dc.contributorEscobar Pérez, Roosevelt Humberto
dc.contributorCastiblanco Vargas, Valheria
dc.contributorGarcía Dávila, Mario Augusto
dc.creatorCarcamo Medina, Lilian Yaritza
dc.date.accessioned2022-02-14T16:41:22Z
dc.date.accessioned2022-09-21T16:07:50Z
dc.date.available2022-02-14T16:41:22Z
dc.date.available2022-09-21T16:07:50Z
dc.date.created2022-02-14T16:41:22Z
dc.date.issued2021-12-07
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/80975
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3388980
dc.description.abstractLa duplicación de cromosomas es un fenómeno relevante para ampliar la base de la diversidad genética de las plantas, pues llega a tener efectos importantes tales como el aumento en el tamaño de las células, de los órganos, aumento de la biomasa, ayudando en la transferencia de genes o en el incremento de heterocigosidad. El programa de forrajes tropicales del CIAT (Centro Internacional de Agricultura Tropical, hoy Alianza Bioversity-CIAT) pretende optimizar el esquema de mejoramiento genético actual y para ello necesita obtener un genotipo tetraploide sexual de Urochloa decumbens. Por este motivo, en el presente estudio se planteó como objetivo explorar las bases metodológicas para iniciar un proceso de poliploidización de la especie mediante el uso de la colchicina. Se ajustó e implementó una metodología in vitro para la propagación de material vegetal y se inició el esquema de regeneración mediado por la de embriogénesis somática como una posible vía para la duplicación de cromosomas. Se realizaron dos ensayos de poliploidización, el primero bajo condiciones in vivo utilizando plántulas germinadas de cuatro días de edad como explante y en una segunda prueba bajo condiciones in vitro utilizando segmentos basales. Se utilizaron dos concentraciones de colchicina: 0,05 y 0,1% durante 2, 8, 12 y 24 h tanto en in vivo como in vitro. En la adecuación del material vegetal, para la fase in vitro la escarificación manual presenta mejores porcentajes de germinación en las 3 accesiones utilizadas y fue posible implementar la propagación en condiciones de medio sólido. Tanto la aclimatación de las plantas en invernadero, como la regeneración de plantas vía embriogénesis somática fue exitosa. En los ensayos de poliploidización, las plantas tratadas con colchicina se establecieron en invernadero y se determinó tasa de supervivencia, tamaño de estomas y densidad estomática. A nivel de tasa de supervivencia de explantes tratados con colchicina en alta dosis y tiempos largos hubo mayor mortalidad, a nivel de estomas (morfología, ancho, largo y densidad estomática) no se observaron cambios significativos que se puedan correlacionar con el nivel de ploidía en el ensayo in vivo, sin embargo, sería prudente dar una espera hasta obtener plantas maduras para analizar de nuevo estos parámetros. Se va a continuar con la verificación de ploidía mediante citometría de flujo y conteo de cromosomas. (Texto tomado de la fuente)
dc.description.abstractChromosome duplication is considered a broad and relevant phenomenon to expand the genetic diversity of plants, which allows having significant effects such as an increase in the size of cells, organs, biomass, gene transfer, or the increasing heterozygosity. Therefore, the tropical forages program of CIAT (International Center for Tropical Agriculture, now the Bioversity-CIAT Alliance) seeks to optimize the current breeding scheme to obtain a sexual tetraploid genotype of Urochloa decumbens to have more genetic diversity. Based on this, the present study explores the methodological bases to initiate a polyploidization process of this species using colchicine. This research started from developing an in vitro methodology for the propagation of plant material and somatic embryogenesis as a possible route of chromosome duplication. Two polyploidization assays were performed, the first under in vivo conditions using germinated four-day-old seedlings as explants and the second under in vitro conditions using basal segments. Two concentrations of colchicine were used: 0.05 and 0.1% for 2, 8, 12, and 24 h for both tests. The manual scarification presented better germination percentages in the three accessions using the in vitro methodology. Moreover, It helped to propagate the plants in a solid medium. The acclimatization of the plants in the greenhouse and the regeneration using somatic embryogenesis were effective. In the polyploidization tests, the plants treated with colchicine were established in the greenhouse, and the survival rate, stomata size, and stomatal density variables were determined. There was higher mortality at the higher concentrations and longer exposure times when assessing the survival rate. No significant changes related to the ploidy level were found at the stomatal level for the in vivo test. However, to corroborate the results, it is suggested to continue with the ploidy analysis using flow cytometry and chromosome counting.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherPalmira - Ciencias Agropecuarias - Maestría en Ciencias Biológicas
dc.publisherFacultad de Ciencias Agropecuarias
dc.publisherPalmira, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Palmira
dc.relationAcquaviva, C., & Pines, J. (2006). The anaphase-promoting complex/cyclosome: APC/C. Journal of Cell Science, 119(Pt 12), 2401–2404. https://doi.org/10.1242/JCS.02937
dc.relationAkiyoshi, B., Sarangapani, K. K., Powers, A. F., Nelson, C. R., Reichow, S. L., Arellano-Santoyo, H., … Biggins, S. (2010). Tension directly stabilizes reconstituted kinetochore-microtubule attachments. Nature, 468(7323), 576–579. https://doi.org/10.1038/nature09594
dc.relationAllum, J. F., Bringloe, D. H., & Roberts, A. V. (2007). Chromosome doubling in a Rosa rugosa Thunb. hybrid by exposure of in vitro nodes to oryzalin: The effects of node length, oryzalin concentration and exposure time. Plant Cell Reports, 26(11), 1977–1984. https://doi.org/10.1007/s00299-007-0411-y
dc.relationAnderson, J. A., Mousset-Déclas, C., Williams, E. G., & Taylor, N. L. (1991). An in vitro chromosome doubling method for clovers (Trifolium spp.). Genome, 34(1), 1–5. https://doi.org/10.1139/G91-001
dc.relationArdabili, G. S., Asghari, R., & Zare, N. (2015). In Vitro Induction of Polyploidy in Sorghum bicolor L . In Vitro Induction of Polyploidy in Sorghum bicolor L . The Japan Mendel Society, 80(4), 495–503. https://doi.org/10.1508/cytologia.80.495
dc.relationAwoleye, F., van Duren, M., Dolezel, J., & Novak, F. J. (1994). Nuclear DNA content and in vitro induced somatic polyploidization cassava (Manihot esculenta Crantz) breeding. Euphytica , 76(3), 195–202. https://doi.org/10.1007/BF00022164
dc.relationBajer, A. S., & Molè-Bajer, J. (1986). Drugs with colchicine-like effects that specifically disassemble plant but not animal microtubules. Annals of the New York Academy of Sciences, 466(1), 767–784. https://doi.org/10.1111/J.17496632.1986.TB38458.X
dc.relationBarbosa, S., Davide, L. C., Pereira, A. Vander, & De Abreu, J. C. (2007). Duplicação cromossômica de híbridos triplóides de capim-elefante e milheto. Bragantia, 66(3), 365–372. https://doi.org/10.1590/s0006-87052007000300001
dc.relationBarow, M., & Jovtchev, G. (2007). Endopolyploidy in Plants and its Analysis by Flow Cytometry. In J. Dolezel, J. Greilhuber, & j Suda (Eds.), Flow Cytometry with Plant Cells (pp. 349–372). https://doi.org/10.1002/9783527610921.CH15
dc.relationBennett, M. (2000). Nuclear DNA Amounts in Angiosperms and their Modern Uses—807 New Estimates. Annals of Botany, 86(4), 859–909. https://doi.org/10.1006/anbo.2000.1253
dc.relationBlakeslee, A F, & Avery, A. G. (1937). Methods of inducing doubling of chromosomes in plants by treatment with colchicine. Journal of Heredity, 28(12), 393–411. https://doi.org/10.1093/OXFORDJOURNALS.JHERED.A104294
dc.relationBlakeslee, Albert F. (1939). The present and potential service of chemistry to plant breeding . American Journal of Botany, 26(3), 163–172. https://doi.org/10.1002/J.1537-2197.1939.TB12885.X
dc.relationBohanec, B. (2003). Ploidy determination using flow cytometry. In Doubled Haploid Production in Crop Plants (pp. 397–403). https://doi.org/10.1007/978-94-017-1293-4_52
dc.relationBornhoff, B., & Harst, M. (2000). Establishment of embryo suspension cultures of grapevines (Vitis L.). 39(1), 27–29.
dc.relationBreitling, F., & Little, M. (1986). Carboxy-terminal regions on the surface of tubulin and microtubules. Epitope locations of YOL1/34, DM1A and DM1B. Journal of Molecular Biology, 189(2), 367–370. https://doi.org/10.1016/0022-2836(86)90517-6
dc.relationBrummer, E. C., Cazcarro, P. M., & Luth, D. (1999). Ploidy Determination of Alfalfa Germplasm Accessions Using Flow Cytometry. Crop Science, 39(4), 1202–1207. https://doi.org/10.2135/CROPSCI1999.0011183X003900040041X
dc.relationCamacho, M. F. (1994). Dormición de semillas: causas y tratamientos.
dc.relationCamarena, F., Chura, J., & Blas, R. . (2012). Mejoramiento genético y biotecnológico de plantas.
dc.relationCampos, J. M. S., Davide, L. C., Salgado, C. C., Santos, F. C., Costa, P. N., Silva, P. S., … Pereira, A. V. (2009). In vitro induction of hexaploid plants from triploid hybrids of Pennisetum purpureum and Pennisetum glaucum. Plant Breeding, 128(1), 101–104. https://doi.org/10.1111/j.1439-0523.2008.01546.x
dc.relationCarneiro, J. W. P., & Marques, F. V. (1985). Influencia de la remoción de la cubierta protectora en el rendimiento de dos lotes de semillas de pasto señal. Brasilia.
dc.relationCasaya, T. A. (2004). Establecimiento del protocolo de multiplicación in vitro para pasto Toledo (Brachiaria brizantha CIAT 26110) : fase I. Universidad EARTH.
dc.relationChakraborti, S. P., Vijayan, K., Roy, B. N., & Qadri, S. M. H. (1998). In vitro induction of tetraploidy in mulberry (Morus alba L.). Plant Cell Reports , 17(10), 799–803. https://doi.org/10.1007/S002990050486
dc.relationChauvin, J. E., Label, A., & Kermarrec, M. P. (2005). In vitro chromosome-doubling in tulip (Tulipa gesneriana L.). The Journal of Horticultural Science and Biotechnology, 80(6), 693–698. https://doi.org/10.1080/14620316.2005.11512000
dc.relationChen, L. L., & Gao, S. L. (2007). In vitro tetraploid induction and generation of tetraploids from mixoploids in Astragalus membranaceus. Scientia Horticulturae, 112(3), 339–344. https://doi.org/10.1016/J.SCIENTA.2006.12.045
dc.relationChen, W. H., Tang, C. Y., & Kao, Y. L. (2009). Ploidy doubling by in vitro culture of excised protocorms or protocorm-like bodies in Phalaenopsis species. Plant Cell, Tissue and Organ Culture, 98(2), 229–238. https://doi.org/10.1007/S11240-009-9557-3
dc.relationChen, Z. J. (2010). Molecular mechanisms of polyploidy and hybrid vigor. Trends in Plant Science, 15(2), 57–71. https://doi.org/10.1016/J.TPLANTS.2009.12.003
dc.relationCohen, D., & Yao, J. (1996). In vitro chromosome doubling of nineZantedeschia cultivars. Plant Cell, Tissue and Organ Culture , 47(1), 43–49. https://doi.org/10.1007/BF02318964
dc.relationComstock, R. E., Robinson, H. F., & Harvey, P. H. (1949). A Breeding Procedure Designed To Make Maximum Use of Both General and Specific Combining Ability1. Agronomy Journal, 41(8), 360. https://doi.org/10.2134/agronj1949.00021962004100080006x
dc.relationCopeland, L., & McDonald, M. (1995). Principles of Seed Science and Technology (3a edition). Retrieved from https://www.springer.com/gp/book/9780792373223
dc.relationDas, D., Reddy, M., Upadhyaya, K., & Sopory, S. (2002). An efficient leaf-disc culture method for the regeneration via somatic embryogenesis and transformation of grape (Vitis vinifera L.). Plant Cell Reports, 20(11), 999–1005. https://doi.org/10.1007/S00299-002-0441-4
dc.relationDe Oliveira, A. L., De Costa, P., Pereira, R. C., Nunes, J. D., Brasil, J. E., De Souza, F., & Davide, L. (2014). Obtaining tetraploid plants of ruzigrass (Brachiaria ruziziensis). Revista Brasileira de Zootecnia, 43(3), 127–131. https://doi.org/10.1590/S1516-35982014000300004
dc.relationDewey, D. R. (1980). Some Applications and Misapplications of Induced Polyploidy to Plant Breeding. Basic Life Sciences, 13, 445–470. https://doi.org/10.1007/978-1-4613-3069-1_23
dc.relationDewitte, A., Eeckhaut, T., Van Huylenbroeck, J., & Van Bockstaele, E. (2009). Occurrence of viable unreduced pollen in a Begonia collection. Euphytica, 168(1), 81–94. https://doi.org/10.1007/S10681-009-9891-X
dc.relationDewitte, W., & Murray, J. A. H. (2003). The plant cell cycle. Annu. Rev. Plant Biol, 54, 235–264. https://doi.org/10.1146/annurev.arplant.54.031902.134836
dc.relationDhooghe, E., Van Laere, K., Eeckhaut, T., Leus, L., & Van Huylenbroeck, J. (2010). Mitotic chromosome doubling of plant tissues in vitro. Plant Cell, Tissue and Organ Culture, 104(3), 359–373. https://doi.org/10.1007/S11240-010-9786-5
dc.relationDoležel, J., Greilhuber, J., & Suda, J. (2007). Flow cytometry with plant cells: analysis. Wiley-VCH, Weinheim.
dc.relationDorsey, E. (1936). Induced polyploidy in wheat and rye: Chromosome Doubling in Triticum, Secale and Triticum-Secale Hybrids Produced by Temperature Changes. Journal of Heredity, 27(4), 155–160. https://doi.org/10.1093/OXFORDJOURNALS.JHERED.A104195
dc.relationDunn, B. L., & Lindstrom, J. T. (2007). Oryzalin-induced chromosome doubling in Buddleja to facilitate interspecific hybridization. HortScience, 42(6), 1326–1328. https://doi.org/10.21273/HORTSCI.42.6.1326
dc.relationDutt, M., Vasconcellos, M., Song, K. J., Gmitter, F. G., & Grosser, J. W. (2009). In vitro production of autotetraploid Ponkan mandarin (Citrus reticulata Blanco) using cell suspension cultures. Euphytica, 173(2), 235–242. https://doi.org/10.1007/S10681-009-0098-Y
dc.relationEeckhaut, T., Samyn, G., & Van Bockstaele, E. (2003). In vitro polyploidy induction in rhododendron simsii hybrids. Acta Horticulturae, 572, 43–49. https://doi.org/10.17660/ACTAHORTIC.2002.572.4
dc.relationElyazid, D. M. A., & El-Shereif, A. R. (2014). In Vitro Induction of Polyploidy in Citrus reticulata Blanco. American Journal of Plant Sciences, 5(11), 1679–1685. https://doi.org/10.4236/AJPS.2014.511182
dc.relationEngelmann, F., Dambier, D., & Ollitrauit, P. (1994). Cryopreservation of cell suspensions and embryogenic calluses of Citrus using a simplified freezing process. Cryo Letters, 15(1).
dc.relationEuclides, V., & Euclides, K. (1998). Uso de animais na avaliação de forrageiras em Campo Grande. In Empresa Brasileira de Pesquisa Agropecuária (Embrapa-CNPGL). Documento no. 74. https://doi.org/10.1017/CBO9781107415324.004
dc.relationEvans, A. M. (1955). The Production and Identification of Polyploids in Red Clover, White Clover and Lucerne on JSTOR. New Phytologist, 54, 149–162. Retrieved from https://www.jstor.org/stable/2429625
dc.relationFaría, J., Aguilar, L. G., & González, B. (1996). Efecto de métodos químicos de escarificación sobre la germinación de seis gramíneas forrajeras tropicales. Revista de La Facultad de Agronomía de La Universidad Del Zulia, 13(4). Retrieved from https://produccioncientificaluz.org/index.php/agronomia/article/view/26073
dc.relationFawcett, J. A., Maere, S., & Van de Peer, Y. (2009). Plants with double genomes might have had a better chance to survive the Cretaceous–Tertiary extinction event. Proceedings of the National Academy of Sciences, 106(14), 5737–5742. https://doi.org/10.1073/PNAS.0900906106
dc.relationFiore, S., De Pasquale, F., Carimi, F., & Sajeva, M. (2002). Effect of 2,4-D and 4-CPPU on somatic embryogenesis from stigma and style transverse thin cell layers of Citrus. Plant Cell, Tissue and Organ Culture , 68(1), 57–63. https://doi.org/10.1023/A:1012944100210
dc.relationFisher, M. J., & Kerridge, C. P. (2002). Agronomía y Fisiología de las Especies Brachiaria. In J.W Miles, B. L. Maass, C. . do Valle, & V. Kumble (Eds.), Brachiaria: Biología, Agronomía y Mejoramiento (pp. 46–57).
dc.relationGanga, M., & Chezhiyan, N. (2002). Influence of the antimitotic agents colchicine and oryzalin on in vitro regeneration and chromosome doubling of diploid bananas (Musa spp.). The Journal of Horticultural Science and Biotechnology, 77(5), 572–575. https://doi.org/10.1080/14620316.2002.11511540
dc.relationGarcía, M., Guzmán, R., & Vargas, A. (2010). Técnica de biospeckle para estudiar la dependencia de la viabilidad de semillas de lupino con la temperatura. Rev. Cub. Física, 27(1), 13–17.
dc.relationGobbe, J., Swenne, A., & Louant, R. . (1981). Diploides naturels et autotétraploides induits chez RracJuaria ruziziensis Germain et Evraru: criteres d’identification. Agronomy Tropical, 36, 339·346.
dc.relationGorodner, O. Z. (2013). Histología: Métodos e instrumentos de estudio de la histología parte I: Técnica histológica.
dc.relationGreplová, M., Polzerová, H., & Domkářová, J. (2009). Intra- and inter-specific crosses of Solanum materials after mitotic polyploidization in vitro. Plant Breeding, 128(6), 651–657. https://doi.org/10.1111/j.1439-0523.2009.01632.x
dc.relationGriga, M. (2000). Morphological alterations in sterile mutant of Pisum sativum obtained via somatic embryogenesis. Biologia Plantarum, 43(2), 161–165. https://doi.org/10.1023/A:1002751903877
dc.relationHacker, J. B. (1988). Sexuality and hibrization in signal grass Brachiaria decumbens. Tropical Grasslands, 22, 139–144.
dc.relationHamill, S. D., Smith, M. K., & Dodd, W. A. (1992). In vitro Induction of Banana Autotetraploids by Colchicine Treatment of Micropropagated Diploids. Australian Journal of Botany, 40, 887–896.
dc.relationHenny, R. J., Holm, J. R., Chen, J., & Scheiber, M. (2009). In vitro induction of tetraploids in Dieffenbachia × “Star bright M-1” by colchicine. HortScience, 44(3), 646–650. https://doi.org/10.21273/HORTSCI.44.3.646
dc.relationHermsen, J. (1984). Nature, evolution and breeding of polyploids. Iowa State Journal of Research, 58, 411–420. Retrieved from https://research.wur.nl/en/publications/nature-evolution-and-breeding-of-polyploids
dc.relationHernández, E., Quero, A. R., Joaquín, B. M., Hernández, A., & Hernández, F. J. (2016). Métodos de escarificación y germinación en Brachiaria brizantha cv. Insurgente. Revista Mexicana de Ciencias Agrícolas, 7(1), 173–184.
dc.relationHirano, T. (2006). At the heart of the chromosome: SMC proteins in action. Nature Reviews Molecular Cell Biology , 7(5), 311–322. https://doi.org/10.1038/nrm1909
dc.relationHoffman, R. A. (2008). Flow Cytometry: Instrumentation, Applications, Future Trends and Limitations. In Standardization and Quality Assurance in Fluorescence Measurements II (pp. 307–342). https://doi.org/10.1007/4243_2008_037
dc.relationHopkinson, J. M., De Souza, F. H. D., Diulgheroff, S., Ortiz, A., & Sánchez, M. (2000). Fisiologia reproductiva, produccion de semilla y calidad de la semilla en el genero Brachiaria. In J.W. Miles, B. L. Maass, & C. . Valle (Eds.), Brachiaria: Biología , Agronomía y Mejoramiento (pp. 136–155). Cali, Colombia.
dc.relationHopkinson, J. M., Souza, F. H. D. de, Diulgheroff, S., Ortiz, A., & Sanchez, M. (1996). Reproductive physiology, seed production, and seed quality of Brachiaria. In J.W Miles, B. . Maase, C. . do Vallee, & V. with the collaboration of Kumble (Eds.), Brachiaria: Biology, Agronomy and Improvement (pp. 124–140). Retrieved from https://cgspace.cgiar.org/handle/10568/82030
dc.relationHugdahl, J. D., & Morejohn, L. C. (1993). Rapid and Reversible High-Affinity Binding of the Dinitroaniline Herbicide Oryzalin to Tubulin from Zea mays L. Plant Physiology, 102(3), 725–740. https://doi.org/10.1104/PP.102.3.725
dc.relationHull, F. H. (1945). Recurrent Selection for Specific Combining Ability in Corn1. Agronomy Journal, 37(2), 134–145. https://doi.org/10.2134/AGRONJ1945.00021962003700020006X
dc.relationIshigaki, G., Gondo, T., Suenaga, K., & Akashi, R. (2009a). Induction of tetraploid ruzigrass (Brachiaria ruziziensis) plants by colchicine treatment of in vitro multiple-shoot clumps and seedlings. Grassland Science, 55(3), 164–170. https://doi.org/10.1111/j.1744-697X.2009.00153.x
dc.relationIshigaki, G., Gondo, T., Suenaga, K., & Akashi, R. (2009b). Multiple shoot formation, somatic embryogenesis and plant regeneration from seed-derived shoot apical meristems in ruzigrass (Brachiaria ruziziensis). Grassland Science, 55(1), 46–51. https://doi.org/10.1111/J.1744-697X.2009.00137.X
dc.relationISTA. (2016). International rules for seed testing. 12. ISTA (1993) International Rules for Seed Testing. Zurich, Switzerland., 12. ISTA ((12. ISTA Int. rules seed testing. Zurich, Switzerland.), 345. https://doi.org/10.15258/istarules.2015.F
dc.relationJank, L., Resende, R. M. S., Valle, C. B., & Simioni, C. (2008). Polyploidization of Sexual Diploid Brachiaria decumbens for Intraspecific Hybridization. Multifunctional Grasslands in a ChangingWorld, p. 395.
dc.relationJark Filho, W. (1976). Estudio sobre la latencia en semillas de Brachiaria decumbens Stapf. - Buscar con Google. Universidad de São Paulo, Piracicaba.
dc.relationJelenic, S., Berljak, J., Papes, D., & Jelaska, S. (2001). Jelenic: Mixoploidy and chimeric structures in somaclones. Food Technology and Biotechnology, 39, 13–17.
dc.relationJesus-Gonzalez, D., & Weathers, P. (2003). Tetraploid Artemisia annua hairy roots produce more artemisinin than diploids. Plant Cell Reports, 21, 809–813. https://doi.org/10.1007/s00299-003-0587-8
dc.relationKadota, M., & Niimi, Y. (2002). In vitro induction of tetraploid plants from a diploid Japanese pear cultivar (Pyrus pyrifolia N. cv. Hosui). Plant Cell Reports , 21(3), 282–286. https://doi.org/10.1007/S00299-002-0509-1
dc.relationKehr, A. E. (1996). Woody plant polyploidy . Am Nurseryman , 183, 38–47.
dc.relationKeller-Grein, G., Meass, B., & Hanson, J. (2002). Variación Natural en Brachiaria y Bancos de Germoplasma Existentes. In J.W Miles, B. L. Maass, C. . do Valle, & V. Kumble (Eds.), Brachiaria: Biología, Agronomía y Mejoramiento (pp. 18–45).
dc.relationKermani, M. J., Sarasan, V., Roberts, A. V., Yokoya, K., Wentworth, J., & Sieber, V. K. (2003). Oryzalin-induced chromosome doubling in Rosa and its effect on plant morphology and pollen viability. Theoretical and Applied Genetics , 107(7), 1195–1200. https://doi.org/10.1007/S00122-003-1374-1
dc.relationKhosravi, P., Kermani, M. J., Nematzadeh, G. A., Bihamta, M. R., & Yokoya, K. (2007). Role of mitotic inhibitors and genotype on chromosome doubling of Rosa. Euphytica , 160(2), 267–275. https://doi.org/10.1007/S10681-007-9571-7
dc.relationKoefoed Petersen, K., Hagberg, P., & Kristiansen, K. (2003). Colchicine and oryzalin mediated chromosome doubling in different genotypes of Miscanthus sinensis. Plant Cell, Tissue and Organ Culture , 73(2), 137–146. https://doi.org/10.1023/A:1022854303371
dc.relationLampert, F., & Westermann, S. (2011). A blueprint for kinetochores — new insights into the molecular mechanics of cell division. Nature Reviews Molecular Cell Biology, 12(7), 407–412. https://doi.org/10.1038/nrm3133
dc.relationLeblanc, O., Dueñas, M., Hernández, M., Bello, S., García, V., & Savidan, Y. (1995). Chromosome doubling in Tripsacum: the production of artificial, sexual tetraploid ! plants. Plant Breeding, 114, 226–230.
dc.relationLenis-Manzano, S. J., Araujo, A. C. G., Do Valle, C. B., Santana, E. F., & Carneiro, V. T. C. (2010). Histology of somatic embryogenesis induced in embryos of mature seeds of the apomictic urochloa brizantha. Pesquisa Agropecuaria Brasileira, 45(5), 435–441. https://doi.org/10.1590/S0100-204X2010000500001
dc.relationLevin, D. A. (2002). The Role of Chromosomal Change in Plant Evolution - Donald A. Levin - Google Books. Oxford University Press, New York, New York, USA.
dc.relationLópez, S. J. (2009). Replicación del ácido desoxirribonucleico (DNA). In C. Beas, D. Ortuño, & J. . Almendáriz (Eds.), Biología Molecular Fundamentos y Aplicaciones (pp. 33–45). https://doi.org/10.1017/CBO9781107415324.004
dc.relationMartins, L., & Silva, W. R. da. (2003). Efeitos imediatos e latentes de tratamentos térmico e químico em sementes de Brachiaria brizantha cultivar Marandu. Bragantia, 62(1), 81–88. https://doi.org/10.1590/S0006-87052003000100011
dc.relationMerola, R., & Díaz, S. S. (2012). Métodos, técnicas y tratamientos para inhibir dormancia en semillas de plantas forrajeras. Facultad de Ciencias Agrarias. Trabajo Postgrado., Montevideo, Uruguay.
dc.relationMeschede, D. K., Sales, C. J. G., Braccini, D. L. A., Scapim, C. A., & Schuab, R. S. (2004). Tratamentos para superação da dormência das sementes de capim-braquiária cultivar Marandu. Revista Brasileira de Sementes, 26(2), 76–81. https://doi.org/10.1590/S0101-31222004000200011
dc.relationMeyer, E. M., Touchell, D. H., & Ranney, T. G. (2009). In vitro shoot regeneration and polyploid induction from leaves of Hypericum species. Hortscience, 44(7), 1957–1961. Retrieved from https://journals.ashs.org/hortsci/view/journals/hortsci/44/7/article-p1957.xml
dc.relationMijani, S., Eskandari, S., Zarghani, H., & GHIAS, M. (2013). Seed Germination and Early Growth Responses of Hyssop, Sweet Basil and Oregano to Temperature Levels. Notulae Scientia Biologicae, 5(4), 462–467. https://doi.org/10.15835/nsb549164
dc.relationMiles, John W. (2007). Apomixis for cultivar development in tropical forage grasses. Crop Science, 47(SUPPL. DEC.). https://doi.org/10.2135/cropsci2007.04.0016IPBS
dc.relationMolero, T., Viloria, M., & Viloria, E. (2018). Inducción de poliploidía con clochicina en vitroplantas de Aloe vera (L.). Revista Colombiana de Biotecnología, 20(1), 97–105. https://doi.org/10.15446/rev.colomb.biote.v20n1.73762
dc.relationMorejohn, L. C., Bureau, T. E., Molè-Bajer, J., Bajer, A. S., & Fosket, D. E. (1987). Oryzalin, a dinitroaniline herbicide, binds to plant tubulin and inhibits microtubule polymerization in vitro. Plant, 172(2), 252–264. https://doi.org/10.1007/BF00394595
dc.relationMorejohn, Louis C, Bureau, T. E., Tocchi, L. P., & Fosket, D. E. (1984). Tubulins from different higher plant species are immunologically nonidentical and bind colchicine differentially. Proceedings of the National Academy of Sciences, 81(5), 1440–1444. https://doi.org/10.1073/PNAS.81.5.1440
dc.relationMurashige, T., & Nakano, R. (1966). Tissue Culture as a Potential Tool in Obtaining Polyploid Plants. Journal of Heredity, 57(4), 115–118. https://doi.org/10.1093/OXFORDJOURNALS.JHERED.A107486
dc.relationMurashige, T., & Skoog, F. (1962). A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum, 15, 473–497.
dc.relationNair, R. (2004). (14) Desarrollo de poblaciones de centeno perenne tetraploide (Lolium perenne L.). New Zealand Journal of Agricultural Research, 47(1), 45/49.
dc.relationNakagawa, H., & Hanna, W. W. (1992). Induced Sexual Tetraploids for Breeding Gumeagrass (Panicum maximun J ACQ.). Japanese Society of Grassland Science, 38(2), 152–159.
dc.relationNiazi, I. A. K., Rauf, S., Silva, J. A. T. da, Iqbal, Z., & Munir, H. (2015). Induced polyploidy in inter-subspecific maize hybrids to reduce heterosis breakdown and restore reproductive fertility. Grass and Forage Science, 70(4), 682–694. https://doi.org/10.1111/GFS.12142
dc.relationNorden, C., Mendoza, M., Dobbelaere, J., Kotwaliwale, C., Biggins, S., & Barral, Y. (2006). The NoCut pathway links completion of cytokinesis to spindle midzone function to prevent chromosome breakage. Cell, 125(1), 85–98. https://doi.org/10.1016/J.CELL.2006.01.045
dc.relationOdake, Y., Udagawa, A., Saga, H., & Mii, M. (1993). Somatic embryogenesis of tetraploid plants from internodal segments of a diploid cultivar of Asparagus officinalis L. grown in liquid culture. Plant Science, 94(1–2), 173–177. https://doi.org/10.1016/0168-9452(93)90018-U
dc.relationOllitrault-Sammarcelli, F., Legave, J. M., Michaux-Ferriere, N., & Hirsch, A. M. (1994). Use of flow cytometry for rapid determination of ploidy level in the genus Actinidia. Scientia Horticulturae, 57(4), 303–313. https://doi.org/10.1016/S0304-4238(94)90113-9
dc.relationOlmos, S. E., Luciani, G., & Galdeano, E. (2009). Micropropagación. In G. Levitus, V. Echenique, C. Rubinstein, E. Hopp, & L. Mroginski (Eds.), Biotecnología y Mejoramiento Vegetal II (pp. 353–362).
dc.relationOmran, S., Guerra-Sanz, J. M., Cárdenas, J., & Pitrat, M. (2008). Methodology of tetraploid induction and expression of microsatellite alleles in triploid watermelon. Biology.
dc.relationOpenStax College. (2013). Biology. Retrieved from http://openstaxcollege.org.
dc.relationOtto, S. P., & Whitton, J. (2003). Polyploid incidence and evolution. Annual Review of Genetics, 34, 401–437. https://doi.org/10.1146/ANNUREV.GENET.34.1.401
dc.relationPasakinskiene, I. (2000). Culture of embryos and shoot tips for chromosome doubling in Lolium perenne and sterile hybrids between Lolium and Festuca. Plant Breeding, 119(2), 185–187. https://doi.org/10.1046/j.1439-0523.2000.00484.x
dc.relationPereira, R. C., Davide, L. C., Techio, V. H., & Timbó, A. L. (2012). Duplicação cromossômica de gramíneas forrageiras: Uma alternativa para programas de melhoramento genético. Ciencia Rural, 42(7), 1278–1285. https://doi.org/10.1590/S0103-84782012000700023
dc.relationPerrin, M., Martin, D., Joly, D., Demangeat, G., This, P., & Masson, J. E. (2001). Medium-dependent response of grapevine somatic embryogenic cells. Plant Science, 161(1), 107–116. https://doi.org/10.1016/S0168-9452(01)00385-5
dc.relationPeters, M., Franco, T., Schmidt, A., & Hincapié, B. (2011). Especies Forrajeras Multipropósito Opciones para Productores del Trópico Americano. Cali, CO.
dc.relationPines, J. (2006). Mitosis: a matter of getting rid of the right protein at the right time. Trends in Cell Biology, 16(1), 55–63. https://doi.org/10.1016/J.TCB.2005.11.006
dc.relationPinheiro, A. A., Pozzobon, M. T., Do Valle, C. B., Penteado, M. I. O., & Carneiro, V. T. C. (2000). Duplication of the chromosome number of diploid Brachiaria brizantha plants using colchicine. Plant Cell Reports, 19(3), 274–278. https://doi.org/10.1007/s002990050011
dc.relationPintos, B., Martín, L., & Gómez, A. (2014). Agentes antimitóticos en la obtención de plantas doble-haploides | Pintos | REDUCA (Biología). Reduca (Biología), 7 (2), 12–18.
dc.relationPlanchais, S., Glab, N., Inzë, D., & Bergounioux, C. (2000). Chemical inhibitors: a tool for plant cell cycle studies. FEBS Lett, 476, 78–83.
dc.relationPontaroli, A. C., & Biology, E. L. (2005). Somaclonal variation in Asparagus officinalis plants regenerated by organogenesis from long-term callus cultures. Genetics and Molecular Biology, 28, 423–430. Retrieved from https://www.scielo.br/scielo.php?pid=S1415-47572005000300015&script=sci_abstract&tlng=pt
dc.relationPredieri, S. (2001). Mutation induction and tissue culture in improving fruits. Plant Cell, Tissue and Organ Culture, 64, 185–210.
dc.relationQuero, A. R., Enríquez, J. F., & Miranda, L. (2007). Evaluación de especies forrajeras en América tropical, avances o status quo. Interciencia, 32(8), 556–571. Retrieved from https://www.redalyc.org/pdf/339/33932812.pdf
dc.relationQuesenberry, K. H., Dampier, J. M., Lee, Y. Y., Smith, R. L., & Acuña, C. A. (2010). Doubling the chromosome number of bahiagrass via tissue culture. Euphytica, 175(1), 43–50. https://doi.org/10.1007/s10681-010-0165-4
dc.relationRaimondi, J. P., Masuelli, R. W., & Camadro, E. L. (2001). Assessment of somaclonal variation in asparagus by RAPD fingerprinting and cytogenetic analyses. Scientia Horticulturae, 90(1–2), 19–29. https://doi.org/10.1016/S0304-4238(00)00250-8
dc.relationRamanna, M. S., & Jacobsen, E. (2003). Relevance of sexual polyploidization for crop improvement – A review. Euphytica , 133(1), 3–8. https://doi.org/10.1023/A:1025600824483
dc.relationRamírez, H., Guevara, M. E., & Escobar, R. H. (2012). Cultivo de Tejidos Vegetales Conceptos y Prácticas.
dc.relationRamos, N. A. (1975). Factores que influyen en la germinación del pasto (Brachiaria decumbens Stapf). Universidad Nacional-Instituto Colombiano Agropecuario (UN-ICA), Bogotá, Colombia.
dc.relationRamsey, J., & Schemske, D. W. (1998). Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annual Review of Ecology and Systematics, 29, 467–501. https://doi.org/10.1146/ANNUREV.ECOLSYS.29.1.467
dc.relationRandhawa, M. S., Singh, R. P., Dreisigacker, S., Bhavani, S., Huerta-Espino, J., Rouse, M. N., … Sandoval-Sanchez, M. (2018). Identification and Validation of a Common Stem Rust Resistance Locus in Two Bi-parental Populations. Frontiers in Plant Science, 1788. https://doi.org/10.3389/FPLS.2018.01788
dc.relationRandolph, L. F. (1932). Some Effects of High Temperature on Polyploidy and Other Variations in Maize. Proceedings of the National Academy of Sciences of the United States of America, 18(3), 222. https://doi.org/10.1073/PNAS.18.3.222
dc.relationRao, S., Tian, Y., Xia, X., Li, Y., & Chen, J. (2020). Chromosome doubling mediates superior drought tolerance in Lycium ruthenicum via abscisic acid signaling. Horticulture Research, 7(1), 1–18. https://doi.org/10.1038/s41438-020-0260-1
dc.relationRauf, S., Ortiz, R., Malinowski, D. P., Clarindo, W. R., Kainat, W., Shehzad, M., … Hassan, S. W. (2021). Induced polyploidy: A tool for forage species improvement. Agriculture (Switzerland), 11(3), 1–16. https://doi.org/10.3390/agriculture11030210
dc.relationReinert, J. (1959). Untersuchungen uber die morphogenese in gewebekulturen. Ver. Dtsch. Bot. Ges, 71, 15–24. https://doi.org/10.1007/BF01881795
dc.relationRengifo, L. (2013). Poliploidización in vitro por mutagénesis química en guglupa (Passiflora edulis Sims) y su monitoreo mediante técnicas citogenéticas.
dc.relationRenvoize, S. A., Clayton, W. D., & Kabuye, C. H. (1998). Morfología, taxonomía y distribución natural de Brachiaria (Trin.) Griseb. In J. W Miles, B. L. Maass, & C. B. Do Valle (Eds.), Brachiaria: Biología , Agronomía y Mejoramiento (pp. 1–17). CIAT. Cali, Colombia; EMBRAPA/CNPGC. Campo Grande, Brasil.
dc.relationRivero, L., & Espinosa, M. (1988). Duracion de la latencia en semillas de Brachiaria decumbens. Pasturas Tropicales, 10(1), 20–23.
dc.relationRoca, W. . (1984). Cassava. In W. . Sharp, D. . Evans, R. . Ammirato, & Y. Yamada (Eds.), Handbook of plant cell culture: crop species vol 2: Vol. MacMillan (pp. 269–301). MacMillan Publishers, New York.
dc.relationRoca, W. M., & Mroginski, L. A. (1991). Cultivo de Tejidos en la Agricultura. Fundamentos y Aplicaciones. Cali, Colombia.
dc.relationRodrigues-Otubo, B. M., Penteado, M. I. D. O., & Do Valle, C. B. (2000). Embryo rescue of interspecific hybrids of Brachiaria spp. Plant Cell, Tissue and Organ Culture, 61(3), 175–182. https://doi.org/10.1023/A:1006478407814
dc.relationRodríguez-Gómez, A. D. J., & Frias-Vázquez, S. (2014). La mitosis y su regulación. Acta Pediátrica de Mexico, 35(1), 55–86. Retrieved from www.actapediatricademexico.org
dc.relationRodríguez, N. C., & Bueno, M. L. (2006). Estudio de la diversidad citogenética de Physalis peruviana L. (Solanaceae). Acta Biológica Colombiana, 11(2), 75–85. Retrieved from https://revistas.unal.edu.co/index.php/actabiol/article/view/63322/pdf
dc.relationRose, J. B., Kubba, J., & Tobutt, K. R. (2000). Induction of tetraploidy in Buddleia globosa. Plant Cell, Tissue and Organ Culture , 63(2), 121–125. https://doi.org/10.1023/A:1006434803003
dc.relationRubuluza, T., Nikolova, R. V., Smith, M. T., & Hannweg, K. (2007). In vitro induction of tetraploids in Colophospermum mopane by colchicine. South African Journal of Botany, 73(2), 259–261. https://doi.org/10.1016/J.SAJB.2006.12.001
dc.relationRuíz, M. (2020). Ciclo celular . Retrieved June 7, 2020, from Fundación cK-12 website: https://www.ck12.org/na/Ciclo-celular-1/lesson/Ciclo-celular/
dc.relationSakai, A., Kobayashi, S., & Oiyama, I. (1990). Cryopreservation of nucellar cells of navel orange (Citrus sinensis Osb. var. brasiliensis Tanaka) by vitrification. Plant Cell Reports , 9(1), 30–33. https://doi.org/10.1007/BF00232130
dc.relationSalon, P. R., & Earle, E. D. (1998). Chromosome doubling and mode of reproduction of induced tetraploids of eastern gamagrass (Tripsacum dactyloides L.). Plant Cell Reports, 17, 881–885. https://doi.org/10.1007/s002990050502
dc.relationSattler, M. C., Carvalho, C. R., & Clarindo, W. R. (2015). The polyploidy and its key role in plant breeding. Planta 2015 243:2, 243(2), 281–296. https://doi.org/10.1007/S00425-015-2450-X
dc.relationScagliusi, S. M., Grosselli, D., Ruppenthal, T. E., & Deon, A. Z. (2009). Estudos preliminares sobre o efeito da cafeína na duplicação cromossômica em plantas haplóides de cevada (Hordeum vulgare L.). - Portal Embrapa.
dc.relationSeijo, M. F. (2003). Aspectos básicos de la embriogénesis somática. Biotecnología Vegetal , 3(4), 195–209.
dc.relationShapiro, H. M. (2003). Practical flow cytometry. In Hoboken, NJ, USA: John Wiley & Sons, Inc. https://doi.org/10.1002/mrd.1080410419
dc.relationSharp, D. J., Rogers, G. C., & Scholey, J. M. (2000). Microtubule motors in mitosis. Nature, 407(6800), 41–47. https://doi.org/10.1038/35024000
dc.relationSilva, P., Callegari-Jacques, S., & Bodanese-Zanettini, M. H. (2000). Induction and identification of polyploids in Cattleya intermedia Lindl.(Orchidaceae) by in vitro techniques. Ciênc Rural, 30, 105–111. Retrieved from https://www.scielo.br/scielo.php?pid=S0103-84782000000100017&script=sci_arttext
dc.relationSimione, C., & Borges, C. (2009). Chromosome duplication in Brachiaria (A. Rich.) Stapf allows intraspecific crosses. Crop Breeding and Applied Biotechnology, 9, 238–334. https://doi.org/10.12702/1984-7033.v09n04a07
dc.relationSimmonds, N. W. (1980). Polyploidy in plant breeding. SPAN, 23, 73–75.
dc.relationSingh, R. J. (2003). Plant cytogenetics. CRC Press.
dc.relationSoltis, D. E., Albert, V. A., Leebens-Mack, J., Bell, C. D., Paterson, A. H., Zheng, C., … Soltis, P. S. (2009). Polyploidy and angiosperm diversification. American Journal of Botany, 96(1), 336–348. https://doi.org/10.3732/AJB.0800079
dc.relationSong, P., Kang, W., & Peffley, E. B. (1997). Chromosome doubling of Allium fistulosum x A. cepa interspecific F1 hybrids through colchicine treatment of regenerating callus. Euphytica, 93(3), 257–262. https://doi.org/10.1023/A:1002957800957
dc.relationSpeckmann, G. J., Post, J., & Dijkstra, H. (1965). The length of stomata as an indicator for polyploidy in rye-grasses. Euphytica, 14(3), 225–230. https://doi.org/10.1007/BF00149503
dc.relationStanys, V., Weckman, A., Staniene, G., & Duchovskis, P. (2006). In vitro induction of polyploidy in japanese quince (Chaenomeles japonica). Plant Cell, Tissue and Organ Culture 2006 84:3, 84(3), 263–268. https://doi.org/10.1007/S11240-005-9029-3
dc.relationStebbins, G. L. (1950). Variation and Evolution in Plants. Variation and Evolution in Plants. https://doi.org/10.7312/STEB94536/HTML
dc.relationStebbins, G. L. (1971). Chromosomal evolution in higher plants. In Chromosomal evolution in higher plants. Addison-Wesley, London.
dc.relationSteward, F. C., Mapes, M. O., & Mears, K. (1958). Growth and Organized Development of Cultured Cells. II. Organization in Cultures Grown from Freely Suspended Cells. American Journal of Botany, 45(10), 708. https://doi.org/10.2307/2439728
dc.relationSubrahmanyam, N. C., & Kasha, K. J. (1975). Chromosome doubling of barley haploids by nitrous oxide and colchicine treatments. Canadian Journal of Genetics and Cytology, 17(4), 573–583. https://doi.org/10.1139/g75-071
dc.relationSullivan, M., & Morgan, D. (2007). Finishing mitosis, one step at a time. Nature Reviews. Molecular Cell Biology, 8(11), 894–903. https://doi.org/10.1038/NRM2276
dc.relationSwenne, A., Louant, B. P., & Dujardin, M. (1981). Induction par la colchicine de formes autotetraploides chez Brachiaria ruziziensis Germain et Evrard (Graminee). Agronomie Tropicale., 36(2), 134–141.
dc.relationTalledo, D., & Escobar, C. (1995). El ciclo celular en vegetales. Su estudio, importancia y aplicaciones. Biotempo, 2, 13–31.
dc.relationTalledo, D., Escobar, C., & Alleman, V. (1993). El ciclo celular en vegetales. Su estudio, importancia y aplicaciones. Retrieved from http://revistas.urp.edu.pe/index.php/Biotempo/article/view/1531/1418
dc.relationTayyab, M., Tahseen, R., Ashraf, A., Mahmood, A., Najam-ul-haq, M., Arslan, M., & Afzal, M. (2019). Efective plant‑endophyte interplay can improve the cadmium hyperaccumulation in Brachiaria mutica. World Journal of Microbiology and Biotechnology , 35(188). Retrieved from https://sci-hub.se/10.1007/s11274-019-2757-z
dc.relationThomas, H. (1993). Chromosome manipulation and polyploidy. Plant Breeding, 79–92. https://doi.org/10.1007/978-94-011-1524-7_7
dc.relationTimbó, A. L. d O., Souza, P. N. d. C., Pereira, R. C., Nunes, J. D., Pereira, J. E. B., Sobrinho, F. d. S., & Davide, L. C. (2014). Obtaining tetraploid plants of ruzigrass (Brachiaria ruziziensis). Revista Brasileira de Zootecnia, 43(3), 127–131. https://doi.org/10.1590/S1516-35982014000300004
dc.relationTouchell, D. H., Palmer, I. E., & Ranney, T. G. (2020). In vitro Ploidy Manipulation for Crop Improvement. Frontiers in Plant Science, 11. https://doi.org/10.3389/FPLS.2020.00722/FULL
dc.relationUsberti, R., & Martins, L. (2007). Sulphuric acid scarification effects on Brachiaria brizantha, B. humidicola and Panicum maximum seed dormancy release. Revista Brasileira de Sementes, 29(2), 143–147. https://doi.org/10.1590/S0101-31222007000200020
dc.relationVäinölä, A. (2000). Polyploidization and early screening of Rhododendron hybrids. Euphytica , 112(3), 239–244. https://doi.org/10.1023/A:1003994800440
dc.relationValencia, J. C., & Rodríguez, N. (2012). Estimación de la duración del ciclo celular y estandarización del protocolo citogenético en Guadua angustifolia Kunth var. angustifolia (Bambusoideae, Poaceae). Revista de Investigaciones - Universidad Del Quindío, 81–91.
dc.relationValladolid, A., Blas, R., & Gonzáles, R. (2004). Introducción al recuento de cromosomas somáticos en raíces andinas. Seminario J. (Ed.) Raíces Andinas. Contribuciones Al Conocimiento y La Capacitación. Serie: Conservación y Uso de La Biodiversidad de Raíces y Tubérculos Andinos: Una Década de Investigaciones Para El Desarrollo (1993-2003). No6. C.I.P. Agencia Suiza Para, 96–99. Lima, Perú.
dc.relationValle, C. (1990). Coleção de germoplasma de espécies de Brachiaria no CIAT: Estudos básicos visando ao melhoramento genético. Retrieved from https://www.embrapa.br/busca-de-publicacoes/-/publicacao/321524/colecao-de-germoplasma-de-especies-de-brachiaria-no-ciat-estudos-basicos-visando-ao-melhoramento-genetico
dc.relationVenial, L. R., Mendonça, M. A. C., Amaral-Silva, P. M., Canal, G. B., Passos, A. B. R. de J., Ferreira, A., … Clarindo, W. R. (2020). Autotetraploid Coffea canephora and Auto-Alloctaploid Coffea arabica From In Vitro Chromosome Set Doubling: New Germplasms for Coffea. Frontiers in Plant Science, 0, 154. https://doi.org/10.3389/FPLS.2020.00154
dc.relationVieira, H., Da Silva, F., & Barros, R. (1998). Superacao da dormencia de sementes de Brachiaria brizanta (Hochst.ex a. Rich) Stapf cv Marandú submetidas ao nitrato de potasio, hipoclorito de sodio, tioureia e etanol. Revista Brasileira de Sementes, 20(2), 44–47.
dc.relationVon Arnold, S., Sabala, I., Bozhkov, P., Dyachok, J., & Filonova, L. (2002). Developmental pathways of somatic embryogenesis. Plant Cell, Tissue and Organ Culture, 69(3), 233–249. https://doi.org/10.1023/A:1015673200621
dc.relationWalczak, C. E., Cai, S., & Khodjakov, A. (2010). Mechanisms of chromosome behaviour during mitosis. Nature Reviews. Molecular Cell Biology, 11(2), 91. https://doi.org/10.1038/NRM2832
dc.relationWeiler, R. L., Krycki, K. C., Guerra, D., Simioni, C., & Dall’Agnol, M. (2015). Chromosome doubling in Paspalum notatum var. saure (cultivar Pensacola). Crop Breeding and Applied Biotechnology, 15(2), 106–111. https://doi.org/10.1590/1984-70332015V15N2N19
dc.relationWittmann, T., Hyman, A., & Desai, A. (2001). The spindle: a dynamic assembly of microtubules and motors. Nature Cell Biology , 3(1), E28–E34. https://doi.org/10.1038/35050669
dc.relationWorthington, M. L., & Miles, J. W. (2015). Reciprocal Full-sib Recurrent Selection and Tools for Accelerating Genetic Gain in Apomictic Brachiaria. In H. Budak & G. Spangenberg (Eds.), Molecular Breeding of Forage and Turf (pp. 19–30). https://doi.org/10.1007/978-3-319-08714-6_3
dc.relationYang, X. M., Cao, Z. Y., An, L. Z., Wang, Y. M., & Fang, X. W. (2006). In vitro tetraploid induction via colchicine treatment from diploid somatic embryos in grapevine (Vitis vinifera L.). Euphytica, 152(2), 217–224. https://doi.org/10.1007/s10681-006-9203-7
dc.relationYun, L., Yun, J., Li, J., Zheng, L., Zhao, W., & Qi, L. (2010). Callus polyploidy induction and identification of Russian wild ryegrass. Acta Prataculturae Sinica, 19, 126–131. Retrieved from https://www.cabdirect.org/cabdirect/abstract/20113030612
dc.relationZhang, J., Zhang, M., & Deng, X. (2007). Obtaining autotetraploids in vitro at a high frequency in Citrus sinensis. Plant Cell, Tissue and Organ Culture , 89(2), 211–216. https://doi.org/10.1007/S11240-007-9240-5
dc.relationZielinski, Q. (1948). The use of colchicine in plant breeding. Retrieved from https://ir.library.oregonstate.edu/downloads/cr56n1338
dc.relationZlesak, D. C., Thill, C. A., & Anderson, N. O. (2005). Trifluralin-mediated polyploidization of Rosa chinensis minima (Sims) Voss seedlings. Euphytica , 141(3), 281–290. https://doi.org/10.1007/S10681-005-7512-X
dc.relationZulay, F. V., Montes, J., & Manzano, M. (1998). Efecto de almacenamiento y tratamiento con ácido sulfúrico en semillas de Brachiaria dictyoneura. Zootecnia Tropical, 16(2), 277–286.
dc.rightsAtribución-NoComercial-CompartirIgual 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleBases metodológicas hacia la poliploidización de Urochloa decumbens
dc.typeTesis


Este ítem pertenece a la siguiente institución