dc.contributorCastellanos Domínguez, César Germán
dc.contributorAntoni, Jérôme
dc.contributorGrupo de Control y Procesamiento Digital de Señales
dc.creatorSierra Alonso, Edgar Felipe
dc.date.accessioned2020-10-26T21:18:00Z
dc.date.accessioned2022-09-21T16:05:29Z
dc.date.available2020-10-26T21:18:00Z
dc.date.available2022-09-21T16:05:29Z
dc.date.created2020-10-26T21:18:00Z
dc.date.issued2019
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/78561
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3388442
dc.description.abstractRolling Element Bearings (REB) are present in most of the rotating machines in charge of supporting the shaft's load. For such a reason, REB are prone to fail. REB failures under real conditions such as variable speed/load are a subject of interest in state of the art in digital signal processing of vibration signals due to the non-stationary conditions that hinder the failure identification using the traditional tools. Those failures are defined as a cyclo-nonstationary process due to the REB's intrinsic cyclic behavior and the non-stationarity introduced by the variation of the Instantaneous Angular Speed (IAS). The most direct approach for dealing with a time-varying IAS is to measure the speed via an encoder to obtain the so-called tachometer signal to compensate its influence, transforming the signal to the angular domain. Yet, to place an encoder usually requires a modification of the machine. In cases where it is not possible, the IAS could be extracted directly from the vibration signal. To extract the IAS from a vibration signal is a challenging task due to the low Signal to Noise Ratio (SNR); consequently, a short-time approach robust to noise named Short Time Non-Linear Least Squares (STNLS) estimation for the IAS is proposed. However, even with the IAS to identify the failure requires an additional step to highlight the impulsive behavior, most of the techniques in the literature make use directly or indirectly of the Spectral Kurtosis (SK). However, the traditional SK has been designed to work under small variations of the IAS; thus, a short-time/angle method SK based that works under variable IAS (named Short Time/Angle Spectral Kurtosis -- STSK) is introduced. The STSK method is compared with the traditional approach outperforming it in both a simulated and challenging case of an aircraft engine study. Similarly, the STNLS is tested on a simulated database for robustness to noise and in the real signal showing a mean square error of the order of 10^-3 compared to the signal from the tachometer.
dc.description.abstractLos elementos rodantes o rodamientos están presentes en la mayor cantidad de máquinas, los cuales están a cargo de soportar la carga del eje, por esta razón los rodamientos tienden a fallar. Las fallas en rodamientos bajo condiciones de operación reales como velocidad/carga variable son un tema de interés en el estado del arte en procesamiento digital de señales de vibración, debido a que la naturaleza no-estacionaria de la señal hace imposible identificar una falla en rodamientos usando los métodos tradicionales. Dichas fallas son llamadas ciclo-no-estacionarias debido a la no-estacionariedad introducida por la variación en la velocidad angular instantánea. El enfoque más directo para lidiar con una señal bajo una velocidad angular instantánea variable, es medir la velocidad directamente a través de un tacómetro, para transformar la señal al dominio angular. Pero poner el equipo de medición para la velocidad usualmente requiere modificar la máquina, en casos donde dicha modificación es imposible la velocidad angular instantánea puede ser estimada directamente a partir de la señal de vibración. Pero extraer la velocidad angular instantánea a partir de la señal de vibración es una tarea difícil debido a la baja relación señal a ruido; en consecuencia, un enfoque robusto llamado estimador por mínimos cuadrados no-lineares en tiempo corto (STNLS por sus siglas en inglés) es propuesto. Sin embargo, aun teniendo la estimación de la velocidad angular instantánea, identificar una falla en rodamientos bajo velocidad variable requiere un paso adicional, dicho paso adicional es resaltar el comportamiento impulsivo, la mayoría de las técnicas en la literatura hacen uso directa o indirectamente de la Curtosis espectral. La Curtosis espectral propuesta en el estado del arte está diseñada para funcionar con ligeras variaciones de la velocidad del eje. En consecuencia, es introducido un método en tiempo corto basado en la Curtosis espectral, llamando Curtosis espectral en tiempo/ángulo corto (STSK por sus siglas en inglés). El STSK es comparado con el método tradicional del estado del arte superándolo en un caso simulado y un caso de estudio de un motor de un avión. Similarmente, la robustez del método STNLS es probada en una base de datos simulada y en la señal del motor de avión, mostrando un error cuadrático medio bajo, es decir, por el orden de 10^-3 respecto a la medida del tacómetro.
dc.languageeng
dc.publisherManizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - Automática
dc.publisherDepartamento de Ingeniería Eléctrica y Electrónica
dc.publisherUniversidad Nacional de Colombia - Sede Manizales
dc.relationJ. Antoni, J. Griffaton, H. Andr´ e, L. D. Avenda˜ no-Valencia, F. Bonnardot, O. Cardona-Morales, G. Castellanos-Dominguez, A. P. Daga, Q. Lecl` ere, C. M. Vicu˜ na, et al.,“Feedback on the surveillance 8 challenge: Vibration-based diagnosis of a safran aircraft engine,” Mechanical Systems and Signal Processing, 2017.
dc.relationQ. Leclère, H. André, and J. Antoni, “A multi-order probabilistic approach for instantaneous angular speed tracking debriefing of the cmmno’14 diagnosis contest,” Mechanical Systems and Signal Processing, 2016.
dc.relationC. Peeters, Q. Lecl` ere, J. Antoni, P. Lindahl, J. Donnal, S. Leeb, and J. Helsen, “Review and comparison of tacholess instantaneous speed estimation methods on experimental vibration data,” Mechanical Systems and Signal Processing, vol. 129, pp. 407–436, 2019.
dc.relationR. B. Randall and J. Antoni, “Rolling element bearing diagnostics - a tutorial,” Mechanical Systems and Signal Processing, vol. 25, no. 2, pp. 485–520, 2011.
dc.relationR. Zimroz, J. Urbanek, T. Barszcz, W. Bartelmus, F. Millioz, and N. Martin, “Measurement of instantaneous shaft speed by advanced vibration signal processing-application to wind turbine gearbox,” Metrology and Measurement Systems, vol. 18, no. 4, pp. 701–712, 2011.
dc.relationJ. P. No¨ el and G. Kerschen, “Nonlinear system identification in structural dynamics: 10 more years of progress,” Mechanical Systems and Signal Processing, vol. 83, pp. 2–35, 2017.
dc.relationP. Borghesani, P. Pennacchi, R. Ricci, and S. Chatterton, “Testing second order cyclo-stationarity in the squared envelope spectrum of non-white vibration signals,” Mechanical Systems and Signal Processing, vol. 40, no. 1, pp. 38–55, 2013.
dc.relationL. Stankovic, I. Djurovic, S. Stankovic, M. Simeunovic, S. Djukanovic, and M. Dakovic, “Instantaneous frequency in time–frequency analysis: Enhanced concepts and performance of estimation algorithms,” Digital Signal Processing, vol. 35, pp. 1–13, 2014.
dc.relationB. Boashash, “Estimating and interpreting the instantaneous frequency of a signal. i. fundamentals,” Proceedings of the IEEE, vol. 80, no. 4, pp. 520–538, 1992.
dc.relationB. Boashash, “Estimating and interpreting the instantaneous frequency of a signal. ii. algorithms and applications,” Proceedings of the IEEE, vol. 80, no. 4, pp. 540–568, 1992.
dc.relationD. Rémond, J. Antoni, and R. B. Randall, “Instantaneous angular speed (ias) processing and related angular applications,” Mechanical Systems and Signal Processing, vol. 45, no. 1, pp. 24–27, 2014.
dc.relationJ. Urbanek, T. Barszcz, and J. Antoni, “A two-step procedure for estimation of instantaneous rotational speed with large fluctuations,” Mechanical Systems and Signal Processing, vol. 38, no. 1, pp. 96 – 102, 2013. Condition monitoring of machines in non-stationary operations.
dc.relationJ.-L. Dion, C. Stephan, G. Chevallier, and H. Festjens, “Tracking and removing modulated sinusoidal components: a solution based on the kurtosis and the extended kalman filter,” Mechanical Systems and Signal Processing, vol. 38, no. 2, pp. 428–439, 2013.
dc.relationO. Cardona-Morales, L. Avendaño, and G. Castellanos-Domınguez, “Nonlinear model for condition monitoring of non-stationary vibration signals in ship driveline application,” Mechanical Systems and Signal Processing, vol. 44, no. 1, pp. 134–148, 2014.
dc.relationM. G. Christensen and A. Jakobsson, “Multi-pitch estimation,” Synthesis Lectures on Speech & Audio Processing, vol. 5, no. 1, pp. 1–160, 2009.
dc.relationJ. R. Stack, R. G. Harley, and T. G. Habetler, “An amplitude modulation detector for fault diagnosis in rolling element bearings,” IEEE Transactions on Industrial Electronics, vol. 51, no. 5, pp. 1097–1102, 2004.
dc.relationL. Saidi, J. B. Ali, and F. Fnaiech, “Bi-spectrum based-emd applied to the non-stationary vibration signals for bearing faults diagnosis,” ISA transactions, vol. 53, no. 5, pp. 1650–1660, 2014.
dc.relationD. Abboud, J. Antoni, M. Eltabach, and S. Sieg-Zieba, “Angle time cyclostationarity for the analysis of rolling element bearing vibrations,” Measurement, vol. 75, pp. 29–39, 2015.
dc.relationJ. Antoni and R. Randall, “The spectral kurtosis: application to the vibratory surveillance and diagnostics of rotating machines,” Mechanical Systems and Signal Processing, vol. 20, no. 2, pp. 308 – 331, 2006.
dc.relationI. Howard, N. Swansson, et al., “Demodulating high frequency resonance signals for bearing fault detection,” in Australian Vibration and Noise Conference 1990: Vibration and Noise-measurement Prediction and Control; Preprints of Papers, p. 115, Institution of Engineers, Australia, 1990.
dc.relationJ. Antoni, “The spectral kurtosis: a useful tool for characterising non-stationary signals,” Mechanical Systems and Signal Processing, vol. 20, no. 2, pp. 282–307, 2006.
dc.relationJ. Antoni, “Fast computation of the kurtogram for the detection of transient faults,” Mechanical Systems and Signal Processing, vol. 21, no. 1, pp. 108–124, 2007.
dc.relationR. Randall, N. Sawalhi, and M. Coats, “A comparison of methods for separation of deterministic and random signals,” International Journal of Condition Monitoring, vol. 1, no. 1, pp. 11–19, 2011
dc.relationP. Borghesani, R. Ricci, S. Chatterton, and P. Pennacchi, “A new procedure for using envelope analysis for rolling element bearing diagnostics in variable operating conditions,” Mechanical Systems and Signal Processing, vol. 38, no. 1, pp. 23–35, 2013.
dc.relationD. Abboud, S. Baudin, J. Antoni, D. R´ emond, M. Eltabach, and O. Sauvage, “The spectral analysis of cyclo-non-stationary signals,” Mechanical Systems and Signal Processing, vol. 75, pp. 280–300, 2016.
dc.relationS. Schmidt, P. S. Heyns, and J. P. De Villiers, “A tacholess order tracking methodology based on a probabilistic approach to incorporate angular acceleration information into the maxima tracking process,” Mechanical Systems and Signal Processing, vol. 100, pp. 630–646, 2018.
dc.relationY. Wang, G. Xu, A. Luo, L. Liang, and K. Jiang, “An online tacholess order tracking technique based on generalized demodulation for rolling bearing fault detection,” Journal of sound and vibration, vol. 367, pp. 233–249, 2016.
dc.relationM. Feldman, “Time-varying vibration decomposition and analysis based on the hilbert transform,” Journal of Sound and Vibration, vol. 295, no. 3, pp. 518–530, 2006.
dc.relationB. Hou, Y. Wang, B. Tang, Y. Qin, Y. Chen, and Y. Chen, “A tacholess order tracking method for wind turbine planetary gearbox fault detection,” Measurement, vol. 138, pp. 266–277, 2019.
dc.relationY. Wang, Y. Xie, G. Xu, S. Zhang, and C. Hou, “Tacholess order-tracking approach for wind turbine gearbox fault detection,” Frontiers of Mechanical Engineering, vol. 12, no. 3, pp. 427–439, 2017.
dc.relationY. Wang, B. Tang, Y. Qin, and T. Huang, “Rolling bearing fault detection of civil aircraft engine based on adaptive estimation of instantaneous angular speed,” IEEE Transactions on Industrial Informatics, 2019.
dc.relationY. Wang, B. Tang, L. Meng, and B. Hou, “Adaptive estimation of instantaneous angular speed for wind turbine planetary gearbox fault detection,” IEEE Access, vol. 7, pp. 49974–49984, 2019.
dc.relationR. B. Randall, J. Antoni, and S. Chobsaard, “The relationship between spectral correlation and envelope analysis in the diagnostics of bearing faults and other cyclostationary machine signals,” Mechanical systems and signal processing, vol. 15, no. 5, pp. 945–962, 2001.
dc.relationD. Abboud, J. Antoni, S. Sieg-Zieba, and M. Eltabach, “Envelope analysis of rotating machine vibrations in variable speed conditions: A comprehensive treatment,” Mechanical Systems and Signal Processing, vol. 84, pp. 200–226, 2017.
dc.relationD. Abboud, M. Elbadaoui, W. Smith, and R. Randall, “Advanced bearing diagnostics: A comparative study of two powerful approaches,” Mechanical Systems and Signal Processing, vol. 114, pp. 604–627, 2019.
dc.relationW. A. Smith and R. B. Randall, “Rolling element bearing diagnostics using the case western reserve university data: A benchmark study,” Mechanical Systems and Signal Processing, vol. 64, pp. 100–131, 2015.
dc.relationD. Zhao, T. Wang, R. X. Gao, and F. Chu, “Signal optimization based generalized demodulation transform for rolling bearing nonstationary fault characteristic extraction,” Mechanical Systems and Signal Processing, vol. 134, p. 106297, 2019.
dc.relationJ. Hebda-Sobkowicz, R. Zimroz, and A. Wylománska, “Selection of the informative frequency band in a bearing fault diagnosis in the presence of non-gaussian noise—comparison of recently developed methods,” Applied Sciences, vol. 10, no. 8, p. 2657, 2020.
dc.relationM. G. Christensen, P. Stoica, A. Jakobsson, and S. H. Jensen, “Multi-pitch estimation,” Signal Processing, vol. 88, no. 4, pp. 972 – 983, 2008.
dc.relationJ. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence properties of the nelder–mead simplex method in low dimensions,” SIAM Journal on optimization, vol. 9, no. 1, pp. 112–147, 1998.
dc.relationR. F. Voss and J. Clarke, “”1/f noise”in music: Music from 1/f noise,” The Journal of the Acoustical Society of America, vol. 63, no. 1, pp. 258–263, 1978
dc.relationD. Abboud, Vibration-based condition monitoring of rotating machines in nonstationary regime. PhD thesis, 2015.
dc.relationCase Western Reserve University, “Bearing data center website.” http://csegroups.case.edu/bearingdatacenter/home, 2015.
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleCyclo-nonstationary analysis for bearing fault identification based on instantaneous angular speed estimation
dc.typeOtros


Este ítem pertenece a la siguiente institución