dc.contributorCarvajal Quintero, Sandra Ximena
dc.contributorMarín Jiménez, Juan David
dc.contributorEnvironmental Energy and Education Policy – E3P
dc.creatorOsorio Ruiz, Santiago
dc.date.accessioned2022-02-14T15:29:05Z
dc.date.accessioned2022-09-21T16:07:54Z
dc.date.available2022-02-14T15:29:05Z
dc.date.available2022-09-21T16:07:54Z
dc.date.created2022-02-14T15:29:05Z
dc.date.issued2022
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/80971
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3388992
dc.description.abstractLos conceptos de edificaciones sustentables surgieron en el mundo como una solución para contribuir con la mitigación del cambio climático por medio de la reducción en los consumos energéticos y el aumento de la eficiencia energética en las edificaciones. Conceptos como el de edificaciones de energía cero y derivados se han desarrollado en diferentes partes del mundo para promover las edificaciones sustentables. En la actualidad no se tiene una definición general que se pueda aplicar a cada país debido a diferencias que están implícitas en cada región a la hora de planear, diseñar y construir estas edificaciones. En este documento se revisaron las definiciones relacionadas con entidades gubernamentales a nivel nacional e internacional que promueven la construcción de edificios con balance energético cero, destacando los principales desafíos, oportunidades y retos futuros que se tienen con el desarrollo de estas tecnologías en los países. Se evidenció que los principales desafíos para la implementación de edificaciones de balance energético cero son climáticos, económicos, sociales y tecnológicos. Adicionalmente, promover este tipo de soluciones depende directamente de la intención política de cada región. Además, se evidenciaron oportunidades y retos futuros desde la academia y la industria para desarrollar modelos que fomenten el desarrollo de ciudades inteligentes y edificaciones de balance energético cero. Por último, se plantearon escenarios y hojas de ruta en un caso de estudio del territorio colombiano para el desarrollo de edificaciones de balance energético, más específicamente desde los campus universitarios, los cuales debido a sus diferentes usos de la energía pueden ser laboratorios vivientes de ciudades a pequeña escala para el desarrollo de modelos y políticas de edificaciones sustentables en Colombia. El desarrollo del modelo se planteó en la Universidad Nacional de Colombia sede Manizales campus la Nubia y se enfatizó en la estimación de cargas por medio de antecedentes normativos del país, el dimensionamiento de sistemas solares fotovoltaicos y la presentación de escenarios para la implementación de sistemas de adquisición de datos con posibilidad de realizar labores de control y automatización para optimizar el rendimiento energético del campus.
dc.description.abstractThe concepts of green buildings emerged in the world as a solution to contribute to the mitigation of climate change by reducing energy consumption and increasing energy efficiency in buildings. Concepts such as zero energy buildings and derivatives have been developed in different parts of the world to promote green buildings. Currently there is no general definition that can be applied to each country due to differences that are implicit in each region when planning, designing and constructing these buildings. In this document the definitions related to national and international government entities that promote the construction of buildings with zero energy balance were reviewed, highlighting the main challenges, opportunities and future challenges that faced with the development of these technologies in the countries. It was evidenced that the main challenges for the implementation of zero energy balance buildings are climatic, economic, social and technological, additionally promoting this type of solutions depend directly on the political intention of each region. In addition, future opportunities and challenges were evidenced from academia and industry to develop models that promote the development of smart cities and buildings with zero energy balance. On the other hand, scenarios and roadmaps are proposed in a case study of the Colombian territory for the development of energy balance buildings, more specifically from university campuses, which due to their different uses of energy can be living laboratories of small-scale cities for the development of sustainable building models and policies in Colombia. The development of the model was proposed at the National University of Colombia, Manizales campus la Nubia, and emphasis was placed on the estimation of loads through the country's normative background, the dimensioning of photovoltaic solar systems and the presentation of scenarios for the implementation of solar systems. data acquisition with the possibility of carrying out control and automation tasks to optimize the energy performance of the campus.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherManizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Ingeniería Eléctrica
dc.publisherDepartamento de Ingeniería Eléctrica y Electrónica
dc.publisherFacultad de Ingeniería y Arquitectura
dc.publisherManizales, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Manizales
dc.relationInternational Energy Agency - IEA, “Electricity consumption, world 1990-2017. Data & Statistics.” Web page. https://www.iea.org/policies/about.
dc.relationL. Lan, K. L. Wood, and C. Yuen, “A holistic design approach for residential net-zero energy buildings: A case study in Singapore,” Sustain. Cities Soc., vol. 50, no. June, p. 101672, 2019, doi: 10.1016/j.scs.2019.101672.
dc.relationX. Li, A. Lin, C.-H. Young, Y. Dai, and C.-H. Wang, “Energetic and economic evaluation of hybrid solar energy systems in a residential net-zero energy building,” Appl. Energy, vol. 254, no. May, p. 113709, 2019, doi: 10.1016/j.apenergy.2019.113709.
dc.relationP. Huang and Y. Sun, “A clustering based grouping method of nearly zero energy buildings for performance improvements,” Appl. Energy, vol. 235, no. September 2018, pp. 43–55, 2019, doi: 10.1016/j.apenergy.2018.10.116.
dc.relationIEA (International Energy Agency), “World Energy Outlook 2019.” .
dc.relationInternational Energy Agency - IEA, “IEA webstore. GlobalABC Roadmap for Buildings and Construction 2020-2050,” Jul. 2020. .
dc.relationM. Guerrieri, M. La Gennusa, G. Peri, G. Rizzo, and G. Scaccianoce, “University campuses as small-scale models of cities: Quantitative assessment of a low carbon transition path,” Renew. Sustain. Energy Rev., vol. 113, no. July, p. 109263, 2019, doi: 10.1016/j.rser.2019.109263.
dc.relationIEA (International Energy Agency), “GlobalABC, IEA and UNEP 2020 (2020), GlobalABC Regional Roadmap for Buildings and Construction in Latin America 2020-2050, IEA, Paris .”
dc.relationL. Belussi et al., “A review of performance of zero energy buildings and energy efficiency solutions,” J. Build. Eng., vol. 25, no. April, p. 100772, 2019, doi: 10.1016/j.jobe.2019.100772.
dc.relationInternatinal Energy Agency - IEA, “Climate change.” Web page. https://www.iea.org/policies/about.
dc.relationUPME, “Plan De Acción Indicativo De Eficiencia Energética 2017 - 2022,” p. 157, 2017.
dc.relationD. Kolokotsa, D. Rovas, E. Kosmatopoulos, and K. Kalaitzakis, “A roadmap towards intelligent net zero- and positive-energy buildings,” Sol. Energy, vol. 85, no. 12, pp. 3067–3084, 2011, doi: 10.1016/j.solener.2010.09.001.
dc.relationX. Yang, S. Zhang, and W. Xu, “Impact of zero energy buildings on medium-to-long term building energy consumption in China,” Energy Policy, vol. 129, no. January 2019, pp. 574–586, 2019, doi: 10.1016/j.enpol.2019.02.025.
dc.relationL. Gentile-Polese et al., “Monitoring and Characterization of Miscellaneous Electrical Loads in a Large Retail Environment,” Golden, CO (United States), Feb. 2014. doi: 10.2172/1126300.
dc.relationS. Attia, “Roadmap for NZEB Implementation,” Net Zero Energy Build., pp. 343–369, 2018, doi: 10.1016/b978-0-12-812461-1.00012-5.
dc.relationA. A. Muresan and S. Attia, “Energy efficiency in the Romanian residential building stock: A literature review,” Renew. Sustain. Energy Rev., vol. 74, no. December 2016, pp. 349–363, 2017, doi: 10.1016/j.rser.2017.02.022.
dc.relationO. Gönülol and A. Tokuç, “Net Zero Energy Residential Building Architecture in the Future,” Exergetic, Energ. Environ. Dimens., pp. 39–53, 2017, doi: 10.1016/B978-0-12-813734-5.00002-0.
dc.relationJ. Zuo, B. Read, S. Pullen, and Q. Shi, “Achieving carbon neutrality in commercial building developments - Perceptions of the construction industry,” Habitat Int., vol. 36, no. 2, pp. 278–286, Apr. 2012, doi: 10.1016/j.habitatint.2011.10.010.
dc.relationM. Lu and J. H. K. Lai, “Building energy: A review on consumptions, policies, rating schemes and standards,” Energy Procedia, vol. 158, pp. 3633–3638, 2019, doi: 10.1016/j.egypro.2019.01.899.
dc.relationZ. Liu, Q. Zhou, Z. Tian, B. He, and G. Jin, “A comprehensive analysis on definitions, development, and policies of nearly zero energy buildings in China,” Renew. Sustain. Energy Rev., vol. 114, no. February 2019, p. 109314, 2019, doi: 10.1016/j.rser.2019.109314.
dc.relationH. Mirinejad, K. C. Welch, and L. Spicer, “A review of intelligent control techniques in HVAC systems,” 2012, doi: 10.1109/EnergyTech.2012.6304679.
dc.relationK. McGlinn, B. Yuce, H. Wicaksono, S. Howell, and Y. Rezgui, “Usability evaluation of a web-based tool for supporting holistic building energy management,” Autom. Constr., vol. 84, pp. 154–165, Dec. 2017, doi: 10.1016/j.autcon.2017.08.033.
dc.relationN. Min-Allah and S. Alrashed, “Smart campus—A sketch,” Sustain. Cities Soc., vol. 59, no. April, p. 102231, 2020, doi: 10.1016/j.scs.2020.102231.
dc.relationJ. L. Chen, H. Bin Liu, W. Wu, and D. T. Xie, “Estimation of monthly solar radiation from measured temperatures using support vector machines - A case study,” Renew. Energy, vol. 36, no. 1, pp. 413–420, 2011, doi: 10.1016/j.renene.2010.06.024.
dc.relationW. Feng et al., “A review of net zero energy buildings in hot and humid climates: Experience learned from 34 case study buildings,” Renew. Sustain. Energy Rev., vol. 114, no. June, p. 109303, 2019, doi: 10.1016/j.rser.2019.109303.
dc.relationS. Attia et al., “Overview and future challenges of nearly zero energy buildings (nZEB) design in Southern Europe,” Energy Build., vol. 155, no. 2017, pp. 439–458, 2017, doi: 10.1016/j.enbuild.2017.09.043.
dc.relationHermelink, A., Schimschar, S., Boermans, T., Pagliano, L., Zangheri, P., Armani, R., Voss, K., & Musall, E., “Towards nearly zero-energy buildings. Definition of common principles under the EPBD. Final report (Miscellaneous) | ETDEWEB,” Feb 15, 2013, Feb. 2013. .
dc.relationJ. Zhang, N. Zhou, A. Hinge, W. Feng, and S. Zhang, “Governance strategies to achieve zero-energy buildings in China,” Build. Res. Inf., vol. 44, no. 5–6, pp. 604–618, Aug. 2016, doi: 10.1080/09613218.2016.1157345.
dc.relationI. B. E. E. (2018) . International Partnership for Energy Efficiency Cooperation: Paris, France.Taskgroup, “Zero Energy Building Definitions and Policy Activity-An International Review.”
dc.relationK. B. Dokka, T. H., Sartori, I., Thyholt, M., Lien, K., & Lindberg, “A Norwegian zero emission building definition. Passivhus Norden, 15-17.”
dc.relation“Zero Carbon Hub: Zero Carbon Policy, 2021.” .
dc.relationAPEC Energy Working Group., “APEC Project report: Nearly (Net) zero energy building. Beijing, China: APEC.”
dc.relationNatural Resources Canada, “Details of the R-2000 Standard ,” 2012. Weg page. https://www.nrcan.gc.ca/energy-efficiency/homes/buying-energy-efficient-new-home/r-2000-environmentally-friendly-homes/20575.
dc.relationP. P. S. D. M. and C. D. Torcellini, “Zero Energy Buildings: A Critical Look at the Definition; Preprint (Conference) | OSTI.GOV,” Jun. 2006. Article.
dc.relationJ. Laustsen, “Energy Efficiency Requirements in Building Codes, Energy Efficiency Policies for New Buildings. IEA Information Paper (Book) | ETDEWEB,” Mar. 2008.
dc.relationDr. Sam C. M. Hui, “Zero energy and zero carbon buildings: myths and facts,” September, pp. 1–13, 2010.
dc.relationM. Noguchi, A. Athienitis, V. Delisle, J. Ayoub, and B. Berneche, “Net Zero Energy Homes of the Future: A Case Study of the ÉcoTerra TM House in Canada Masa,” 2008.
dc.relationC. Peng, L. Huang, J. Liu, and Y. Huang, “Energy performance evaluation of a marketable net-zero-energy house: Solark I at Solar Decathlon China 2013,” Renew. Energy, vol. 81, pp. 136–149, 2015, doi: 10.1016/j.renene.2015.03.029.
dc.relationJ. Kramer, A. Krothapalli, and B. Greska, “The off-grid zero emission building,” in Proceedings of the Energy Sustainability Conference 2007, Feb. 2007, pp. 573–580, doi: 10.1115/ES2007-36170.
dc.relationL. Wells, B. Rismanchi, and L. Aye, “A review of Net Zero Energy Buildings with reflections on the Australian context,” Energy Build., vol. 158, pp. 616–628, 2018, doi: 10.1016/j.enbuild.2017.10.055.
dc.relationS. Kilkis, “A new metric for net- zero carbon buildings,” in Proceedings of the Energy Sustainability Conference 2007, Feb. 2007, pp. 219–224, doi: 10.1115/ES2007-36263.
dc.relationM. P. E. De Angelis, A.L.C. Ciribini, L.C. Tagliabue, “The Brescia smart campus demonstrator. Renovation toward a zero energy classroom building.”
dc.relationA. J. Marszal et al., “Zero Energy Building - A review of definitions and calculation methodologies,” Energy Build., vol. 43, no. 4, pp. 971–979, Apr. 2011, doi: 10.1016/j.enbuild.2010.12.022.
dc.relationEuropean Commission: “Energy performance of buildings directive | Energy.” https://ec.europa.eu/energy/topics/energy-efficiency/energy-efficient-buildings/energy-performance-buildings-directive_en. 2021.
dc.relationZEBRA 2020, “Zebra2020 - Estrategia de construcción de energía casi cero 2020.” Pagina Web. https://zebra2020.eu/.
dc.relationI. Juraga, M. Paviotti, and B. Berger, “The Environmental Noise Directive at a turning point.” Article.
dc.relationG. B.-F. Register 2007, “Strengthening federal environmental, energy, and transportation management.” federal regulation.
dc.relationVíctor Severino Mendoza Velázquez, “La política energética de los Estados Unidos de América durante el,” Feb. 2018.
dc.relation“R2000 Standard,” Canda, 2012. Regulation.
dc.relationM. Leckner and R. Zmeureanu, “Life cycle cost and energy analysis of a Net Zero Energy House with solar combisystem,” Appl. Energy, vol. 88, no. 1, pp. 232–241, 2011, doi: 10.1016/j.apenergy.2010.07.031.
dc.relationR. W. Murphy, C. K. Rice, V. D. Baxter, and W. G. Craddick, “Ground-Source Integrated Heat Pump for Near-Zero Energy Houses: Technology Status Report,” Oak Ridge, TN (United States), Sep. 2007. doi: 10.2172/969947.
dc.relation“Ministry of Housing and Urban-Rural Development (MOHURD), PRC | Regional Knowledge Sharing Initiative.” Regulation.
dc.relationH. Li, S. Zhang, M. Okumiya, K. Y.-B. Sci, and undefined 2017, “Japan zero energy building development status.”
dc.relationIEA “Act on the Rational Use of Energy, Japan.” .
dc.relationX. Huo and A. T. W. Yu, “A comparison of green building policies in asian countries or regions,” in Proceedings of the 21st International Symposium on Advancement of Construction Management and Real Estate, 2016, 2018, no. 209889, pp. 19–33, doi: 10.1007/978-981-10-6190-5_3.
dc.relationH. S. Suh and D. D. Kim, “Energy performance assessment towards nearly zero energy community buildings in South Korea,” Sustain. Cities Soc., vol. 44, pp. 488–498, Jan. 2019, doi: 10.1016/j.scs.2018.10.036.
dc.relationA. K. Athienitis, G. Barone, A. Buonomano, and A. Palombo, “Assessing active and passive effects of façade building integrated photovoltaics/thermal systems: Dynamic modelling and simulation,” Appl. Energy, vol. 209, no. November 2017, pp. 355–382, 2018, doi: 10.1016/j.apenergy.2017.09.039.
dc.relationS. B. Sadineni, S. Madala, and R. F. Boehm, “Passive building energy savings: A review of building envelope components,” Renew. Sustain. Energy Rev., vol. 15, no. 8, pp. 3617–3631, 2011, doi: 10.1016/j.rser.2011.07.014.
dc.relationY. Sun, G. Huang, X. Xu, and A. C. K. Lai, “Building-group-level performance evaluations of net zero energy buildings with non-collaborative controls,” Appl. Energy, vol. 212, pp. 565–576, Feb. 2018, doi: 10.1016/j.apenergy.2017.11.076.
dc.relationX. Chen, H. Yang, and L. Lu, “A comprehensive review on passive design approaches in green building rating tools,” Renew. Sustain. Energy Rev., vol. 50, pp. 1425–1436, 2015, doi: 10.1016/j.rser.2015.06.003.
dc.relationS. M. Silva, R. Mateus, L. Marques, M. Ramos, and M. Almeida, “Contribution of the solar systems to the nZEB and ZEB design concept in Portugal – Energy, economics and environmental life cycle analysis,” Sol. Energy Mater. Sol. Cells, vol. 156, no. 2016, pp. 59–74, 2016, doi: 10.1016/j.solmat.2016.04.053.
dc.relationA. Hamburg, K. Kuusk, A. Mikola, and T. Kalamees, “Realisation of energy performance targets of an old apartment building renovated to nZEB,” Energy, vol. 194, p. 116874, 2020, doi: 10.1016/j.energy.2019.116874.
dc.relationK. Heine, A. Thatte, and P. C. Tabares-Velasco, “A simulation approach to sizing batteries for integration with net-zero energy residential buildings,” Renew. Energy, vol. 139, pp. 176–185, Aug. 2019, doi: 10.1016/j.renene.2019.02.033.
dc.relationG. Pandey, S. N. Singh, B. S. Rajpurohit, and F. M. Gonzalez-Longatt, “Smart DC Grid for Autonomous Zero Net Electric Energy of Cluster of Buildings,” in IFAC-PapersOnLine, Jan. 2015, vol. 48, no. 30, pp. 108–113, doi: 10.1016/j.ifacol.2015.12.362.
dc.relationL. Wang, J. Gwilliam, and P. Jones, “Case study of zero energy house design in UK,” Energy Build., vol. 41, no. 11, pp. 1215–1222, Nov. 2009, doi: 10.1016/j.enbuild.2009.07.001.
dc.relationE. F. Zalamea-León and R. H. García-Alvarado, “Integración de captación activa y pasiva en viviendas unifamiliares de emprendimientos inmobiliarios,” Ambient. Construído, vol. 18, no. 1, pp. 445–461, 2017, doi: 10.1590/s1678-86212018000100231.
dc.relationLa Agencia Internacional de Energía (AIE), Comisión Económica para América Latina y el Caribe (CEPAL), and Ministerio de Minas y Energía(Perú), América Latina y el Caribe Recomendaciones de Políticas de Eficiencia Energética Regionales. 2014.
dc.relationW. E. Council, “World Energy Trilemma Priority actions on climate change and how to balance the trilemma,” WEC, p. 53, 2015.
dc.relationInternational Energy Agency, “Energy, Climate Change and Enviroment 2016 Insights,” p. 133, 2016, doi: 10.1787/9789264266834-en.
dc.relationB. Dean, “Towards zero-emission efficient and resilient buildings.: Global Status Report,” 2016.
dc.relationS. Attia, NZEB Case Studies and Learned Lessons, Book. 2018.
dc.relationF. Salamone, L. Belussi, L. Danza, T. Galanos, M. Ghellere, and I. Meroni, “Design and Development of a Nearable Wireless System to Control Indoor Air Quality and Indoor Lighting Quality,” Sensors, vol. 17, no. 5, p. 1021, May 2017, doi: 10.3390/s17051021.
dc.relationT. F. Slaper, “The Triple Bottom Line: What Is It and How Does It Work? The Triple Bottom Line Defined.”
dc.relationY. Lu, X. P. Zhang, J. Li, Z. Huang, C. Wang, and L. Luo, “Design of a reward-penalty cost for the promotion of net-zero energy buildings,” Energy, vol. 180, pp. 36–49, 2019, doi: 10.1016/j.energy.2019.05.049.
dc.relation“Household Energy Consumption Survey, User Guide, Australia, 2012.” .
dc.relationM. Baechler, J. Williamson, T. Gilbride, P. Cole, M. Hefty,. 2010, “Guide to determining climate regions by county.”
dc.relationK. F. Fong and C. K. Lee, “Towards net zero energy design for low-rise residential buildings in subtropical Hong Kong,” Appl. Energy, vol. 93, pp. 686–694, 2012, doi: 10.1016/j.apenergy.2012.01.006.
dc.relationL. F. Cabeza and M. Chàfer, “Technological options and strategies towards zero energy buildings contributing to climate change mitigation: A systematic review,” Energy Build., vol. 219, p. 110009, Jul. 2020, doi: 10.1016/J.ENBUILD.2020.110009.
dc.relationD. Besser and F. U. Vogdt, “First steps towards low energy buildings: How far are Chilean dwellings from nearly zero-energy performances?,” Energy Procedia, vol. 132, pp. 81–86, 2017, doi: 10.1016/J.EGYPRO.2017.09.642.
dc.relationM. B. Piderit, F. Vivanco, G. van Moeseke, and S. Attia, “Net Zero Buildings—A Framework for an Integrated Policy in Chile,” Sustain. 2019, Vol. 11, Page 1494, vol. 11, no. 5, p. 1494, Mar. 2019, doi: 10.3390/SU11051494.
dc.relationC. y. T. Ministerio de Vivienda, “Resolución numero 0549 de 2015,” 2015. https://www.cccs.org.co/wp/download/resolucion-0549-de-2015/.
dc.relationR. D. De Souza E Silva and R. Cavalcante De Oliveira, “Net Zero Energy Building in Brazil: Potencial Smart Buildings?,” 2019 IEEE PES Conf. Innov. Smart Grid Technol. ISGT Lat. Am. 2019, Sep. 2019, doi: 10.1109/ISGT-LA.2019.8895412.
dc.relationP. Huang, G. Huang, and Y. Sun, “A robust design of nearly zero energy building systems considering performance degradation and maintenance,” Energy, vol. 163, pp. 905–919, Nov. 2018, doi: 10.1016/j.energy.2018.08.183.
dc.relationH. Li, S. Wang, and R. Tang, “Robust optimal design of zero/low energy buildings considering uncertainties and the impacts of objective functions,” Appl. Energy, vol. 254, p. 113683, Nov. 2019, doi: 10.1016/j.apenergy.2019.113683.
dc.relationE. Rodriguez-Ubinas et al., “Passive design strategies and performance of Net Energy Plus Houses,” Energy Build., vol. 83, pp. 10–22, Nov. 2014, doi: 10.1016/j.enbuild.2014.03.074.
dc.relationO. Majeed, M. Zulqarnain, and T. Majeed, “Recent advancement in smart grid technology : Future prospects in the electrical power network,” Ain Shams Eng. J, 2020, doi: 10.1016/j.asej.2020.05.004.
dc.relationY. Lu, S. Wang, C. Yan, and K. Shan, “Impacts of renewable energy system design inputs on the performance robustness of net zero energy buildings,” Energy, vol. 93, pp. 1595–1606, 2015, doi: 10.1016/j.energy.2015.10.034.
dc.relationS. Attia, Net Zero Energy Buildings Performance Indicators and Thresholds. 2018.
dc.relationS. Attia and S. Carlucci, “Impact of different thermal comfort models on zero energy residential buildings in hot climate,” Energy Build., vol. 102, pp. 117–128, Jun. 2015, doi: 10.1016/j.enbuild.2015.05.017.
dc.relationJ. M. Taylor, “Sustainable Building Practices: Legislative and Economic Incentives,” Manag. Innov. a Sustain. Built Environ. MISBE 2011 , no. June, 2011.
dc.relation“Motivation and Expectation of Developers on Green Construction: A Conceptual View.” .
dc.relationO. A. Olubunmi, P. B. Xia, and M. Skitmore, “Green building incentives: A review,” Renewable and Sustainable Energy Reviews, vol. 59. Elsevier Ltd, pp. 1611–1621, Jun. 2016, doi: 10.1016/j.rser.2016.01.028.
dc.relationT. Gómez-Navarro and D. Ribó-Pérez, “Assessing the obstacles to the participation of renewable energy sources in the electricity market of Colombia,” Renew. Sustain. Energy Rev., vol. 90, no. September 2016, pp. 131–141, 2018, doi: 10.1016/j.rser.2018.03.015.
dc.relationDahiana López García, “Caracterización de un esquema remunerativo para la participación de la demanda en la prestación del servicio complementario de control de frecuencia en el mercado eléctrico colombiano,” Universidad Nacional de Colombia, 2019.
dc.relation“Biophilic Design: The Theory, Science and Practice of Bringing Buildings to Life - Stephen R. Kellert, Judith Heerwagen, Martin Mador - Google Libros.” .
dc.relationF. P. Chantrelle, H. Lahmidi, W. Keilholz, M. El Mankibi, and P. Michel, “Development of a multicriteria tool for optimizing the renovation of buildings,” Appl. Energy, vol. 88, no. 4, pp. 1386–1394, Apr. 2011, doi: 10.1016/j.apenergy.2010.10.002.
dc.relationQ. Jin and M. Overend, “Facade renovation for a public building based on a whole-life value approach,” 2012.
dc.relationY. Lu, S. Wang, and K. Shan, “Design optimization and optimal control of grid-connected and standalone nearly/net zero energy buildings,” Applied Energy, vol. 155. Elsevier Ltd, pp. 463–477, Oct. 2015, doi: 10.1016/j.apenergy.2015.06.007.
dc.relationW. Wu, H. M. Skye, and P. A. Domanski, “Selecting HVAC systems to achieve comfortable and cost-effective residential net-zero energy buildings,” Appl. Energy, vol. 212, no. October 2017, pp. 577–591, 2018, doi: 10.1016/j.apenergy.2017.12.046.
dc.relationF. D. Salim et al., “Modelling urban-scale occupant behaviour, mobility, and energy in buildings: A survey,” Build. Environ., vol. 183, p. 106964, Oct. 2020, doi: 10.1016/J.BUILDENV.2020.106964.
dc.relationF. Shariatzadeh, P. Mandal, and A. K. Srivastava, “Demand response for sustainable energy systems: A review, application and implementation strategy,” Renew. Sustain. Energy Rev., vol. 45, no. August 2016, pp. 343–350, 2015, doi: 10.1016/j.rser.2015.01.062.
dc.relationA. Arango-Manrique, S. X. Carvajal-Quintero, and C. Younes-Velosa, “How to promote distributed resource supply in a colombian microgrid with economic mechanism?: System dynamics approach,” DYNA, vol. 82, no. 192, 2015, doi: 10.15446/dyna.v82n192.48564.
dc.relationJ. Byun, S. Park, B. Kang, I. Hong, and S. Park, “Design and implementation of an intelligent energy saving system based on standby power reduction for a future zero-energy home environment,” IEEE Trans. Consum. Electron., vol. 59, no. 3, pp. 507–514, Aug. 2013, doi: 10.1109/TCE.2013.6626231.
dc.relationA. Mohamed, M. Hamdy, A. Hasan, and K. Sirén, “The performance of small scale multi-generation technologies in achieving cost-optimal and zero-energy office building solutions,” Appl. Energy, vol. 152, pp. 94–108, Aug. 2015, doi: 10.1016/j.apenergy.2015.04.096.
dc.relationE. Koutroulis and K. Kalaitzakis, “Design of a maximum power tracking system for wind-energy-conversion applications,” IEEE Trans. Ind. Electron., vol. 53, no. 2, pp. 486–494, Apr. 2006, doi: 10.1109/TIE.2006.870658.
dc.relationP. Odonkor and K. Lewis, “Adaptive Operation Decisions in Net Zero Building Clusters,” Aug. 2015, doi: 10.1115/detc2015-47290.
dc.relationX. Li and J. Wen, “Net-zero energy building clusters emulator for energy planning and operation evaluation,” Comput. Environ. Urban Syst., vol. 62, pp. 168–181, Mar. 2017, doi: 10.1016/j.compenvurbsys.2016.09.007.
dc.relationClinton Fundation: "Clinton Climate Initiative - C40.” https://www.clintonfoundation.org/programs/climate-change-disaster-recovery/clinton-climate-initiative/.
dc.relation“International Energy Agency’s Energy in Buildings and Communities Programme.” .
dc.relationH. Erhorn-Kluttig, H. Erhorn, J. Weber, S. Wössner, and E. Budde, “EnEff:Stadt - Energiekonzept-Berater für Stadtquartiere,” Bauphysik, vol. 35, no. 3, pp. 172–180, Jun. 2013, doi: 10.1002/bapi.201310062.
dc.relationA. Zhivov et al., “Net Zero Building Cluster Energy Systems Analysis for U.S. Army Installations.”
dc.relationL. Martirano et al., “Demand Side Management in Microgrids for Load Control in Nearly Zero Energy Buildings,” IEEE Trans. Ind. Appl., vol. 53, no. 3, pp. 1769–1779, May 2017, doi: 10.1109/TIA.2017.2672918.
dc.relationM. Mehrtash, F. Capitanescu, P. K. Heiselberg, T. Gibon, and A. Bertrand, “An Enhanced Optimal PV and Battery Sizing Model for Zero Energy Buildings Considering Environmental Impacts,” IEEE Trans. Ind. Appl., vol. 56, no. 6, pp. 6846–6856, Nov. 2020, doi: 10.1109/TIA.2020.3022742.
dc.relationS. Alrashed, “Key Performance Indicators for Smart Campus and Microgrid,” Sustain. Cities Soc., vol. 60, no. May, p. 102264, 2020, doi: 10.1016/j.scs.2020.102264.
dc.relationŞ. Kılkış, C. Wang, F. Björk, and I. Martinac, “Cleaner energy scenarios for building clusters in campus areas based on the Rational Exergy Management Model,” J. Clean. Prod., vol. 155, pp. 72–82, 2017, doi: 10.1016/j.jclepro.2016.10.126.
dc.relationD. Kolokotsa et al., “Development of a web based energy management system for University Campuses: The CAMP-IT platform,” Energy Build., vol. 123, pp. 119–135, Jul. 2016, doi: 10.1016/J.ENBUILD.2016.04.038.
dc.relationT. F. Megahed, S. M. Abdelkader, and A. Zakaria, “Energy management in zero-energy building using neural network predictive control,” IEEE Internet Things J., vol. 6, no. 3, pp. 5336–5344, Jun. 2019, doi: 10.1109/JIOT.2019.2900558.
dc.relationZ. Ma, H. Ren, and W. Lin, “A review of heating, ventilation and air conditioning technologies and innovations used in solar-powered net zero energy Solar Decathlon houses,” J. Clean. Prod., vol. 240, p. 118158, 2019, doi: 10.1016/j.jclepro.2019.118158.
dc.relationM. Krarti, Integrated Design and Retrofit of Buildings. 2018.
dc.relationJ. Dadzie, G. Runeson, and G. Ding, “Determinants of sustainable upgrade for energy efficiency - The case of existing buildings in Australia,” Energy Procedia, vol. 153, pp. 284–289, 2018, doi: 10.1016/j.egypro.2018.10.002.
dc.relation“Sustainable Renovation: Strategies for Commercial Building Systems and Envelope - Lisa Gelfand, Chris Duncan - Google Libros.” .
dc.relationJ. Laverge, M. Delghust, S. Van de Velde, T. De Brauwere, and A. Janssens, “Airtightness assessment of newly built single family houses in Belgium,” Build. Ductwork Air-tightness, 5th Int. Symp. Proc., 2010.
dc.relationR. E. D. Hamed, “Harmonization between architectural identity and energy efficiency in residential sector (case of North-West coast of Egypt),” Ain Shams Eng. J., vol. 9, no. 4, pp. 2701–2708, 2018, doi: 10.1016/j.asej.2017.09.001.
dc.relationC. Outline, Energy Efficiency in Building Renovation. 2019.
dc.relationIEA - International Energy Agency, Experience Curves for Energy Technology Policy. Paris, France: IEA Publications, 2000.
dc.relationIEEE, IEEE 1547.4 Guide for Design , Operation , and Integration of Distributed Resource Island Systems with Electric Power Systems IEEE Standards Coordinating Committee 21 Sponsored by the, no. July. 2011.
dc.relationICONTEC, NTC - ISO 5001. 2011. https://www.iso.org/obp/ui/#iso:std:iso:50001:ed-1:v1:es.
dc.relationR. Del Pilar Castrillon and A. M. Quintero, “The energy planning according to the ISO 50001 contribute to the consolidation of a Sustainable Campus to the Universidad Autonoma de Occidente,” IEEE ICA-ACCA 2018 - IEEE Int. Conf. Autom. Congr. Chil. Assoc. Autom. Control Towar. an Ind. 4.0 - Proc., pp. 1–7, 2019, doi: 10.1109/ICA-ACCA.2018.8609765.
dc.relationEL CONGRESO DE COLOMBIA, “Ley 1715 de 2014,” no. May. p. 26, 2014.
dc.relationEnersinc - Departamento Nacional de Planeación, “Energy Demand Situation in Colombia,” p. 136, 2017.
dc.relationCOMISIÓN DE REGULACIÓN DE ENERGÍA Y GAS, “RESOLUCIÓN No. 030 DE 2018,” 2018. .
dc.relationCOMISIÓN DE REGULACIÓN DE ENERGÍA Y GAS, “Resolución No. 038 de 2018,” 2018.
dc.relationMinisterio de Minas y Energía, “Reglamento Técnico de Instalaciones Eléctrica - RETIE.” .
dc.relationMinisterio de Minas y Energía, “Reglamento Técnico de Iluminación y Alumbrado Público – RETILAP.” .
dc.relation“Consejo Colombiano de Construcción Sostenible – CCCS – Liderando el desarrollo sostenible de la industria de la construcción.” .
dc.relationMinisterio de Ambiente y Desarrollo Sostenible, “Edificaciones Sostenibles.” .
dc.relationCONGRESO DE COLOMBIA, “Ley 1955 de 2019.” https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=93970 .
dc.relationV. Y. D. T. MINISTERIO DE MINAS Y ENERGÍA Y MINISTERIO DE MEDIO AMBIENTE, “Reglamento Técnico de Eficiencia Energética para Viviendas de Interés Social RETEVIS.”
dc.relationMinisterio de Vivienda “Plan de acción sectorial de mitigación para el sector vivienda y desarrollo territorial estrategia colombiana de desarrollo bajo en carbono.” 2014.
dc.relationciudad y territorio. Ministerio de minas, “Anexo Técnico Inicial,” no. 1, 2013.
dc.relationJ. Manuel et al., “Documento CONPES.”
dc.relation“Edificio Ean Legacy | Universidad Ean.” 2021.
dc.relation“Energy considerations of social dwellings in Colombia according to the NZEB concept.pdf.”
dc.relationJ. A. Marquez Ceballos, “Criterios para la Planeación de Sistemas de Gestión de Energía en un Campus Universitario,” 2019.
dc.relationUniversidad Nacional de Colombia, “Universidad Nacional de Colombia: Plazoleta: bloques P, Q y R.” .
dc.relationUNIMEDIOS: Universidad Nacional de Colombia, “UNAL Sede Manizales crece en infraestructura de última tecnología ,” Nov. 2019. .
dc.relationUNIMEDIOS: Universidad Nacional de Colombia, “Bloque L,” 2016, 2016.
dc.relationxk - exkema, “Bloque W Universidad Nacional de Colombia Sede Manizales,” Feb. 2018. .
dc.relationUNIMEDIOS: Universidad Nacional de Colombia, “Bloque W Sede Manizales,” 2017. .
dc.relationLA PATRIA, “Abren los bloques S1 y S2 de la Universidad Nacional sede Manizales,” 2019, Nov. 2019.
dc.relationAcademia colombiana de Arquitecruta y Diseño, “Planteamiento de estrategias bioclimáticas - Universidad nacional de Colombia Campus la Nubia sede Manizales BLoque S,” no. 57, 2015.
dc.relationJ. A. Márquez Ceballos, J. D. Marín Jiménez, and S. X. Carvajal-Quintero, “Análisis del Impacto de la Implementación de Sistemas de Gestión de Energía en los Campus Universitarios en Colombia,” XVI Encuentro Colomb. Dinámica Sist., 2018.
dc.relationJ. A. Márquez Ceballos, J. D. Marín Jiménez, and S. X. Carvajal-Quintero, “Sistema de gestión energética en el campus la Nubia de la Universidad Nacional de Colombia: fase 1_ Diagnóstico,” CIUREE, 2018.
dc.relation“NORMA TÉCNICA NTC-ISO COLOMBIANA 50001,” 2011.
dc.relationI. Dzene, I. Polikarpova, L. Zogla, and M. Rosa, “Application of ISO 50001 for Implementation of Sustainable Energy Action Plans,” Energy Procedia, vol. 72, pp. 111–118, 2015, doi: 10.1016/j.egypro.2015.06.016.
dc.relationIDEAM, “Atlas Interactivo - Radiación.” .
dc.relationKING PIGEON, “Soluciones IOT, Soluciones IoT industriales, Gateway IoT industrial, Gateway IoT.”
dc.relationD. Reynders, S. Mackay, E. Wright, and S. Mackay, “RS-485 overview,” in Practical Industrial Data Communications, Elsevier, 2004, pp. 92–96.
dc.relationKING PIGEON, “Puerta de enlace 4G Lora S281.”
dc.relationD. Valencia López, “Programas de Gestión de Demanda Energética en el Sector Industrial. Aplicación de la Analítica para su Diseño e Implementación,” 2016.
dc.relationJ. D. Marín Jiménez, “Análisis para la provisión del Servicio Complementario de Capacidad de Operación por Islas a partir de Recursos Energéticos Distribuidos en ambientes desregulados,” pp. 1–424, 2017.
dc.relationM. F. Zia, M. Benbouzid, E. Elbouchikhi, S. M. Muyeen, K. Techato, and J. M. Guerrero, “Microgrid transactive energy: Review, architectures, distributed ledger technologies, and market analysis,” IEEE Access, vol. 8, pp. 19410–19432, 2020, doi: 10.1109/ACCESS.2020.2968402.
dc.relationH. Ben Abdeljawed and L. El Amraoui, “Prospects for synergies between low-voltage DC microgrid technology and peer-to-peer energy trading markets,” Sustain. Prod. Consum., Jul. 2021, doi: 10.1016/J.SPC.2021.07.029.
dc.relationL. Ableitner, V. Tiefenbeck, A. Meeuw, A. Wörner, E. Fleisch, and F. Wortmann, “User behavior in a real-world peer-to-peer electricity market,” Appl. Energy, vol. 270, p. 115061, Jul. 2020, doi: 10.1016/J.APENERGY.2020.115061.
dc.relationY. Wu, Y. Wu, J. M. Guerrero, and J. C. Vasquez, “Digitalization and decentralization driving transactive energy Internet: Key technologies and infrastructures,” Int. J. Electr. Power Energy Syst., vol. 126, Mar. 2021, doi: 10.1016/J.IJEPES.2020.106593.
dc.relationY. Liu, L. Wu, and J. Li, “Peer-to-peer (P2P) electricity trading in distribution systems of the future,” Electr. J., vol. 32, no. 4, pp. 2–6, May 2019, doi: 10.1016/J.TEJ.2019.03.002.
dc.relationJ. Lin, M. Pipattanasomporn, and S. Rahman, “Comparative analysis of auction mechanisms and bidding strategies for P2P solar transactive energy markets,” Appl. Energy, vol. 255, p. 113687, Dec. 2019, doi: 10.1016/J.APENERGY.2019.113687.
dc.relationNATURAL PRESS, “Mercados de energía peer-to-peer ¿Qué es eso? - Natural Press.”
dc.rightsReconocimiento 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleEvaluación de criterios para incentivar las edificaciones de balance energético cero en Colombia
dc.typeTesis


Este ítem pertenece a la siguiente institución