dc.contributorReyes Villamil, Milton Armando
dc.contributorSAC2
dc.creatorHiguera Rincón, Sebastián David
dc.date.accessioned2020-09-15T23:05:44Z
dc.date.available2020-09-15T23:05:44Z
dc.date.created2020-09-15T23:05:44Z
dc.date.issued2020-05-31
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/78465
dc.description.abstractIn this work, we focus on three objectives: first, we investigate fusible property on skew PBW extensions, recognizing conditions that guarantee the property for this family of algebras. Later, we turn our attention to the study of two very important ring families: the weak $\Sigma$-rigid rings defined by Reyes et al., [2018] and $(\Sigma, \Delta)$-compatible rings introduced by Hashemi et al., [2017] and Reyes et al., [2018], respectively. We establish several results that characterize some important elements such as units, nilpotents, idempotents and zero divisors in skew PBW extensions over $(\Sigma, \Delta)$-compatible rings. We extend some descriptions of these elements for skew polynomial rings presented by Hashemi et al., [2017]. The study of these elements leads us to find a more general notion of annihilator, for which we investigate analogous properties to those that define the Baer, quasi-Baer, p.p and p.q.-Baer rings, extending some results presented by Ouyang et al., [2012]. Finally, having in mind a more general concept of associated prime ideal presented by Ouyang et al., [2012], we study this generalization of the associated primes and eventually characterize these ideals in skew PBW extensions over $(\Sigma, \Delta)$-compatible rings.
dc.description.abstractEn el presente trabajo, nos enfocamos en tres objetivos: primero, investigamos acerca de la propiedad fusible sobre extensiones PBW torcidas, reconociendo condiciones suficientes que garanticen dicha propiedad para esta familia de álgebras. Después, centramos nuestra atención en el estudio de dos familias de anillos muy importantes: los anillos débil $\Sigma$-rígidos definidos por Reyes et al., [2018] y los anillos $(\Sigma, \Delta)$-compatibles introducidos por Hashemi et al., [2017] y Reyes et al., [2018], respectivamente. Establecemos resultados que caracterizan algunos elementos importantes como unidades, nilpotentes, idempotentes y divisores de cero en extensiones PBW torcidas sobre anillos $(\Sigma, \Delta)$-compatibles. Extendemos de esta forma algunas descripciones de estos elementos en anillos de polinomios torcidos presentadas por Hashemi et al., [2017]. El estudio de estos elementos nos lleva a encontrarnos con una noción más general de anulador para la cual investigamos propiedades análogas a las que definen a los anillos de Baer, quasi-Baer, p.p and p.q.-Baer en extensiones PBW torcidas, extendiendo algunos resultados presentados por Ouyang et al., [2012]. Finalmente, teniendo en mente un concepto más general de ideal primo asociado presentado por Ouyang et al., [2012], estudiamos esta generalización de los primos asociados y eventualmente caracterizamos dichos ideales en extensiones PBW torcidas sobre anillos $(\Sigma, \Delta)$-compatibles.
dc.languageeng
dc.publisherBogotá - Ciencias - Maestría en Ciencias - Matemáticas
dc.publisherDepartamento de Matemáticas
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationD. D. Anderson and V. Camilo. Semigroups and rings whose zero products commute. Comm. Algebra, 27:2847–2852, 1999.
dc.relationA. Alhevaz, E. Hashemi, and KH. Khalilnezhad. Extensions of rings over 2-primal rings. Matematiche, 74(1):141–162, 2019.
dc.relationJ. P. Acosta and O. Lezama. Universal property of skew PBW extensions. Algebra Discrete Math., 20(1):1–12, 2015.
dc.relationM. F. Atiyah and I. G. Macdonald. Introduction to Commutative Algebra. Addison-Wesley Series in Mathematics. Westview Press, Boulder, 1969.
dc.relationS. Annin. Associated primes over Ore extension rings. J. Algebra Appl., 3(2):193–205, 2004.
dc.relationE. P. Armendariz. A note on extensions of Baer and p.p-ring. J. Austral. Math., 18(4):470–473, 1974.
dc.relationE. Akalan and L. Vaš. Classes of almost clean rings. Algebr. Represent. Theory, 16(3):843–857, 2013.
dc.relationG. Azumaya. Strongly π-regular rings. Canad. J. Math, 13(1):034–039, 1954.
dc.relationH. E. Bell. Some commutativity results for periodic rings. Acta Math. Hungar., 28(3-4):279–283, 1976.
dc.relationS. K. Berberian. Baer∗-rings. Springer Science and Business Media, 2010.
dc.relationA. D. Bell and K. R. Goodearl. Uniform rank over differential operator rings and Poincaré-Birkhoff-Witt extensions. Pacific J. Math., 131(1):13–37, 1988.
dc.relationJ. W. Brewer and W. J. Heinzer. Associated primes of principal ideals. Duke Math. J, 41:1–4, 1974.
dc.relationM. Başer, C. Y. Hong, and T. K. Kwak. On extended reversible rings. Algebra Colloq., 16(1):37–48, 2009.
dc.relationG. F. Birkenmeier, H. E. Heatherly, and E. K. Lee. Completely prime ideals and associated radicals. S. K. Jain and S. T. Rizvi eds, Proc. Biennial Ohio State-Denison Conference 1992, World Scientific., 101(6):102–129, 1992.
dc.relationM. Başer and T. K. Kwak. Extended semicommutative rings. Algebra Colloq.,17(2):257–264, 2010.
dc.relationG. F. Birkenmeier, J. Y. Kim and J. K. Park. Principally quasi-Baer rings. Comm. Algebra., 29(2):639–660, 2001.
dc.relationW. X. Chen and S. Y. Cui. On weakly semicommutative rings. Comm. Math. Res., 27(02):179–192, 2011.
dc.relationV. P. Camilo and D. Khurana. A characterization of unit regular rings. Comm. Algebra, 29(5):2293–2295, 2001.
dc.relationD. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra. UTM 2015. Springer, Cham., 2015.
dc.relationP. M. Cohn. Prime rings with involution whose symmetric zero-divisors are nilpotent. Proc. Amer. Math. Soc., 40(1):91–92, 1973.
dc.relationS. Chhawchharia and M. B. Rege. Armendariz rings. Proc. Japan. Acad. Ser. A Math. Sci., 73(1):14–17, 1997.
dc.relationH. Chen and M. Sheibani. Rings in which the power of every element is thesum of an idempotent and a unit. Inst. Math. Publ., 102(116):133–148, 2017.
dc.relationJ. Dixmier. Enveloping Algebra. 14. North-Holland Mathematical Library, 1 edition, 1977.
dc.relationC. Faith. Algebra II. Ring Theory: Ring Theory, volume 2 of Grundlehren Der Mathematischen Wissenschaften. Springer-Verlag GmbH, 1976.
dc.relationC. Faith. Associated primes in commutative polynomial rings. Comm. Algebra, 28(8):3983–3986, 2000.
dc.relationC. C. Faith and P. Pillay. Classification of commutative FPF rings., volume 4. Editum., 1990.
dc.relationL. Gillman and M. Jerison. Rings of continuous functions. D. Van Nostrand Company, Inc, 1 edition, 1960.
dc.relationC. Gallego and O. Lezama. Gröbner bases for ideals of σ-PBW extensions. Comm. Algebra, 39(1):50–75, 2011. https://doi.org/10.1080/00927870903431209.
dc.relationE. Ghashghaei and W. McGovern. Fusible rings. Comm. Algebra, 45(3):1151–1165, 2016. https://doi.org/10.1080/00927872.2016.1206347.
dc.relationK. R Goodearl and R. B Warfield. An Introduction to Noncommutative Noetherian Rings, volume 61. Cambridge University Press, 2004.
dc.relationE. Hashemi, M. Hamidizadeh, and A. Alhevaz. Some types of ring elements in Ore extensions over noncommutative rings. J. Algebra Appl., 16(11): p. 1750201, 2017.
dc.relationM. Hamidizadeh, E. Hashemi, and A. Reyes. A classification of ring elements in skew PBW extensions over compatible rings. Int. Electron. J. Algebra,28:75–97, 2020.
dc.relationE. Hashemi, KH. Khalilnezhad, and A. Alhevaz. (Σ,∆)-compatible skew PBW extension ring. Kyungpook Math. J., 57(3):401–417, 2017.
dc.relationC. Y. Hong, N. K. Kim, and T. K. Kwak. Ore extensions of Baer and p.p-rings. J. Pure Appl. Algebra., 151(3):215–226, 2000.
dc.relationC. Huh, H. K. Kim, N. K. Kim, and Y. Lee. Basic examples and extensions of symmetric rings. J. Pure Appl. Algebra, 202(1-3):154–167, 2005.
dc.relationC. Y. Hong, T. K. Kwak, and S. Y. Rizvi. Extensions of generalized Armendariz rings. Algebra Colloq., 13(2):253–266, 2006.
dc.relationC. Huh, Y. Lee, and A. Smoktunowicz. Armendariz rings and semicommutativerings. Comm. Algebra., 30(2):751–761, 2002.
dc.relationT. W. Hungerford. Algebra. Graduate Texts in Mathematics 73. Springer-Verlag New York, 1 edition, 1980.
dc.relationN. Jacobson. Structure of rings. American Mathematical Society., 1956.
dc.relationI. Kaplansky. Rings of Operators. Mathematics Lecture Notes Series, Benjamin, New York, 1965.
dc.relationN. K. Kim and Y. Lee. Extensions of reversible rings. J. Pure Appl. Algebra.,185(1-3):207–223, 2003.
dc.relationM. T. Koşan and J. Matczuk. On fusible rings. Comm. Algebra, 47(9):3789–3793, 2019. https://doi.org/10.1080/00927872.2019.1570236.
dc.relationJ. Krempa. Some examples of reduced rings. Algebra Colloq, 3(4):289–300,1996.
dc.relationT. K. Kwak. Extensions of extended symmetric rings. Bull. Korean Math.Soc., 44(4):777–788, 2007.
dc.relationO. Lezama, J. P. Acosta, C. Chaparro, I. Ojeda, and C. Venegas. Ore and Goldie theorems for skew PBW extensions. Asian-Eur. J. Math., 6(04): p.1350061, 2013.
dc.relationY. Lam. A First Course in Noncommutative Rings, volume 131. Graduate Texts in Mathematics, Springer-Verlag New York, 2001.
dc.relationO. Lezama, J. P. Acosta, and A. Reyes. Prime ideals of skew PBW extensions. Rev. Un. Mat. Argentina, 56(2):39–55, 2015. https://doi.org/10.1080/00927870903431209.
dc.relationO. Lezama. Cuadernos de Álgebra, No. 9: Álgebra no conmutativa. SAC2, Departamento de Matemáticas, Universidad Nacional de Colombia, sede Bogotá, sites.google.com/a/unal.edu.co/sac2, 2015.
dc.relationT. Y. Lam, A. Leroy, and J. Matczuk. Primeness, semiprimeness and prime radical of Ore extensions. Comm. Algebra, 25(8):2459–2506, 1977.
dc.relationA. Leroy and J. Matczuk. Goldie conditions for Ore extensions over semiprime rings. Algebr. Represent. Theory, 8(5):679–688, 2005.
dc.relationO. Lezama and A. Reyes. Some Homological Properties of Skew PBW Extensions. Comm. Algebra, 42:1200–1230, 2014.
dc.relationM. Louzari and A. Reyes. Generalized Rigid Modules and Their Polynomial Extensions. In: Siles Molina M., El Kaoutit L., Louzari M., Ben Yakoub L., Benslimane M. (eds) Associative and Non-Associative Algebras and Applications. MAMAA 2018. Springer Proceedings in Mathematics and Statistics, vol 311. Springer International Publishing, Cham, 2020.
dc.relationM. Louzari and A. Reyes. Minimal prime ideals of skew PBW extensions over 2-primal compatible rings. Rev. Colombiana Mat., 54(1):27–51, 2020.
dc.relationG. Marks. Reversible and symmetric rings. J. Pure Appl. Algebra, 174(3):311–318, 2002.
dc.relationG. Marks. A taxonomy of 2-primal rings. J. Algebra., 266(2):494–520, 2003.
dc.relationJ. C. McConnell. Representations of solvable Lie algebras and the Gelfand-Kirillov conjecture. Proc. Lond. Math. Soc. (3), 3(3):453–484, 1974.
dc.relationM. J. Nikmehr and A. Azadi. Nilpotent graphs of skew polynomial rings over noncommutative rings. Trans. Comb., 9(1):41–48, 2000.
dc.relationW. K. Nicholson. Strongly clean rings and fitting’s lemma. Comm. Algebra, 27(08), 1999. https://doi.org/10.1080/00927879908826649.
dc.relationA. Niño, M. Ramírez, and A. Reyes. Associated prime ideals over skew PBW extensions. Comm. Algebra, 2020. https://doi.org/10.1080/00927872.2020.1778012.
dc.relationL. Ouyang and G. F. Birkenmeier. Weak annihilator over extension rings. Bull. Malays. Math. Sci. Soc., 35(2):345–357, 2012.
dc.relationØ. Ore. Theory of non-commutative polynomials. Ann. of Math (2),34(3):480–508, 1933.
dc.relationL. Ouyang. Extensions of generalized α-rigid rings. Int. Electron. J. Algebra, 3(13):103–116, 2008.
dc.relationL. Ouyang. Extensions of nilpotent p.p. rings. Bull. Iranian Math. Soc., 36(2):169–184, 2010.
dc.relationD. S. Passman. Prime ideals in enveloping rings. Trans. Amer. Math. Soc., 302(2):535–560, 1987.
dc.relationM. C. Ramírez. Associated prime ideals of noncommutative rings of polynomials type. Master’s thesis, Universidad Nacional de Colombia, Sede Bogotá, 2019.
dc.relationA. Reyes. Gelfand-Kirillov dimension of skew PBW extensions. Rev. Colombiana Mat., 47(1):95–111, 2013.
dc.relationA. Reyes. Ring and Module Theoretical Properties of Skew PBW Extensions. Ph.D. Thesis, Universidad Nacional de Colombia, Sede Bogotá, 2013.
dc.relationA. Reyes. Uniform dimension over skew PBW extensions. Rev. Colombiana. Mat, 48(1):79–96, 2014.
dc.relationA. Reyes. Skew PBW extensions of Baer, quasi-Baer and p.p. and p.q.-rings. Rev. Integr. Temas Mat., 33(2):173–189, 2015.
dc.relationA. Reyes. Armendariz modules over skew PBW extensions. Comm. Algebra, 47(3):1248–1270, 2019.
dc.relationG. S. Rinehart. Differential forms on general commutative algebras. Trans. Amer. Math. Soc., 108(2):195–222, 1963.
dc.relationA. Reyes and J. Jaramillo. Symmetry and reversibility properties for quantum algebras and skew Poincaré-Birkhoff-Witt extensions. Ingeniería y Ciencia,14(27):29–52, 2018.
dc.relationA. L. Rosenberg. Noncommutative Algebraic Geometry and Representations of Quantized Algebras. Mathematics and Its Applications 330. Springer Netherlands, 1 edition, 1995.
dc.relationA. Reyes and H. Suárez. Armendariz property for skew PBW extensions and their classical ring of quotients. Rev. Integr. Temas Mat., 34(2):147–168, 2016.
dc.relationA. Reyes and H. Suárez. PBW bases for some 3-dimensional skew polynomial algebras. Far East J. Math. Sci. (FJMS)., 101(6):1207–1228, 2017.
dc.relationA. Reyes and H. Suárez. A notion of compatibility for Armendariz and Baer properties over skew PBW extensions. Rev. Un. Mat. Argentina, 59(1):157–178, 2018.
dc.relationA. Reyes and H. Suárez. Skew Poincaré-Birkhoff-Witt extensions over weak Σ-rigid rings. Far East J. Math. Sci. (FJMS), 106(2):421–440, 2018.
dc.relationA. Reyes and H. Suárez. Radicals and Köthe’s conjecture for skew PBW extensions. Commun. Math. Stat., 2019. https://doi.org/10.1007/s40304-019-00189-0.
dc.relationA. Reyes and H. Suárez. Skew Poincaré-Birkhoff-Witt extensions over weak zip rings. Beitr. Algebra Geom, 60(2):197–216, 2019.
dc.relationA. Reyes and H. Suárez. Skew Poincaré-Birkhoff-Witt extensions over weak compatible rings. J. Algebra Appl., 2020. https://doi.org/10.1142/S0219498820502254.
dc.relationG. Shin. Prime ideals and sheaf representation of a pseudo symmetric rings. Trans. Amer. Math. Soc., 184:43–60, 1973.
dc.relationH. J. Suarez. N-Koszul algebras, Calabi-Yau algebras and skew PBW extensions. Ph.D. thesis, Universidad Nacional de Colombia, Sede Bogotá, 2017.
dc.relationS. H. Sun. Noncommutative rings in which every prime ideal is contained in aunique maximal ideal. J. Pure Appl. Algebra., 76(2):179–192, 1991.
dc.relationS. Szabo. Some minimal rings related to 2-primal rings. Comm. Algebra, 47(3):1287–1298, 2019.
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleSome remarks about the fusible property of noncommutative polynomial extensions
dc.typeOtro


Este ítem pertenece a la siguiente institución