzicz, “Classifying phonological categories in imagined and
articulated speech,” ICASSP, IEEE International Conference on Acoustics, Speech
and Signal Processing - Proceedings, vol. 2015-August, pp. 992–996, Aug. 2015,
doi: 10.1109/ICASSP.2015.7178118. | |
dc.relation | S. I. Villamizar Delgado, “Development of algorithms to improve the technical
efficiency of capturing, processing, and identification of EEG signals in the word
imagery task,” Feb. 2020, Accessed: Jul. 11, 2021. [Online]. Available:
https://repositorio.unal.edu.co/handle/unal/77829 | |
dc.relation | N. E. Huang et al., “The empirical mode decomposition and the Hilbert spectrum for
nonlinear and non-stationary time series analysis,” Proceedings of the Royal
Society of London. Series A: Mathematical, Physical and Engineering Sciences, vol.
454, no. 1971, pp. 903–995, 1998, doi: 10.1098/RSPA.1998.0193. | |
dc.relation | Z. Wu and N. E. Huang, “A study of the characteristics of white noise using the
empirical mode decomposition method,” Proceedings of the Royal Society of
London. Series A: Mathematical, Physical and Engineering Sciences, vol. 460, no.
2046, pp. 1597–1611, Jun. 2004, doi: 10.1098/RSPA.2003.1221. | |
dc.relation | G. Rilling, P. Flandrin, and P. Gonçalvès, “ON EMPIRICAL MODE
DECOMPOSITION AND ITS ALGORITHMS”. | |
dc.relation | G. Rilling, P. Flandrin, P. Goncalves, and J. M. Lilly, “Bivariate empirical mode
decomposition,” IEEE Signal Processing Letters, vol. 14, no. 12, pp. 936–939, Dec.
2007, doi: 10.1109/LSP.2007.904710. | |
dc.relation | N. Ur Rehman and D. P. Mandic, “Empirical mode decomposition for trivariate
signals,” IEEE Transactions on Signal Processing, vol. 58, no. 3 PART 1, pp. 1059–
1068, Mar. 2010, doi: 10.1109/TSP.2009.2033730. | |
dc.relation | J. Fleureau, A. Kachenoura, L. Albera, J. C. Nunes, and L. Senhadji, “Multivariate
empirical mode decomposition and application to multichannel filtering,” Signal
Processing, vol. 91, no. 12, pp. 2783–2792, Dec. 2011, doi:
10.1016/J.SIGPRO.2011.01.018. | |
dc.relation | X. Lang et al., “Fast Multivariate Empirical Mode Decomposition,” IEEE Access, vol.
6, pp. 65521–65538, 2018, doi: 10.1109/ACCESS.2018.2877150. | |
dc.relation | H. C. Andrews and C. L. Patterson, “Singular Value Decomposition (SVD) Image
Coding,” IEEE Transactions on Communications, vol. 24, no. 4, pp. 425–432, 1976,
doi: 10.1109/TCOM.1976.1093309. | |
dc.relation | C. Moore, “APPLICATION OF SINGULAR VALUE DECOMPOSITION TO THE
DESIGN, ANALYSIS, AND CONTROL OF INDUSTRIAL PROCESSES.,”
Proceedings of the American Control Conference, pp. 643–650, 1986, doi:
10.23919/ACC.1986.4789019. | |
dc.relation | R. Izmailov, D. Bassu, A. McIntosh, L. Ness, and D. Shallcross, “Application of multiscale singular vector decomposition to vessel classification in overhead satellite
imagery,” Seventh International Conference on Digital Image Processing (ICDIP
2015), vol. 9631, p. 963108, Jul. 2015, doi: 10.1117/12.2196925. | |
dc.relation | “Understanding Singular Value Decomposition and its Application in Data Science |
by Reza Bagheri | Towards Data Science.”
https://towardsdatascience.com/understanding-singular-value-decomposition-andits-application-in-data-science-388a54be95d (accessed Jul. 11, 2021). | |
dc.relation | “Una introducción a los Árboles de Decisión | DABIA.”
https://www.grupodabia.com/post/2020-05-19-arbol-de-decision/ (accessed Jul. 11,
2021). | |
dc.relation | “6 AdaBoost | Modelos Predictivos.”
https://fhernanb.github.io/libro_mod_pred/adaboost.html (accessed Jul. 11, 2021). | |
dc.relation | M. Mandal and A. Mukhopadhyay, “An Improved Minimum Redundancy Maximum
Relevance Approach for Feature Selection in Gene Expression Data,” Procedia
Technology, vol. 10, pp. 20–27, Jan. 2013, doi: 10.1016/J.PROTCY.2013.12.332. | |
dc.relation | S. Ramírez-Gallego et al., “Fast-mRMR: Fast Minimum Redundancy Maximum
Relevance Algorithm for High-Dimensional Big Data,” International Journal of
Intelligent Systems, vol. 32, no. 2, pp. 134–152, Feb. 2017, doi: 10.1002/INT.21833. | |
dc.relation | P. Bugata and P. Drotar, “On some aspects of minimum redundancy maximum
relevance feature selection,” Science China Information Sciences 2019 63:1, vol.
63, no. 1, pp. 1–15, Dec. 2019, doi: 10.1007/S11432-019-2633-Y. | |
dc.relation | A. Atyabi, S. Fitzgibbon, and D. Powers, “The impact of Biasing on Overlapping
windows : An EEG study,” Jul. 2012. | |
dc.relation | A. Atyabi, S. P. Fitzgibbon, and D. M. W. Powers, “Multiplication of EEG Samples
through Replicating, Biasing, and Overlapping,” Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 7670 LNAI, pp. 209–219, 2012, doi: 10.1007/978-3-642-35139-
6_20. | |
dc.relation | A. Atyabi, S. Fitzgibbon, and D. M. W. Powers, “Biasing the overlapping and nonoverlapping sub-windows of EEG recording,” Jun. 2012. doi:
10.1109/IJCNN.2012.6252465. | |
dc.rights | Reconocimiento 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | Algoritmo para la clasificación en línea de fonemas de habla silenciosa utilizando un sistema embebido | |
dc.type | Tesis | |