dc.contributorEdgar Eduardo, Romero Castro
dc.creatorBonilla Vargas, Nicolas Guillermo
dc.date.accessioned2022-06-09T19:08:07Z
dc.date.available2022-06-09T19:08:07Z
dc.date.created2022-06-09T19:08:07Z
dc.date.issued2022
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/81552
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.description.abstractSegún la organización mundial de la salud OMS la esclerosis múltiple es el trastorno neurológico primario más común en los adultos jóvenes, se presentan ataques repentinos sin patrón temporal establecido que producen ataques en el sistema nervioso y la formación de múltiples lesiones, esto conlleva a síntomas de la enfermedad típicos como pérdida del equilibrio, espasmos musculares, problemas de coordinación motora entre otros, estos síntomas generan discapacidades que pueden causar el deterioro de la vida cotidiana normal. Esta enfermedad presenta un curso bastante heterogéneo que genera un reto para ejercer el control medicado, las terapias personalizadas, el tratamiento y la medicación. Las Imágenes de resonancia magnética y su obtención de información cuantificada con herramientas como biomarcadores de imagen en específico radiómica, abren una puerta para examinar las lesiones del sistema nervioso casi que en tiempo real y esta información es vital para el diagnóstico de la enfermedad y para su seguimiento y control. Este trabajo presenta la construcción de un modelo de predicción de recuperación para cada lesión con información obtenida mediante biomarcadores de imagen como la radiómica en específico su morfología y análisis de textura, con esta información y usando herramientas del aprendizaje automático en específico aprendizaje supervisado se alimenta el algoritmo de aprendizaje que crea el modelo para las predicciones. La hipótesis fue que los descriptores radiómicos morfológicos y de textura de las lesiones de esclerosis múltiple en imágenes de resonancia magnética de 3 Teslas pueden ser asociados a la recuperación de la lesión. El modelo fue probado sobre una base de datos de imágenes de resonancia magnética de 3 Teslas con 19 pacientes y 271 lesiones obteniendo predicciones cuya evaluación de desempeño indica 86% de precisión y un AUC=92% . (Texto tomado de la fuente)
dc.description.abstractAccording to the world health organization WHO, multiple sclerosis is the most common primary neurological disorder in young adults. Sudden attacks without an established temporal pattern occur that produce attacks in the nervous system and the formation of multiple lesions, this leads to symptoms of the typical disease such as loss of balance, muscle spasms, motor coordination problems among others, these symptoms generate disabilities that can cause the deterioration of normal daily life. This disease presents a quite heterogeneous course that creates a challenge to exercise medical control, personalized therapies, treatment and medication. Magnetic resonance imaging and its obtaining of quantified information with tools such as radiomics specific imaging biomarkers open a door to examine nervous system lesions almost in real time and this information is vital for the diagnosis of the disease and for its treatment. monitoring and control. This work presents the construction of a recovery prediction model for each lesion with information obtained through image biomarkers such as radiomics, specifically its morphology and texture analysis, with this information and using machine learning tools specifically, supervised learning feeds the learning algorithm that creates the model for the predictions. The hypothesis was that the morphological and textural radiomic descriptors of multiple sclerosis lesions in 3-Tesla magnetic resonance images may be associated with recovery from the lesion. The model was tested on a 3-Tesla magnetic resonance imaging database with 19 patients and 271 lesions, obtaining predictions whose performance evaluation indicates 86 % accuracy and AUC=92 %.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ciencias - Maestría en Ciencias - Física
dc.publisherDepartamento de Física
dc.publisherFacultad de Ciencias
dc.publisherBogotá, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationK. W. S. Warren, "Multiple sclerosis," WHO Library, vol. 1, pp, 2001
dc.relationC. Walton, R. King, L. Rechtman, W. Kaye, E. Leray, R. Marrie, N. Robertson, N. L. Rocca, B. Uitdehaag, I. V. der Mei, and M. Wallin, "Rising prevalence of multiple sclerosis worldwide: Insights from the atlas of ms" Multiple Sclerosis Journal, vol. 14, pp. 1816-1821, 2020.
dc.relationL. Strober, "Determinants of unemployment in multiple sclerosis (ms): The role of disease, person-specific factors, and engagement in positive health-related behaviors," Multiple Sclerosis And Related Disorders, Elsevier, vol. 46, p. 102487, 2020.
dc.relationL. Iezzoni and L. Ngo, "Health, disability, and life insurance experiences of working-age persons with multiple sclerosis," Multiple Sclerosis Journal, vol. 13, pp. 534-546, 2007.
dc.relationA. Chen, A. Chonghasawat, and K. Leadholm, "Multiple sclerosis: frequency, cost, and economic burden in the united states," Journal of Clinical Neuroscience, vol. 45, pp. 180-186, 2017.
dc.relationB. Trapp, R. Ransoho , and R. Rudick, "Axonal pathology in multiple sclerosis: relationship to neurologic disability," Current opinion in neurology, vol. 3, pp. 295-302, 1999.
dc.relationW. McDonald, A. Compston, G. Edan, D. Goodkin, H. Hartung, F. Lublin, H. McFarland, D. Paty, C. Polman, S. Reingold, and M. Sandberg-Wollheim, "Recommended diagnostic criteria for multiple sclerosis: guidelines from the international panel on the diagnosis of multiple sclerosis," Annals of Neurology: O cial Journal of the American Neurological Association and the Child Neurology Society, vol. 1, pp. 121-127, 2001
dc.relationC. Polman, S. Reingold, G. Edan, M. Filippi, H. Hartung, L. Kappos, F. L. abnd L.M. Metz, H. McFarland, P. O'Connor, and M. Sandberg-Wollheim, "Diagnostic criteria for multiple sclerosis: 2005 revisions to the \mcdonald criteria," Annals of Neurology: O cial Journal of the American Neurological Association and the Child Neurology Society, vol. 6, pp. 840-846, 2005.
dc.relationC. Polman, S. Reingold, B. Banwell, M. Clanet, J. Cohen, M. Filippi, K. Fujihara, E. Havrdova, M. Hutchinson, L. Kappos, and F. Lublin, "Diagnostic criteria for multiple sclerosis: 2010 revisions to the mcdonald criteria," Annals of neurology, vol. 2, pp. 292-302, 2011.
dc.relationA. Thompson, B. Banwell, F. Barkhof, W. Carroll, T. Coetzee, G. Comi, J. Correale, F. Fazekas, M. Filippi, M. Freedman, and K. Fujihara, "Diagnosis of multiple sclerosis: 2017 revisions of the mcdonald criteria," The Lancet Neurology, vol. 17, pp. 162-173, 2018.
dc.relationA. Solomon, D. Bourdette, A. Cross, A. Applebee, P. Skidd, D. Howard, R. Spain, M. Cameron, E. Kim, M. Mass, and V. Yadav, "The contemporary spectrum of multiple sclerosis misdiagnosis: a multicenter study," Neurology, vol. 13, pp. 1396-1399, 2016.
dc.relationC. Lucchinetti, W. Br uck, J. Parisi, B. Scheithauer, M. Rodriguez, and H. Lassmann, "Heterogeneity of multiple sclerosis lesions: Implications for the pathogenesis of demyelination," Annals Of Neurology: O cial Journal of the American Neurological Association and the Child Neurology Society, vol. 47.6, pp. 707-716, 2000.
dc.relationJ. Kurtzke, "Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (edss)," Neurology, vol. 33, pp. 1444-1452, 1982.
dc.relationJ. Kurtzke, "Neurologic impairment in multiple sclerosis and the disability status scale," Acta Neurologica Scandinavica, vol. 46, pp. 493-512, 1970
dc.relationF. Lublin and S. Reingold, "Defining the clinical course of multiple sclerosis: results of an international survey," Neurology, vol. 46, pp. 907{911, 1996.
dc.relationF. Lublin, S. Reingold, J. Cohen, G. Cutter, P. S rensen, A. Thompson, J. W. andL.J. Balcer, B. Banwell, F. Barkhof, and B. Bebo, "Defining the clinical course of multiple sclerosis: the 2013 revisions.," Neurology, vol. 83, pp. 278{283, 2014.
dc.relationT. Ziemssen, T. Derfuss, N. Stefano, G. Giovannoni, F. Palavra, D. Tomic, T. Vollmer, and S. Schippling, "Optimizing treatment success in multiple sclerosis," Journal of neurology, vol. 6, pp. 1053-1065, 2016.
dc.relationJ. Correale, M. Gait an, M. Ysrraelit, and M. Fiol, "Progressive multiple sclerosis: from pathogenic mechanisms to treatment," Brain, vol. 3, pp. 527-546, 2017.
dc.relationB. Popescu, I. Pirko, and C. Lucchinetti, "The world's strongest mri machines are pushing human imaging to new limits," Nature, vol. 563, pp. 24-27, 2018.
dc.relationA. Nowogrodzki, "The world's strongest mri machines are pushing human imaging to new limits," Nature, vol. 563, pp. 24-27, 2018.
dc.relationOECD, "Magnetic resonance imaging (mri) units," 2018.
dc.relationM. Wattjes, M. Steenwijk, and M. Stangel, "Mri in the diagnosis and monitoring of multiple sclerosis: an update," Clinical neuroradiology, vol. 2, pp. 157-165, 2015.
dc.relationM. Wattjes, A. Rovira, D. Miller, T. Yousry, M. Sormani, N. Stefano, M. Tintor e, C. Auger, C. Tur, M. Filippi, and M. Rocca, "Evidence-based guidelines: Magnims consensus guidelines on the use of mri in multiple sclerosis|establishing disease prognosis and monitoring patients," The Lancet Neurology, vol. 597, pp. 10,11, 2015.
dc.relationY. Ma, C. Zhang, M. Cabezas, Y. Song, Z. Tang, D. Liu, W. Cai, M. Barnett, and C.Wang, "Multiple sclerosis lesion analysis in brain magnetic resonance images," Techniques and Clinical Applications, vol. 33, pp. 134-139, 2021.
dc.relationM. Filippi, P. Preziosa, B. Banwell, F. Barkhof, O. Ciccarelli, N. Stefano, J. Geurts, F. Paul, D. Reich, A. Toosy, and A. Traboulsee, "Assessment of lesions on magnetic resonance imaging in multiple sclerosis: practical guidelines," Brain, vol. 142, pp. 1858- 1875, 2019.
dc.relationT. Kuhlmann, S. Ludwin, A. Prat, J. Antel, W. Br uck, and H. Lassmann, "An updated histological classi cation system for multiple sclerosis lesions," Acta neuropathologica, vol. 133, pp. 13-24, 2017.
dc.relationJ. Frischer, S. Weigand, Y. Guo, N. Kale, J. Parisi, I. Pirko, J. Mandrekar, S. Bramow, I. Metz, W. Br uck, and H. Lassmann, "Clinical and pathological insights into the dynamic nature of the white matter multiple sclerosis plaque," Annals of neurology, pp. 710-721, 2015.
dc.relationA. Paul, M. Comabella, and R. Gandhi, "Biomarkers in multiple sclerosis," Cold Spring Harbor perspectives in medicine, vol. 3, 2019.
dc.relationI. Pulido-Valdeolivas, I. Zubizarreta, E. Martinez-Lapiscina, and P. Villoslada, "Precision medicine for multiple sclerosis: an update of the available biomarkers and their use in therapeutic decision making," Expert Review of Precision Medicine and Drug Development, vol. 2, pp. 345-361, 2017.
dc.relationG. Arrambide, M. Tintore, C. Espejo, C. Auger, M. Castillo, J. R  o, J. Castillo, A. Vidal-Jordana, I. Gal an, C. Nos, and R. Mitjana, "The value of oligoclonal bands in the multiple sclerosis diagnostic criteria," Brain, vol. 4, pp. 1075-1084, 2018.
dc.relationM. Filippi, M. Rocca, O. Ciccarelli, N. Stefano, N. Evangelou, L. Kappos, A. Rovira, J. Sastre-Garriga, M. Tintor e, J. Frederiksen, and C. Gasperini, "Mri criteria for the diagnosis of multiple sclerosis: Magnims consensus guidelines.," The Lancet Neurology, vol. 3, pp. 292-303, 2016.
dc.relationA. Zwanenburg, M. Abdalah, S. Ashra nia, J. Beukinga, M. Bogowicz, C. V. Dinh, M. G otz, M. Hatt, R. Leijenaar, J. Lenkowicz, and O. Morin, "Image biomarker standardisation initiative," Radiotherapy and Oncology, 2018.
dc.relationE. Sweeney, T. Nguyen, A. Kuceyeski, S. Ryan, S. Zhang, L. Zexter, Y. Wang, and S. Gauthier, "Estimation of multiple sclerosis lesion age on magnetic resonance imaging," Neuroimage, vol. 225, p. 451, 2021.
dc.relationS. Cappelle, D. Pareto, M. Tintor e, A. Vidal-Jordana, R. Alyafeai, M. Alberich, J. Sastre-Garriga, C. Auger, X. Montalban, and A. Rovira, "A validation study of manual atrophy measures in patients with multiple sclerosis," Neuroradiology, vol. 8, pp. 955-964, 2020.
dc.relationV. Karami, R. Mahdavifar, A. Habibzadeh, and S. Nabavi, "Identification of multiple sclerosis lesion subtypes and their quantitative assessments with edss using neuroimaging," Network Modeling Analysis in Health Informatics and Bioinformatics, vol. 9, pp. 1-12, 2020.
dc.relationA. AlTokhis, A. AlOtaibi, G. F. ande C.S. Constantinescu, and N. Evangelou, "Iron rims as an imaging biomarker in ms: A systematic mapping review," Diagnostics, vol. 10, p. 968, 2020.
dc.relationC. Barillot, G. Edan, and O. Commowick, "Imaging biomarkers in multiple sclerosis: from image analysis to population imaging," Medical Image Analysis, Elsevier, vol. 33, pp. 134-139, 2016.
dc.relationM. Hu, M. Schindler, B. Dewey, D. Reich, R. Shinohara, and A. Eloyan, "Experimental design and sample size considerations in longitudinal magnetic resonance imaging based biomarker detection for multiple sclerosis," Statistical methods in medical research, vol. 9, pp. 2617-2628, 2020.
dc.relationM. Absinta, P. Sati, F. Masuzzo, G. Nair, V. Sethi, H. Kolb, J. Ohayon, T. Wu, I. Cortese, and D. Reich, "Association of chronic active multiple sclerosis lesions with disability in vivo," JAMA neurology, vol. 12, pp. 1474-1483, 2019.
dc.relationC. Elliott, S. Belachew, J. Wolinsky, S. Hauser, L. Kappos, F. Barkhof, C. Bernasconi, J. Fecker, F. Model, W. Wei, and D. Arnold, "Chronic white matter lesion activity predicts clinical progression in primary progressive multiple sclerosis," Brain, vol. 142, pp. 2787-2799, 2019.
dc.relationV. Mehta, W. Pei, G. Yang, S. Li, E. Swamy, A. Boster, P. Schmalbrock, and D. Pitt, "Iron is a sensitive biomarker for in ammation in multiple sclerosis lesions," PloS one, vol. 8, 2013.
dc.relationM. Absinta, P. Sati, M. Schindler, E. Leibovitch, J. Ohayon, T. Wu, A. Meani, M. Filippi, S. Jacobson, I. Cortese, and D. Reich, "Persistent 7-tesla phase rim predicts poor outcome in new multiple sclerosis patient lesions," The Journal of Clinical Investigation, vol. 126, pp. 2597-2609, 2016.
dc.relationS. Chawla, I. Kister, J. Wuerfel, J. Brisset, S. Liu, T. Sinnecker, P. Dusek, E. Haacke, F. Paul, and Y. Ge, "Iron and non-iron-related characteristics of multiple sclerosis and neuromyelitis optica lesions at 7t mri," American Journal of Neuroradiology, vol. 37, pp. 1223-1230, 2016.
dc.relationH. Sheng, B. Zhao, and Y. Ge, "Blood perfusion and cellular microstructural changes associated with iron deposition in multiple sclerosis lesions," Frontiers in Neurology, vol. 10, p. 747, 2019.
dc.relationK. M. Gillen, M. Mubarak, T. Nguyen, and D. Pitt, "Significance and in vivo detection of iron-laden microglia in white matter multiple sclerosis lesions," Frontiers in Immunology, vol. 9, p. 255, 2018.
dc.relationC. Weber, M. Wittayer, M. Kraemer, A. Dabringhaus, M. Platten, A. Gass, and P. Eisele,"Quantitative mri texture analysis in chronic active multiple sclerosis lesions," Magnetic Resonance Imaging, vol. 79, pp. 97-102, 2021.
dc.relationM. Absinta, P. Sati, M. Gaitan, P. Maggi, I. Cortese, M. Filippi, and D. Reich, "Seven tesla imaging of acute multiple sclerosis lesions: A new window into the inflammatory process," American Neurological Association, vol. 74, pp. 669-678, 2013.
dc.relationK. Gillen, M. Mubarak, C. Park, G. Ponath, S. Zhang, A. Dimov, M. Levine-Ritterman, S. Toro, W. Huang, S. Amici, and U. Kaunzner, "Qsm is an imaging biomarker for chronic glial activation in multiple sclerosis lesions," annals of Clinical and Translational Neurology, vol. 8, pp. 877-886, 2019.
dc.relationC. Elliott, J. W. ans S.L. Hauser, L. Kappos, F. Barkhof, C. Bernasconi, W. Wei, S. Belachew, and D. Arnold, "Slowly expanding/evolving lesions as a magnetic resonance imaging marker of chronic active multiple sclerosis lesions," Multiple Sclerosis Journal, vol. 25, pp. 1915-1925, 2019.
dc.relationM. Absinta, P. Sati, A. Fechner, M. K. Schindler, G. Nair, and D. S. Reich, "Identification of chronic active multiple sclerosis lesions on 3t mri," American Journal of Neuroradiology, vol. 39, pp. 1233-1238, 2018.
dc.relationC. Wisnie , S. Ramanan, J. Olesik, S. Gauthier, Y. Wang, and D. Pitt, "Quantitative susceptibility mapping (qsm) of white matter multiple sclerosis lesions: interpreting positive susceptibility and the presence of iron," Magnetic resonance in medicine, vol. 2, pp. 564-570, 2015.
dc.relationA. Dal-Bianco, G. Grabner, C. Kronnerwetter, M. Weber, R. H oftberger, T. Berger, E. Au , F. Leutmezer, S. Trattnig, H. Lassmann, and F. Bagnato, "Slow expansion of multiple sclerosis iron rim lesions: pathology and 7 t magnetic resonance imaging," Acta neuropathologica, vol. 1, pp. 25-42, 2017.
dc.relationC. St uber, D. Pitt, and Y.Wang, "Iron in multiple sclerosis and its noninvasive imaging with quantitative susceptibility mapping," International journal of molecular sciences, vol. 17, p. 100, 2016.
dc.relationG. Barquero, F. L. Rosa, H. Kebiri, P. Lu, R. Rahmanzadeh, M. Weigel, M. Fartaria, T. Kober, M. Th eaudin, R. D. Pasquier, and P. Sati, "Rimnet: A deep 3d multimodal mri architecture for paramagnetic rim lesions assessment in multiple sclerosis," NeuroImage: Clinical, vol. 28, p. 102412, 2020.
dc.relationG. Caruana, L. M. Pessini, R. Cannella, G. Salvaggio, A. Barros, A. Salerno, C. Auger, and A. Rovira, "Texture analysis in susceptibility-weighted imaging may be useful to differentiate acute from chronic multiple sclerosis lesions," European Radiology, vol. 30, pp. 6348-6356, 2020
dc.relationM. Shanmuganathan, S. Almutairi, M. Aborokbah, S. Ganesan, and V. Ramachandran,"Review of advanced computational approaches on multiple sclerosis segmentation and classification," IET Signal Processing, vol. 19, pp. 333-341, 2020.
dc.relationM. Kelly, T. Aseervatham, and M. S. R. Killeen, "Automated subtraction and segmentation of 3d mri scans for the assessment of lesion volume change in multiple sclerosis," Physic Medica: European Journal of Medical Physics, vol. 1, pp. 284-300, 2021.
dc.relationC. Lou, P. Sati, M. Absinta, K. Clark, J. Dworkin, A. Valcarcel, M. Schindler, D. Reich, E. Sweeney, and R. Shinohara, "Fully automated detection of paramagnetic rims in multiple sclerosis lesions on 3t susceptibility-based mr imaging," Current Problems in Diagnostic Radiology, vol. 6, 2020.
dc.relationS. Aslani, V. Murino, M. Dayan, R. T. amd D. Sona, and G. Hamarneh, "Scanner invariant multiple sclerosis lesion segmentation from mri," 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), pp. 781-785, 2020.
dc.relationH. Zhang and I. Oguz, "Multiple sclerosis lesion segmentation a survey of supervised cnn-based methods," arXiv, 2020.
dc.relationZ. Lesjak, A. Galimzianova, A. Koren, M. Lukin, F. Pernus, B. Likar, and Z. Spiclin, "A novel public mr image dataset of multiple sclerosis patients with lesion segmentations based on multi-rater consensus," Neuroinformatics, vol. 16, pp. 51-63, 2018
dc.relationS. Jain, D. Sima, A. Ribbens, M. Cambron, A. Maertens, W. Van-Hecke, J. Mey, F. Barkhof, M. Steenwijk, M. Daams, and F. Maes, "Automatic segmentation and volumetry of multiple sclerosis brain lesions from mr images," NeuroImage: Clinical, vol. 8, pp. 367-375, 2015.
dc.relationS. Cerri, A. Hoopes, D. Greve, M. M uhlau, and K. Van-Leemput, "A longitudinal method for simultaneous whole-brain and lesion segmentation in multiple sclerosis," Machine Learning in Clinical Neuroimaging and Radiogenomics in Neuro-oncology, vol. 8, pp. 119-128, 2020.
dc.relationA. Kaur, L. Kaur, and A. Singh, "State-of-the-art segmentation techniques and future directions for multiple sclerosis brain lesions," Archives of Computational Methods in Engineering, vol. 3, pp. 951-977, 2021.
dc.relationC. Zeng, L. Gu, Z. Liu, and S. Zhao, "Review of deep learning approaches for the segmentation of multiple sclerosis lesions on brain mri," Frontiers in Neuroinformatics, vol. 20, pp. 14-55, 2020.
dc.relationF. Ribaldi, D. Altomare, J. Jovicich, C. Ferrari, A. Picco, F. Pizzini, A. Soricelli, A. Mega, A. Ferretti, A. Drevelegas, and B. Bosch, "Accuracy and reproducibility of automated white matter hyperintensities segmentation with lesion segmentation tool: A european multi-site 3t study," Magnetic Resonance Imaging, vol. 76, pp. 108-115, 2021.
dc.relationR. McKinley, R. Wepfer, L. Grunder, F. Aschwanden, T. Fischer, C. Friedli, R. Muri, C. Rummel, R. Verma, C.Weisstanner, and B. Wiestler, "Automatic detection of lesion load change in multiple sclerosis using convolutional neural networks with segmentation confidence," NeuroImage: Clinical, vol. 25, pp. 102-104, 2020.
dc.relationS. Gonzalez-Villa, A. Oliver, Y. Huo, X. Llad o, and B. Landman, "A fully automated pipeline for brain structure segmentation in multiple sclerosis," NeuroImage: Clinical, vol. 27, 2020.
dc.relationP. Yushkevich, J. Piven, H. Hazlett, R. Smith, S. Ho, J. Gee, and G. Gerig, "User guided 3d active contour segmentation of anatomical structures: Significantly improved eficiency and reliability," NeuroImage: Clinical, vol. 31, pp. 116-128, 2006.
dc.relationM. Weeda, I. Brouwer, M. De-Vos, M. de Vries, F. Barkhof, P. Pouwels, and H. Vrenken, "Comparing lesion segmentation methods in multiple sclerosis: Input from one manually delineated subject is sufficient for accurate lesion segmentation," NeuroImage: Clinical, vol. 24, p. 102074, 2019.
dc.relationA. Carass, S. Roy, A. Jog, J. Cuzzocreo, E. Magrath, A. Gherman, J. Button, J. Nguyen, F. Prados, C. Sudre, and M. Cardoso, "Longitudinal multiple sclerosis lesion segmentation: Resource and challenge," NeuroImage, Elsevier., vol. 148, pp. 77-102, 2017.
dc.relationS. Chawla, I. Kister, T. Sinnecker, J. Wuerfel, J. Brisset, F. Paul, and Y. Ge, "Longitudinal study of multiple sclerosis lesions using ultra-high  field (7t) multiparametric mr imaging," PLoS One, vol. 13, p. e0202918, 2018.
dc.relationP. Eichinger, S. Sch on, V. Pongratz, H. Wiestler, H. Zhang, M. Bussas, M. Hoshi, J. Kirschke, A. Berthele, and C. Z. ad B. Hemmer, "Accuracy of unenhanced mri in the detection of new brain lesions in multiple sclerosis," Radiology, vol. 2, pp. 429-435, 2019.
dc.relationP. Eichinger, H. Wiestler, H. Zhang, V. Biberacher, J. Kirschke, C. Zimmer, M. M uhlau, and B. Wiestler, "A novel imaging technique for better detecting new lesions in multiple sclerosis," Journal of neurology, vol. 2, pp. 1909-1918, 2017.
dc.relationB. Moraal, M. Wattjes, J. Geurts, D. Knol, R. Van-Schijndel, P. Pouwels, H. Vrenken, and F. Barkhof, "Improved detection of active multiple sclerosis lesions: 3d subtraction imaging," Radiology, vol. 2, pp. 154-163, 2010.
dc.relationI. Tan, R. Van-Schijndel, P. Pouwels, H. Ad er, and F. Barkhof, "Serial isotropic three dimensional fast flair imaging: using image registration and subtraction to reveal active multiple sclerosis lesions," American Journal of Roentgenology, vol. 3, pp. 777-782, 2002.
dc.relationB. Moraal, D. Meier, P. Poppe, J. Geurts, H. Vrenken, W. Jonker, D. Knol, R. Van- Schijndel, P. Pouwels, C. Pohl, and L. Bauer, "Subtraction mr images in a multiple sclerosis multicenter clinical trial setting," Radiology, vol. 3, pp. 506-514, 2009.
dc.relationE. Sweeney, R. Shinohara, C. Shea, D. Reich, and C. Crainiceanu, "Automatic lesion incidence estimation and detection in multiple sclerosis using multi-sequence longitudinal mri," American Journal of Neuroradiology, vol. 1, pp. 68-73, 2013.
dc.relationS. Valverde, A. Oliver, E. Roura, D. Pareto, J. Vilanova, L. Rami o-Torrent a, J. Sastre- Garriga, X. Montalban, A. Rovira, and X. Llad o, "Quantifying brain tissue volume in multiple sclerosis with automated lesion segmentation and filling," NeuroImage: Clinical, vol. 9, pp. 640-647, 2015.
dc.relationS. Brune, E. H gest l, V. Cengija, P. Berg-Hansen, P. Sowa, G. Nygaard, H. Harbo, and M. Beyer, "Lesionquant for assessment of mri in multiple sclerosis a promising supplement to the visual scan inspection," Frontiers in Neurology, vol. 20, pp. 11-17, 2020.
dc.relationR. Gillies, P. Kinahan, and H. Hricak, "Radiomics: Images are more than pictures, they are data," Radiology, vol. 78, pp. 563-577, 2016.
dc.relationA. Carr e, G. Klausner, M. Edjlali, M. Lerousseau, J. Briend-Diop, R. Sun, S. Ammari, S. Reuz e, E. Andres, T. Estienne, and S. Niyoteka, "Standardization of brain mr images across machines and protocols: bridging the gap for mri-based radiomics," Scientific reports, vol. 10, pp. 1-5, 2020.
dc.relationP. Lambin, R. Leijenaar, T. Deist, J. P. E. Jong, J. Van-Timmeren, S. Sanduleanu, R. Larue, A. Even, A. Jochems, and Y. van Wijk, "Radiomics: the bridge between medical imaging and personalized medicine," Nature reviews Clinical oncology, vol. 14, pp. 749-762, 2017.
dc.relationJ. Ford, N. Dogan, L. Young, and F. Yang, "Quantitative radiomics: impact of pulse sequence parameter selection on mri-based textural features of the brain," Contrast media and molecular imaging, 2018.
dc.relationW. Rogers, S. Thulasi, T. Refaee, R. Lieverse, R. Granzier, A. Ibrahim, S. Keek, S. Sanduleanu, S. Primakov, M. Beuque, and D. Marcus, "Radiomics: from qualitative to quantitative imaging," The British journal of radiology, vol. 93, 2020.
dc.relationS. Yip and H. Aerts, "Applications and limitations of radiomics," Physics in medicine and biology, vol. 61, pp. 150{166, 2016.
dc.relationJ. Van-Timmeren, D. Cester, S. Tanadini-Lang, H. Alkadhi, and B. Baessler, "Radiomics in medical imaging how to guide and critical reflection," Insights into Imaging, vol. 11, pp, 2020.
dc.relationM. Tomaszewski and R. Gillies, "The biological meaning of radiomic features," Radiology, vol. 3, pp. 505-516, 2021.
dc.relationC. Parmar, E. Rios-Velazquez, R. L. R, M. Jermoumi, S. Carvalho, R. Mak, S. Mitra, B. Shankar, R. Kikinis, B. Haibe-Kains, and P. Lambin, "Robust radiomics feature quanti cation using semiautomatic volumetric segmentation," PloS one, vol. 7, p. e102107, 2014.
dc.relationZ. Shu, Y. Xu, Y. Shao, P. Pang, and X. Gong, "Radiomics from magnetic resonance imaging may be used to predict the progression of white matter hyperintensities and identify associated risk factors," European radiology, vol. 30, pp. 3046-3058, 2020.
dc.relationB. Newton, K. Wright, M. Winkler, F. Bovis, M. Takahashi, I. Dimitrov, M. Sormani, M. Pinho, and D. Okuda, "Three-dimensional shape and surface features distinguish multiple sclerosis lesions from nonspecific white matter disease," Journal of Neuroimaging, vol. 6, pp. 613-619, 2017.
dc.relationD. Sivakolundu, M. Hansen, K. West, Y. Wang, T. Stanley, A. Wilson, M. McCreary, M. Turner, M. Pinho, B. Newton, and X. Guo, "Three-dimensional lesion phenotyping and physiologic characterization inform remyelination ability in multiple sclerosis," Journal of Neuroimaging, vol. 5, pp. 605-614, 2019.
dc.relationL. Fournier, L. Costaridou, L. Bidaut, N. Michoux, F. Lecouvet, L. De-Geus-Oei, R. B. D. Oprea-Lager, N. Obuchowski, A. Caroli, and W. Kunz, "Incorporating radiomics into clinical trials: expert consensus endorsed by the european society of radiology on considerations for data-driven compared to biologically driven quantitative biomarkers," European radiology, vol. 1, 2021.
dc.relationB. Caba, D. Liu, A. Lombard, N. Novikov, A. Cafaro, D. Bradley, E. Battistella, E. Fisher, N. Franchimont, A. Gafson, and P. Momayyez-Siahkal, "Machine learning based classification of acute versus chronic multiple sclerosis lesions using radiomic features from unenhanced cross-sectional brain mri," Neurology, vol. 96, p. 4121, 2021.
dc.relationM. Lei, B. Varghese, D. Hwang, S. Cen, X. Lei, A. Azadikhah, B. Desai, A. Oberai, and V. Duddalwar, "Benchmarking features from difeerent radiomics toolkits/toolboxes using image biomarkers standardization initiative," arxiv:preprint, vol. 3, 2020.
dc.relationJ. Foy, K. Robinson, H. Li, M. Giger, H. Al-Hallaq, and S. Armato, "Variation in algorithm implementation across radiomics software," Journal of Medical Imaging, vol. 4, p. 044505, 2018.
dc.relationL. Z. D. Fried, X. Fave, L. Hunter, J. Yang, and L. Court, "Ibex: an open infrastructure software platform to facilitate collaborative work in radiomic," Medical physics, vol. 3, pp. 1341-1353, 2015.
dc.relationL. Chang, W. Zhuang, R. W. amd S. Feng, H. Liu, J. Yu, J. Ding, Z. Wang, and J. Zhang, "Darwin: A highly flexible platform for imaging research in radiology," arXiv preprint arXiv, vol. 21, 2020.
dc.relationR. Yuan, S. Shi, J. Chen, and G. Cheng, "Radiomics in rayplus: a web-based tool for texture analysis in medical images," Journal of digital imaging, vol. 32, pp. 269-275, 2019.
dc.relationE. Pfaehler, A. Zwanenburg, J. de Jong, and R. Boellaard, "Racat: an open source and easy to use radiomics calculator tool," PLoS One, vol. 2, p. e0212223, 2019.
dc.relationJ. V. Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. Beets- Tan, J. Fillion-Robin, S. Pieper, and H. Aerts, "Computational radiomics system to decode the radiographic phenotype," Cancer research, vol. 21, pp. 104-107, 2017.
dc.relationL. Coelho, "Mahotas: Open source software for scriptable computer vision," Journal of Open Research Software, vol. 1, 2013.
dc.relationS. C. Lam, "Texture feature extraction using gray level gradient based co-occurence matrices," IEEE International Conference on Systems, Man and Cybernetics. Information Intelligence and Systems, vol. 1, pp. 267-271, 1996.
dc.relationG. Castellano, L. Bonilha, L. M. Li, and F. Cendes, "Texture analysis of medical images," Clinical Radiology, vol. 12, pp. 1061-1069, 2004.
dc.relationB. Dhruv, M. Mittal, and M. Modi, "Study of haralick's and glcm texture analysis on 3d medical images," International Journal of Neuroscience, vol. 129, pp. 350-362, 2019.
dc.relationJ. Zhang, L. Tong, L. Wang, and N. Li, "Texture analysis of multiple sclerosis: a comparative study. magnetic resonance imaging," International Journal of Neuroscience, vol. 26, pp. 1160-1166, 2008.
dc.relationL. Harrison, M. Raunio, K. Holli, T. Luukkaala, S. Savio, I. Elovaara, S. Soimakallio, H. Eskola, and P. Dastidar, "Mri texture analysis in multiple sclerosis: toward a clinical analysis protocol," International Journal of Neuroscience, vol. 17, pp. 696-707, 2010.
dc.relationS. Mohammed, M. Mohammed, A. Hegazi, and M. Ali, "Characterization of white matter lesions on brain magnetic resonance images using texture analysis," IOSR Journal of Dental and Medical Science, vol. 20, pp. 57,64, 2020.
dc.relationD. Ta, M. Khan, A. Ishaque, P. Seres, D. Eurich, Y. Yang, and S.Kalra, "Reliability of 3d texture analysis: A multicenter mri study of the brain," Journal of Magnetic Resonance Imaging, vol. 51, pp. 1200-1209, 2020.
dc.relationO. Yu, Y. Mauss, G. Zollner, I. Namer, and J. Chambron, "Distinct patterns of active and non-active plaques using texture analysis on brain nmr images in multiple sclerosis patients:preliminary results," Magnetic resonance imaging, vol. 9, pp. 1261-1267, 1999.
dc.relationS. Pirzada, M. Uddin, T. Figley, J. Kornelsen, J. Puig, R. Marrie, E. Mazerolle, J. Fisk, C. Helmick, C. O'Grady, and R. Patel, "Spatial normalization of multiple sclerosis brain mri data depends on analysis method and software package," Magnetic resonance imaging, vol. 68, pp. 84-94, 2020.
dc.relationL. Ny ul and J. Udupa, "On standardizing the mr image intensity scale," Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, vol. 42, pp. 1072{1081, 1999.
dc.relationM. Shah, Y. Xiao, N. Subbanna, S. Francis, D. Arnold, D. Collins, and T. Arbel,"Evaluating intensity normalization on mris of human brain with multiple sclerosis," Medical image analysis, vol. 15, pp. 267-282, 2011.
dc.relationL. Duron, D. Balvay, S. Vande, A. Bouchouicha, J. Savatovsky, J. Sadik, I. Thomassin- Naggara, L. Fournier, and A. Lecler, "Gray-level discretization impacts reproducible mri radiomics texture features," PLoS One, vol. 14, 2019.
dc.relationJ. Reinhold, B. Dewey, A. Carass, and J. Prince, "Evaluating the impact of intensity normalization on mr image synthesis," Medical Image, vol. 14, 2019.
dc.relationC. Loizou, M. Pantzaris, and C. Pattichis, "Normal appearing brain white matter changes in relapsing multiple sclerosis: Texture image and classification analysis in serial mri scans," Magnetic Resonance Imaging, vol. 1, pp. 192-202, 2020
dc.relationR. M. Haralick, K. Shanmugam, and I. Dinstein, "Textural features for image classification," IEEE Transactions on Systems, Man, and Cybernetics, vol. 6, pp. 610-621, 1973.
dc.relationT. Lofstedt, P. Brynolfsson, T. Asklund, T. Nyholm, and A. Garpebring, "Gray-level invariant haralick texture features," Plos One, vol. 14, 2019.
dc.relationT. Ojala, M. Pietikainen, and T. Maenpaa, "Multiresolution gray-scale and rotation invariant texture classi cation with local binary patterns," IEEE Transactions on pattern analysis and machine intelligence, vol. 24, pp. 971-987, 2002.
dc.relationF. Song, Z. Guo, and D. Mei, "Feature selection using principal component analysis," IEEE-2010 international conference on system science, engineering design and manufacturing informatization, vol. 1, pp. 27-30, 2010.
dc.relationA. Ion, G. Kocevar, C. Stamile, D. Sima, F. Durand-Dubief, S. Van-Hu el, and D. Sappey-Marinier, "Machine learning approach for classifying multiple sclerosis courses by combining clinical data with lesion loads and magnetic resonance metabolic features," Frontiers in neuroscience, vol. 11, p. 398, 2017.
dc.relationP. Matthews, V. Block, and L. Leocani, "E-health and multiple sclerosis," Current opinion in neurology, vol. 33, pp. 271-276, 2020.
dc.relationA. Tacchella, S. Romano, M. Ferraldeschi, M. Salvetti, A. Zaccaria, A. Crisanti, and F. Grassi, "Collaboration between a human group and artificial intelligence can improve prediction of multiple sclerosis course: a proof-of-principle study," F1000Research, vol. 6, 2017.
dc.relationP. Eichinger, C. Zimmer, and B. Wiestler, "Ai in radiology: Where are we today in multiple sclerosis imaging?," InR oFo-Fortschritte auf dem Gebiet der R ontgenstrahlen und der bildgebenden Verfahren, 2020.
dc.relationF. Shaikh, J. Dehmeshki, S. Bisdas, D. Roettger-Dupont, O. Kubassova, M. Aziz, and O. Awan, "Artificial intelligence-based clinical decision support systems using advanced medical imaging and radiomics," Current Problems in Diagnostic Radiology, vol. 6, 2020.
dc.relationC. Parmar, P. Grossmann, J. Bussink, P. Lambin, and H. Aerts, \Machine-learning methods for quantitative radiomic biomarkers," Scientific Report, Nature, vol. 17, p. 4121, 2015.
dc.relationP. Freire, M. Idagawa, E. de Oliveira, N. Abdala, H. C. H, and R. Ferrari, "Classification of active multiple sclerosis lesions in mri without the aid of gadolinium-based contrast using textural and enhanced features from air images," Computational Science and Its Applications -ICCSA 2020, vol. 1, pp. 60-74, 2020.
dc.relationF. Pedregosa, G. Varoquaux, A. G. amd V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, and J. Vanderplas, "Scikit-learn: Machine learning in python," The Journal of machine Learning research, vol. 12, pp. 2825- 2830, 2011.
dc.relationS. V. D. Walt, J. L. Sch onberger, J. Nunez-Iglesias, F. Boulogne, J. D. Warner, N. Yager, E. Gouillart, and T. Yu, "scikit-image: Image processing in python," PeerJ, vol. 2, 2014.
dc.relationY. Song, J. Zhang, Y. Zhang, Y. Hou, X. Yan, Y.Wang, M. Zhou, Y. Yao, and G. Yang, "Feature explorer (fae): A tool for developing and comparing radiomics models," Plos One, vol. 15, p. e0237587, 2020.
dc.relationP. Brynolfsson, D. Nilsson, T. Torheim, T. Asklund, C. Karlsson, J. Trygg, T. Nyholm, and A. Garpebring, "Haralick texture features from apparent difusion coeficient (adc) mri images depend on imaging and pre-processing parameters," Scientific Report, Nature, vol. 7, pp. 1-11, 2017.
dc.rightsReconocimiento 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titlePredecir la progresión de la lesión cerebral en la esclerosis múltiple por medio de biomarcadores en las imágenes de resonancia magnética
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución