dc.contributorBarreto Hernández, Emiliano
dc.contributorBioinformática
dc.creatorRubio Fernández, Diego
dc.date.accessioned2022-03-08T15:07:33Z
dc.date.available2022-03-08T15:07:33Z
dc.date.created2022-03-08T15:07:33Z
dc.date.issued2021
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/81149
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.description.abstractEl modelamiento de suelos agrícolas ha evolucionado de acuerdo con las cuestiones asociadas a problemas específicos como su productividad, en términos de la biodisponibilidad de nutrientes así como de las variables climáticas y de los parámetros de manejo; sin embargo, la microbiota edáfica ha sido establecida en la mayoría de los casos, como una fracción de la materia orgánica y la redundancia funcional se definió como característica predominante en suelos, cuya representación se hace a través de ecuaciones matemáticas que definen la cinética del crecimiento microbiano evitando los aspectos relacionados con la estructura de las comunidades . Nuevas propuestas de modelos de suelos agrícolas, en los que la microbiota es un elemento fundamental, pueden contribuir al entendimiento de los procesos microbiológicos asociados al metabolismo de sustratos y como estos procesos influyen por otra parte en el crecimiento de las plantas. En este trabajo se propone el modelamiento de suelos agrícolas, considerando de manera explícita la diversidad microbiana en términos funcionales y su asociación a procesos concretos como el metabolismo de la celulosa y del nitrógeno orgánico. Se ha considerado como objetivo del trabajo, diseñar e implementar un modelo de la productividad agrícola del suelo basado en la correlación de la diversidad funcional y taxonómica de las comunidades microbianas a nivel rizosférico, sus procesos metabólicos relacionados con el carbono y nitrógeno, y las características fisicoquímicas del suelo. Se han obtenido como resultados, de acuerdo con el objetivo propuesto, la construcción de un sistema con diferentes componentes en los que el suelo se explica desde la diversidad funcional de la microbiota y el procesamiento de dos elementos estructurales (carbono y el nitrógeno), y cuya representación está basada en conceptos de Dinámica de Sistemas. Por otra parte, la implementación del sistema, es decir, el modelo de simulación se construye con base en el concepto de Modelamiento Basado en Agentes en la plataforma de modelamiento Netlogo. La simulación ha permitido definir la dinámica de la microbiota bajo diferentes condiciones en función de su relación con el crecimiento de la planta. (Texto tomado de la fuente)
dc.description.abstractAgricultural soil modeling has evolved based on questions associated with productivity, nutrients bioavailability, climate and management variables; nonetheless, soil microbiome has been considered and established as a fraction of organic matter pools and the functional redundancy defined, in most models, as a prevailing factor in agricultural soils, represented by mathematical equations describing microbial growth kinetics and avoiding details of the microbiome dynamics and structure. Recently, new agricultural soil model approaches based on the microbiome dynamics have been proposed. They can contribute to understand microbiological soil processes directly linked to substrate metabolism and the influence of these processes on plant growth. This work presents an approach to the modelling of agricultural rhizospheric soils that considers explicitly microbial diversity in terms of functions associated to specific processes like cellulose and organic nitrogen metabolism. The work goal was to design and implement a model of soil agricultural productivity based on the correlation between functional and taxonomic diversity of microbial communities at the rhizosphere level, their metabolic processes linked to carbon and nitrogen, and some physicochemical soil aspects. As result, it has been possible to simulate an agricultural soil based on the concept of system dynamics and agent-based modeling. Soil is explained from the microbiome functional diversity and the processing of the structural elements carbon and nitrogen, through a representation based on systems dynamics. On the other hand, the simulation of the system was based on agent-based modelling developed on the Netlogo Platform. The simulations allowed to represent the dynamics of the microbiome in terms of microorganisms and enzymes associated with agricultural parameters of soil management
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ciencias - Doctorado en Biotecnología
dc.publisherInstituto de Biotecnología (IBUN)
dc.publisherFacultad de Ciencias
dc.publisherBogotá, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationAckoff, R. L. (1971). Towards a System of Systems Concepts. Management Science. https://doi.org/10.1287/mnsc.17.11.661
dc.relationAdemir, S. F. de A., Luiz, F. C. L., Ana, R. L. M., Luis, A. P. L. N., Ricardo, S. de S., Fabio, F. de A., & Wanderley, J. de M. (2016). Different soil tillage systems influence accumulation of soil organic matter in organic agriculture. African Journal of Agricultural Research, 11(51), 5109–5115. https://doi.org/10.5897/ajar2016.11598
dc.relationAhmed, M., Rauf, M., Akhtar, M., Mukhtar, Z., & Saeed, N. A. (2020). Hazards of nitrogen fertilizers and ways to reduce nitrate accumulation in crop plants. Environmental Science and Pollution Research, 27(15), 17661–17670. https://doi.org/10.1007/s11356-020-08236-y
dc.relationAlary, V., Corbeels, M., Affholder, F., Alvarez, S., Soria, A., Valadares Xavier, J. H., … Scopel, E. (2016). Economic assessment of conservation agriculture options in mixed crop-livestock systems in Brazil using farm modelling. Agricultural Systems, 144, 33–45. https://doi.org/10.1016/j.agsy.2016.01.008
dc.relationAsseng, S., Zhu, Y., Wilson, T., & Cammarano, D. (2014). Simulation Modeling Applications in Cropping Systems. Encyclopedia of Agriculture and Food Systems (Vol. 5). Elsevier Ltd. https://doi.org/10.1016/B978-0-444-52512-3.00233-3
dc.relationBaldock, J. (2007). Composition and cycling of organic carbon in soil. In Nutrient cycling in terrestrial ecosystems (p. 409). Springer.
dc.relationBanitz, T., Gras, A., & Ginovart, M. (2015). Individual-based modeling of soil organic matter in NetLogo: Transparent, user-friendly, and open. Environmental Modelling and Software, 71, 39–45. https://doi.org/10.1016/j.envsoft.2015.05.007
dc.relationBanos, A., Lang, C., & Marilleau, N. (2015). Agent-Based Spatial Simulation with NetLogo. Agent-Based Spatial Simulation with NetLogo (Vol. 1). https://doi.org/10.1016/c2015-0-01299-0
dc.relationBerlemont, R., & Martiny, A. C. (2015). Genomic potential for polysaccharide deconstruction in bacteria. Applied and Environmental Microbiology, 81(4), 1513–1519. https://doi.org/10.1128/AEM.03718-14
dc.relationBerlin, T. U. (2008). Models of crop growth. Crop growth simulation model WOFOST, (November), 19–20.
dc.relationBillings, S. a., Tiemann, L. K., Ballantyne IV, F., Lehmeier, C., & Min, K. (2014). Investigating microbial transformations of soil organic matter: synthesizing knowledge from disparate fields to guide new experimentation. SOIL Discussions, 1(1), 1097–1145. https://doi.org/10.5194/soild-1-1097-2014
dc.relationBonde, T. A., Nielsen, T., Miller, M., & Sørensen, J. (2001). Arginine ammonification assay as a rapid index of gross N mineralization in agricultural soils. Biology and Fertility of Soils, 34(3), 179–184. https://doi.org/10.1007/s003740100395
dc.relationBoogaard, H. L., Van Diepen, C. A., Rötter, R. P., Cabrera, J. M. C. ., & Van Laar, H. H. (2014). WOFOST Control Centre 2.1 and WOFOST 7.1.7, 1–133. Retrieved from http://www.wageningenur.nl/wofost
dc.relationBorneman, J., & Triplett, E. W. (1997). Molecular microbial diversity in soils from eastern Amazonia: Evidence for unusual microorganisms and microbial population shifts associated with deforestation. Applied and Environmental Microbiology, 63(7), 2647–2653.
dc.relationBriat, J. F., Gojon, A., Plassard, C., Rouached, H., & Lemaire, G. (2020). Reappraisal of the central role of soil nutrient availability in nutrient management in light of recent advances in plant nutrition at crop and molecular levels. European Journal of Agronomy, 116(April), 126069. https://doi.org/10.1016/j.eja.2020.126069
dc.relationBronick, C. J., & Lal, R. (2005). Soil structure and management: A review. Geoderma, 124(1–2), 3–22. https://doi.org/10.1016/j.geoderma.2004.03.005
dc.relationBrussaard, L., & Ferrera-Cerrato, R. (1997). Soil ecology in sustainable agricultural systems. (C. Press, Ed.). CRC PRESS.
dc.relationBulgarelli, D., Schlaeppi, K., Spaepen, S., Ver Loren van Themaat, E., & Schulze-Lefert, P. (2013). Structure and functions of the bacterial microbiota of plants. Annual Review of Plant Biology, 64, 807–838. https://doi.org/10.1146/annurev-arplant-050312-120106
dc.relationCardoso, E. J. B. N., & Andreote, F. D. (2016). Microbiologia do solo (segunda ed). https://doi.org/10.11606/9788586481567
dc.relationChertov, O. G., & Komarov, A. S. (2013). Theoretical approaches to modelling the dynamics of soil organic matter. Eurasian Soil Science, 46(8), 845–853. https://doi.org/10.1134/S1064229313080012
dc.relationChoi, J., Bach, E., Lee, J., Flater, J., Dooley, S., Howe, A., & Hofmockel, K. S. (2018). Spatial structuring of cellulase gene abundance and activity in soil. Frontiers in Environmental Science, 6(OCT). https://doi.org/10.3389/fenvs.2018.00107
dc.relationCompant, S., Samad, A., Faist, H., & Sessitsch, A. (2019). A review on the plant microbiome: Ecology, functions, and emerging trends in microbial application. Journal of Advanced Research, 19, 29–37. https://doi.org/10.1016/j.jare.2019.03.004
dc.relationCrawford, N. M., & Glass, A. D. M. (1998). Molecular and physiological aspects of nitrate uptake in plants. Trends in Plant Science, 3(10), 389–395. https://doi.org/10.1016/S1360-1385(98)01311-9
dc.relationCui, J., Mai, G., Wang, Z., Liu, Q., Zhou, Y., Ma, Y., & Liu, C. (2019). Metagenomic insights into a cellulose-rich niche reveal microbial cooperation in cellulose degradation. Frontiers in Microbiology, 10(MAR), 1–12. https://doi.org/10.3389/fmicb.2019.00618
dc.relationda C Jesus, E., Marsh, T. L., Tiedje, J. M., & de S Moreira, F. M. (2009). Changes in land use alter the structure of bacterial communities in Western Amazon soils. The ISME Journal, 3(9), 1004–1011. https://doi.org/10.1038/ismej.2009.98
dc.relationda Silva, E. F., Lourente, E. P. R., Marchetti, M. E., Mercante, F. M., Ferreira, A. K. T., & Fujii, G. C. (2011). Fracoes labeis e recalcitrantes da materia orgnica em solos sob integracao lavoura-pecuaria. Pesquisa Agropecuaria Brasileira, 46(10), 1321–1331. https://doi.org/10.1590/S0100-204X2011001000028
dc.relationde Vries, P, Jansen, D. M., Berge, T., & Bakema, A. (1989). Stimulation of Plant Growth and Crop Production. The Journal of Applied Ecology (Vol. 20). Wageningen: Centre for Agricultural Publishing and Documentation. https://doi.org/10.2307/2403549
dc.relationde Vries, Penning, Teng, P., & Metselaar, K. (1991). Systems Approaches for Sustainable Agricultural Development (First). Dordrecht: Kluwer Academic Publishers
dc.relationde Vries, W., Kros, J., Dolman, M. A., Vellinga, T. V., de Boer, H. C., Gerritsen, A. L., … Bouma, J. (2015). Environmental impacts of innovative dairy farming systems aiming at improved internal nutrient cycling: A multi-scale assessment. Science of the Total Environment, 536, 432–442. https://doi.org/10.1016/j.scitotenv.2015.07.079
dc.relationDing, L. J., Cui, H. L., Nie, S. A., Long, X. E., Duan, G. L., & Zhu, Y. G. (2019). Microbiomes inhabiting rice roots and rhizosphere. FEMS Microbiology Ecology, 95(5). https://doi.org/10.1093/femsec/fiz040
dc.relationDury, J., Schaller, N., Garcia, F., Reynaud, A., & Bergez, J. E. (2012). Models to support cropping plan and crop rotation decisions. A review. Agronomy for Sustainable Development, 32(2), 567–580. https://doi.org/10.1007/s13593-011-0037-x
dc.relationDutta, B., Smith, W. N., Grant, B. B., Pattey, E., Desjardins, R. L., & Li, C. (2016). Model development in DNDC for the prediction of evapotranspiration and water use in temperate field cropping systems. Environmental Modelling and Software, 80, 9–25. https://doi.org/10.1016/j.envsoft.2016.02.014
dc.relationEdwards, J., Johnson, C., Santos-Medellín, C., Lurie, E., Podishetty, N. K., Bhatnagar, S., … Jeffery, L. D. (2015). Structure, variation, and assembly of the root-associated microbiomes of rice. Proceedings of the National Academy of Sciences of the United States of America, 112(8), E911–E920. https://doi.org/10.1073/pnas.1414592112
dc.relationFageria, N., Baligar, V., & Jones, A. (2011). Growth and Mineral Nutrition of Field Crops. Books in Soils Plants and The Environmant (Third Edit). CRC PRESS TAYLOR AND FRANCIS GROUP.
dc.relationFaria Vieira, R. (2017). Ciclo do Nitrogênio em Sistemas Agricolas. Embrapa Meio Ambiente (Primeira). EMBRAPA. Retrieved from https://escolakids.uol.com.br/ciclo-nitrogenio.htm
dc.relationFernández, F. J., Blanco, M., Ceglar, A., ’barek, R. M., Ciaian, P., Srivastava, A. K., … Doorslaer, B. Van. (2013). Still a challenge - interaction of biophysical and economic models for crop production and market analysis, 1(3), 4–5. Retrieved from http://www.fp7-ulysses.eu/
dc.relationFierer, N. (2017). Embracing the unknown: Disentangling the complexities of the soil microbiome. Nature Reviews Microbiology, 15(10), 579–590. https://doi.org/10.1038/nrmicro.2017.87
dc.relationFierer, N., Bradford, M. a, & Jackson, R. B. (2007). Toward an ecological classification of soil bacteria. Ecology, 88(6), 1354–1364. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/17601128
dc.relationFierer, N., Grandy, a. S., Six, J., & Paul, E. a. (2009). Searching for unifying principles in soil ecology. Soil Biology and Biochemistry, 41(11), 2249–2256. https://doi.org/10.1016/j.soilbio.2009.06.009
dc.relationForrester, J. W. (1968). Principles of Systems (Second Pre). Wright-Allen Press, Inc. Cambridge MAssachusetts. https://doi.org/10.1007/978-1-4939-1920-8
dc.relationFrei, M. (2013). Lignin: Characterization of a multifaceted crop component. The Scientific World Journal, 2013. https://doi.org/10.1155/2013/436517
dc.relationGalantini, J. a, & Suñer, J. a L. (2008). Las fracciones orgánicas del suelo : análisis en los suelos de la Argentina. Agriscientia, XXV, 41–55.
dc.relationGarbeva, P., van Veen, J. A., & van Elsas, J. D. (2004). MICROBIAL DIVERSITY IN SOIL: Selection of Microbial Populations by Plant and Soil Type and Implications for Disease Suppressiveness. Annual Review of Phytopathology, 42(1), 243–270. https://doi.org/10.1146/annurev.phyto.42.012604.135455
dc.relationGeisseler, D., Horwath, W. R., Joergensen, R. G., & Ludwig, B. (2010). Pathways of nitrogen utilization by soil microorganisms - A review. Soil Biology and Biochemistry, 42(12), 2058–2067. https://doi.org/10.1016/j.soilbio.2010.08.021
dc.relationGinovart Gisbert, M., Blanco, M., Portell, X., & Ferrer-Closas, P. (2018). Individual-based modeling: an attractive methodology to study bio systems. Enseñanza de Las Ciencias. Revista de Investigación y Experiencias Didácticas, 30(2), 93. https://doi.org/10.5565/rev/ec/v30n2.572
dc.relationGinovart Gisbert, M., Portell Canal, X., Ferrer-Closas, P., & Blanco Abellan, M. (2011). Modelos basados en el individuo y la plataforma NetLogo. Unión. Revista Iberoamericana de Educación Matemática, 27, 131–150. Retrieved from http://hdl.handle.net/2117/13553
dc.relationGinovart, M., López, D., Valls, J., & Silbert, M. (2002). Individual based simulations of bacterial growth on agar plates. Physica A: Statistical Mechanics and Its Applications, 305(3–4), 604–618. https://doi.org/10.1016/S0378-4371(01)00581-7
dc.relationGinovart, Marta, López, D., & Gras, A. (2005). Individual-based modelling of microbial activity to study mineralization of C and N and nitrification process in soil. Nonlinear Analysis: Real World Applications, 6(4), 773–795. https://doi.org/10.1016/j.nonrwa.2004.12.005
dc.relationGinovart, Marta, López, D., & Valls, J. (2002). INDISIM, an individual-based discrete simulation model to study bacterial cultures. Journal of Theoretical Biology, 214(2), 305–319. https://doi.org/10.1006/jtbi.2001.2466
dc.relationGojon, A., Krouk, G., Perrine-Walker, F., & Laugier, E. (2011). Nitrate transceptor(s) in plants. Journal of Experimental Botany, 62(7), 2299–2308. https://doi.org/10.1093/jxb/erq419
dc.relationGojon, A., Nacry, P., & Davidian, J. C. (2009). Root uptake regulation: a central process for NPS homeostasis in plants. Current Opinion in Plant Biology, 12(3), 328–338. https://doi.org/10.1016/j.pbi.2009.04.015
dc.relationGregory, P. J., & Nortcliff, S. (2013). Soil Conditions and plant Growth. Journal of Chemical Information and Modeling (Twelve). Oxford: Blackwell Publishing.
dc.relationGuimarães, D. V., Gonzaga, M. I. S., da Silva, T. O., da Silva, T. L., da Silva Dias, N., & Matias, M. I. S. (2013). Soil organic matter pools and carbon fractions in soil under different land uses. Soil and Tillage Research, 126, 177–182. https://doi.org/10.1016/j.still.2012.07.010
dc.relationHabig, J., & Swanepoel, C. (2015). Effects of Conservation Agriculture and Fertilization on Soil Microbial Diversity and Activity. Environments, 2(3), 358–384. https://doi.org/10.3390/environments2030358
dc.relationHariharan, J. (2015). Predictive Functional Profiling of Soil Microbes under Different Tillages and Crop Rotations in Ohio. The Ohio State University. https://doi.org/10.1590/s1809-98232013000400007
dc.relationHartman, K., van der Heijden, M. G. A., Wittwer, R. A., Banerjee, S., Walser, J. C., & Schlaeppi, K. (2018). Cropping practices manipulate abundance patterns of root and soil microbiome members paving the way to smart farming. Microbiome, 6(1), 1–14. https://doi.org/10.1186/s40168-017-0389-9
dc.relationHartmann, A., Rothballer, M., & Schmid, M. (2008). Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant and Soil, 312(1–2), 7–14. https://doi.org/10.1007/s11104-007-9514-z
dc.relationHaynes, R. . (2005). LABILE ORGANIC MATTER FRACTIONS AS CENTRAL COMPONENTS OF THE QUALITY OF AGRICULTURAL SOILS: AN OVERVIEW. In Advances in agronomy (Vol. 85, pp. 222–258).
dc.relationHolzworth, D. P., Snow, V., Janssen, S., Athanasiadis, I. N., Donatelli, M., Hoogenboom, G., … Thorburn, P. (2015). Agricultural production systems modelling and software: Current status and future prospects. Environmental Modelling and Software, 72, 276–286. https://doi.org/10.1016/j.envsoft.2014.12.013
dc.relationHowe, A., Yang, F., Williams, R. J., Meyer, F., & Hofmockel, K. S. (2016). Identification of the core set of carbon-associated genes in a bioenergy grassland soil. PLoS ONE, 11(11), 1–14. https://doi.org/10.1371/journal.pone.0166578
dc.relationHoyle, F. (2013). Managing Soil Organic Matter: A Practical Guide. Department of Agriculture and Food.
dc.relationJackson, R. B., Lajtha, K., Crow, S. E., Hugelius, G., Kramer, M. G., & Piñeiro, G. (2017). The Ecology of Soil Carbon: Pools, Vulnerabilities, and Biotic and Abiotic Controls. Annual Review of Ecology, Evolution, and Systematics, 48, 419–445. https://doi.org/10.1146/annurev-ecolsys-112414-054234
dc.relationJastrow, J. D., Amonette, J. E., & Bailey, V. L. (2007). Mechanisms controlling soil carbon turnover and their potential application for enhancing carbon sequestration. Climatic Change, 80(1–2), 5–23. https://doi.org/10.1007/s10584-006-9178-3
dc.relationJiao, S., Xu, Y., Zhang, J., Hao, X., & Lu, Y. (2019). Core Microbiota in Agricultural Soils and Their Potential Associations with Nutrient Cycling. MSystems, 4(2), 1–16. https://doi.org/10.1128/msystems.00313-18
dc.relationJones, J. W., Antle, J. M., Basso, B. O., Boote, K. J., Conant, R. T., Foster, I., … Wheeler, T. R. (2016). Brief history of agricultural systems modeling. AGSY. https://doi.org/10.1016/j.agsy.2016.05.014
dc.relationKallenbach, C. M., Frey, S. D., & Grandy, A. S. (2016). Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nature Communications, 7, 1–10. https://doi.org/10.1038/ncomms13630
dc.relationKriaučiuniene, Z., Velička, R., & Raudonius, S. (2012). The influence of crop residues type on their decomposition rate in the soil: a litterbag study. Zemdirbyste (Agriculture), 99(3), 227–236. Retrieved from http://proxying.lib.ncsu.edu/index.php?url=http://search.ebscohost.com/login.aspx?direct=true&db=lah&AN=20123408862&site=ehost-live&scope=site%5Cnhttp://www.cabi.org/cabdirect/showpdf.aspx?PAN=http://www.cabi.org/cabdirect/showpdf.aspx?PAN=20123408862%5Cn
dc.relationKrishna, K. . (2014). Agroecosystems Soils, Climate, Crops, Nutrient Dynamics, and Productivity (First). Boca Raton: CRC PRESS TAYLOR AND FRANCIS GROUP.
dc.relationKrouk, G., Crawford, N. M., Coruzzi, G. M., & Tsay, Y. F. (2010). Nitrate signaling: Adaptation to fluctuating environments. Current Opinion in Plant Biology, 13(3), 265–272. https://doi.org/10.1016/j.pbi.2009.12.003
dc.relationLei, S., Xu, X., Cheng, Z., Xiong, J., Ma, R., Zhang, L., … Tian, B. (2019). Analysis of the community composition and bacterial diversity of the rhizosphere microbiome across different plant taxa. MicrobiologyOpen, 8(6), 1–10. https://doi.org/10.1002/mbo3.762
dc.relationLi, J., Wen, Y., Li, X., Li, Y., Yang, X., Lin, Z., … Zhao, B. (2018). Soil labile organic carbon fractions and soil organic carbon stocks as affected by long-term organic and mineral fertilization regimes in the North China Plain. Soil and Tillage Research, 175(July 2017), 281–290. https://doi.org/10.1016/j.still.2017.08.008
dc.relationLin, Y. (2006). General Systems Theory: A Mathematical Approach.
dc.relationMagdoff, F., & Weil, R. (2004). Soil Organic Matter in Sustainable Agriculture. CRC PRESS.
dc.relationMalézieux, E., Crozat, Y., Dupraz, C., Laurans, M., Makowski, D., Ozier-Lafontaine, H., … Valantin-Morison, M. (2009). Mixing plant species in cropping systems: concepts, tools and models. A review. Agronomy for Sustainable Development (EDP Sciences), 29(1), 43–62. https://doi.org/10.1051/agro
dc.relationMaron, P. A., Sarr, A., Kaisermann, A., Lévêque, J., Mathieu, O., Guigue, J., … Ranjard, L. (2018). High microbial diversity promotes soil ecosystem functioning. Applied and Environmental Microbiology, 84(9), 1–13. https://doi.org/10.1128/AEM.02738-17
dc.relationMarschner, P., & Rengel, Z. (2007). Nutrient Cycling in Terrestrial Ecosystems. Soil Biology. Springer. https://doi.org/10.1017/CBO9781107415324.004
dc.relationMarschner, P., & Rengel, Z. (2007). Nutrient Cycling in Terrestrial Ecosystems. Soil Biology. Springer. https://doi.org/10.1017/CBO9781107415324.004
dc.relationMendes, L. W., Tsai, S. M., Navarrete, A. A., de Hollander, M., van Veen, J. A., & Kuramae, E. E. (2015). Soil-Borne Microbiome: Linking Diversity to Function. Microbial Ecology, 70(1), 255–265. https://doi.org/10.1007/s00248-014-0559-2
dc.relationMendes, R., Garbeva, P., & Raaijmakers, J. M. (2013). The rhizosphere microbiome: Significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiology Reviews, 37(5), 634–663. https://doi.org/10.1111/1574-6976.12028
dc.relationMikha, M. M., & Rice, C. W. (2004). Tillage and Manure Effects on Soil and Aggregate-Associated Carbon and Nitrogen. Soil Science Society of America Journal, 68(3), 809. https://doi.org/10.2136/sssaj2004.0809
dc.relationMiller, A. J., & Cramer, M. D. (2005). Root nitrogen acquisition and assimilation. Plant and Soil (Vol. 274). https://doi.org/10.1007/s11104-004-0965-1
dc.relationMillner, P. ., & Kaufman, D. D. (1996). Soil Organic Matter Dynamics and Microbiological Interactions.
dc.relationMirschel, W., & Wenkel, K. (n.d.). Modelling soil – crop interactions with AGROSIM model family. Landscape Research.
dc.relationMirschel, W., & Wenkel, K. (2007). Modelling soil – crop interactions with AGROSIM model family. In Modelling water and nutrient dynamics in soil–crop systems (pp. 59–73). Springer Netherlands.
dc.relationMo, X., Liu, S., Lin, Z., Xu, Y., Xiang, Y., & McVicar, T. R. (2005). Prediction of crop yield, water consumption and water use efficiency with a SVAT-crop growth model using remotely sensed data on the North China Plain. Ecological Modelling, 183(2–3), 301–322. https://doi.org/10.1016/j.ecolmodel.2004.07.032
dc.relationMobus, G. E., & Kalton, M. C. (2015). Principles of Systems Science (first edit). Springer Verlag. https://doi.org/10.1007/978-1-4939-1920-8
dc.relationMoore, J. C., Boone, R. B., Koyama, A., & Holfelder, K. (2014a). Enzymatic and detrital influences on the structure, function, and dynamics of spatially-explicit model ecosystems. Biogeochemistry, 117(1), 205–227. https://doi.org/10.1007/s10533-013-9932-3
dc.relationMoore, J. C., Boone, R. B., Koyama, A., & Holfelder, K. (2014b). ODD DESCRIPTION FOR Enzymatic and detrital influences on the structure, function, and dynamics of spatially-explicit model ecosystems, 1–11.
dc.relationNacry, P., Bouguyon, E., & Gojon, A. (2013). Nitrogen acquisition by roots: Physiological and developmental mechanisms ensuring plant adaptation to a fluctuating resource. Plant and Soil, 370(1–2), 1–29. https://doi.org/10.1007/s11104-013-1645-9
dc.relationNahielli Solorio Elizalde, Fernando Paz Pellat, M. O. L. y M. A. B. G. (2009). Expolinear Growth Model and Productivity Equivalence of a Greenhouse Grown Tomato. Terra Latinoamericana, 27(2), 143–151.
dc.relationNannipieri, P., & Eldor, P. (2009). The chemical and functional characterization of soil N and its biotic components. Soil Biology and Biochemistry. Elsevier Ltd. https://doi.org/10.1016/j.soilbio.2009.07.013
dc.relationNielsen, U. N., Ayres, E., Wall, D. H., & Bardgett, R. D. (2011). Soil biodiversity and carbon cycling: a review and synthesis of studies examining diversity-function relationships. European Journal of Soil Science, 62(1), 105–116. https://doi.org/10.1111/j.1365-2389.2010.01314.x
dc.relationNuthall, P. L. (2011). Analysis of Farming Systems. Group. Retrieved from https://www.cabi.org
dc.relationOrsel, M., & Miller, A. J. (2011). NITROGEN METABOLISM IN THE POST-GENOMIC ERA. In C. Foyer & H. Zhang (Eds.) (FIRST, p. 386). wiley-blackwell.
dc.relationPaul, E. A. (2015). Soil Microbiology, Ecology, and Biochemistry - Edited by E.A. Paul. European Journal of Soil Science (Fourth). Amsterdam: Elsevier. https://doi.org/10.1111/j.1365-2389.2008.01052_2.x
dc.relationPaul, E. A. (2016a). The nature and dynamics of soil organic matter: Plant inputs, microbial transformations, and organic matter stabilization. Soil Biology and Biochemistry, 98, 109–126. https://doi.org/10.1016/j.soilbio.2016.04.001
dc.relationPérez, J., Muñoz-Dorado, J., De La Rubia, T., & Martínez, J. (2002). Biodegradation and biological treatments of cellulose, hemicellulose and lignin: An overview. International Microbiology, 5(2), 53–63. https://doi.org/10.1007/s10123-002-0062-3
dc.relationPessarakli, M. (2002). Handbook of plant and crop physiology. (Mohamed Pessarakli, Ed.) (Second Edi). New York Basel: Marcel Dekker. Retrieved from http://books.google.com/books?hl=en&lr=&id=Ab5pDQQD6YUC&pgis=1
dc.relationPeter J. Gregory, & Nortcliff, S. (2013). Soil conditions and plant growth. (Wiley-Blackwell, Ed.). https://doi.org/10.1002/9781118337295
dc.relationPiotrowska, A. (2020). Significance of the Enzymes Associated with Soil C and N Trasnformations. In Carbon and Nitrogen Cycling in Soil (pp. 399–437). Springer. https://doi.org/10.1007/978-981-13-7264-3_1
dc.relationPrats Soler, C. (2008). Individual-based Modelling of bacterial cultures in the study of the lag phase.
dc.relationQuesada, F. (2018). INTRODUCCIÓN AL LENGUAJE NETLOGO Y LA PROGRAMACIÓN BASADA EN AGENTES. Retrieved from http://franciscoquesada.com/wp-content/uploads/2018/04/netlogo7.pdf
dc.relationRailsback, S. F., & Grimm, V. (2012). Agent based and individual based modeling A practical introduction. Princeton University Press
dc.relationRees, R. ., Ball, B. C., & Watson, C. . (2001). Sustainable management of soil organic matter. CABI Publishing. https://doi.org/10.1079/9780851994659.0009
dc.relationReiter, L. (2015). Effect of crop residue incorporation on soil organic carbon dynamics – Changes in carbon stocks and carbon fractions in an Italian long-term field experiment. Swedish University of Agricultural Sciences. Retrieved from https://stud.epsilon.slu.se/8025/11/reiter_l_150617.pdf
dc.relationRoose, T. (2000). Mathematical model of plant nutrient uptake. A Thesis submitted for the degree of Doctor of Philosophy.
dc.relationSaleem, M., Hu, J., & Jousset, A. (2019). More Than the Sum of Its Parts: Microbiome Biodiversity as a Driver of Plant Growth and Soil Health. Annual Review of Ecology, Evolution, and Systematics, 50(1). https://doi.org/10.1146/annurev-ecolsys-110617-062605
dc.relationSanti, S., Locci, G., Monte, R., Pinton, R., & Varanini, Z. (2003). Induction of nitrate uptake in maize roots: Expression of a putative high-affinity nitrate transporter and plasma membrane H+-ATPase isoforms. Journal of Experimental Botany, 54(389), 1851–1864. https://doi.org/10.1093/jxb/erg208
dc.relationSchimel, J. P., & Schaeffer, S. M. (2012). Microbial control over carbon cycling in soil. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2012.00348
dc.relationSilva, E., Ferreira, M., Santos, K., Silva, T., Ferreira, D., Costa, M., … Royme, P. (2020). Organic Nitrogen in Agricultural Systems. In NITROGEN FIXATION. INTECH OPEN. https://doi.org/http://dx.doi.org/10.5772/57353
dc.relationSmith, W. N., Grant, B. B., Desjardins, R. L., Worth, D., Li, C., Boles, S. H., & Huffman, E. C. (2010). A tool to link agricultural activity data with the DNDC model to estimate GHG emission factors in Canada. Agriculture, Ecosystems and Environment, 136(3–4), 301–309. https://doi.org/10.1016/j.agee.2009.12.008
dc.relationSteduto, P, Hsiao, T. C., Raes, D., Fereres, E., Izzi, G., Heng, L., & Hoogeveen, J. (2011). Performance review of AquaCrop - The FAO crop-water productivity model. ICID 21st International Congress on Irrigation and Drainage, 231–248.
dc.relationSteduto, Pasquale, Hsiao, T. C., Raes, D., & Fereres, E. (2009). Aquacrop-the FAO crop model to simulate yield response to water: I. concepts and underlying principles. Agronomy Journal, 101(3), 426–437. https://doi.org/10.2134/agronj2008.0139s
dc.relationSylvia, D.M., Fuhrmann, J.J., Hartel, P.G. and Zuberer, D. A. (1998). Principles and applications of soil microbiology (First). New Jersey: Prentice Hall.
dc.relationU.K. Behera and A.R. Sharma. (2007). Modern concepts of agriculture.
dc.relationvan Elsas, J. D., Trevors, J. T., Soares, A., & Nannipieri, P. (2019). Modern Soil Microbiology (Third edit). CRC PRESS TAYLOR AND FRANCIS GROUP. https://doi.org/10.1017/CBO9781107415324.004
dc.relationVaughan, D., & Malcolm, R. . (1985). Soil organic matter and Biological Activity. Martinus Nijhoff/DR W. Junk Publishers. https://doi.org/10.1007/978-94-009-6833-2
dc.relationVon Bertalanffy, L. (1950). The theory of open systems in physics and biology. Science (New York, N.Y.), 111(2872), 23–29. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/15398815
dc.relationvon Bertalanffy, Ludwig. (1950). An Outline of General System Theory. British Journal of the Philosophy of Science, 1, 134–165. https://doi.org/10.1093/bjps/I.2.134
dc.relationVos, M., Wolf, A. B., Jennings, S. J., & Kowalchuk, G. A. (2013). Micro-scale determinants of bacterial diversity in soil. FEMS Microbiology Reviews, 37(6), 936–954. https://doi.org/10.1111/1574-6976.12023
dc.relationWallach, D, Makowski, D., Jones, J., & Brun, F. (2014). Working with Dynamic Crop Models. Working with Dynamic Crop Models (Second). Amsterdam: ACADEMIC PRESS, INC.
dc.relationWallach, Daniel, Brun, F., Makowski, D., & Jones, J. W. (2006). Working with Dynamic Crop Models: Evaluation, Analysis, Parameterization, and Applications. https://doi.org/10.1016/B978-0-12-397008-4.00008-3
dc.relationWang, E., Robertson, M. J., Hammer, G. L., Carberry, P. S., Holzworth, D., Meinke, H., … McLean, G. (2002). Development of a generic crop model template in the cropping system model APSIM. In European Journal of Agronomy (Vol. 18, pp. 121–140). https://doi.org/10.1016/S1161-0301(02)00100-4
dc.relationWang, R., Tischner, R., Gutiérrez, R. a, Hoffman, M., Xing, X., Chen, M., … Crawford, N. M. (2004). Genomic Analysis of the Nitrate Response Using a Nitrate Reductase-Null Mutant of Arabidopsis Linked references are available on JSTOR for this article : Genomic Analysis of the Nitrate Response Using a Nitrate Reductase-Null Mutant of Arabidopsis. Plant Physiology, 136(1), 2512–2522. https://doi.org/10.1104/pp.104.044610.that
dc.relationWilenski, U., & Rand, W. (2015). An introduction to agent-based modeling. Agent analyst. The MIT Press.
dc.relationWilensky, U. (1999). The NetLogo 6 . 0 . 2 User Manual Table of Contents Table of Contents What is NetLogo ? Northwestern University. https://doi.org/10.1007/s10854-012-0795-5
dc.relationWolf, B., & Snyder, G. (2003). Sustainable Soils The place of organic matter in sustaining soils and their productivity. Imprint (First). New York: Food Products Press.
dc.relationYadav, B., Akhtar, M., & Panwar, J. (2015). Rhizospheric Plant-Microbione Interactions: Key Factors to soil Fertility and Plant Nutrition. In Plant Microbes Symbiosis: Applied Facets (First, pp. 127–145). New Delhi: Springer India. https://doi.org/10.1007/978-81-322-2068-8
dc.relationYin, X., & van Laar, H. H. Van. (2005). Crop Systems Dynamics An ecophysiological simulation model for genotype-by-environment interactions (First). Wageningen: Wageningen Academic Publishers.
dc.rightsReconocimiento 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleModelamiento de la productividad agrícola: correlación con la diversidad microbiana rizosférica, sus procesos metabólicos y las propiedades fisicoquímicas del suelo
dc.typeTrabajo de grado - Doctorado


Este ítem pertenece a la siguiente institución