dc.contributorGodoy Silva, Rubén Darío
dc.contributorProcesos Químicos y Bioquímicos
dc.creatorLatorre Hernández, Cindy Carolina
dc.date.accessioned2020-08-21T15:57:20Z
dc.date.available2020-08-21T15:57:20Z
dc.date.created2020-08-21T15:57:20Z
dc.date.issued2020-07-03
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/78153
dc.description.abstractLa microalga Parachlorella kessleri fue sometida a regímenes de cultivo autotróficos, fotoheterotróficos, heterotróficos y mixotróficos, con el fin de evaluar su efecto sobre el crecimiento y la composición bioquímica de la microalga. Las fuentes de carbono orgánico utilizadas fueron glucosa y glicerol, adicionadas en concentraciones de 1, 3 y 5 g·L-1, comparadas siempre con un ensayo control autotrófico sin fuente de carbono orgánica únicamente suplementado con CO2 atmosférico. Los resultados indicaron que P. kessleri tiene mayor afinidad al uso de glucosa, bajo cualquiera de los regímenes de cultivo, que al glicerol, lo cual se vio traducido en mayor concentración final de células en estos tratamientos. La composición bioquímica de la microalga fue afectada por el tipo de régimen de cultivo y por la concentración de fuente de carbono, indicando en términos generales que a medida que se incrementa la concentración de fuente de carbono orgánica se incrementa también la producción de lípidos y carbohidratos. Sin embargo, se observó también que en los tratamientos suplementados con glicerol, a pesar de presentar menores concentraciones celulares máximas, fue en ellos donde se observó una mayor acumulación de carbohidratos y lípidos, sugiriendo un metabolismo destinado más a la acumulación de energía que a la reproducción bajo estas condiciones.
dc.description.abstractThe microalgae Parachlorella kessleri was subjected to autotrophic, photo-heterotrophic, heterotrophic and mixotrophic culture regimes in order to evaluate its growth and biochemical composition. As organic carbon sources, glucose and glycerol were tested in concentrations ranging from 1, 3 and 5 g∙L-1 , while an autotrophic culture was used as a control without organic carbon source added but only atmospheric CO2. Results suggest P. kessleri has a better affinity for glucose than for glycerol under any of the culture regimes, this affinity resulted in higher cell counts for glucose-supplemented cultures. Biochemical composition of the microalgae was affected by culture regime and concentration of organic carbon source; in general, on increase in organic carbon concentration caused on increase in the concentration of lipids and carbohydrates. However, in treatments with glycerol, besides exhibiting lower cellular concentrations, it was observed higher lipid and carbohydrates accumulation, suggesting a metabolism focused to accumulation of energy rather than reproduction under these conditions.
dc.languagespa
dc.publisherBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Química
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relation1] M. G. de Morais and J. A. V. Costa, “Perfil de ácidos graxos de microalgas cultivadas com dióxido de carbono,” Ciência e Agrotecnologia, vol. 32, no. 4, pp. 1245–1251, 2008.
dc.relation[2] M. Ballen Segura, L. Hernandez Rodriguez, D. Parra Ospina, A. Vega Bolaños, and K. Perez, “Using Scenedesmus sp. for the Phycoremediation of Tannery Wastewater,” Tecciencia, vol. 11, no. 21, pp. 69–75, 2016.
dc.relation[3] L. Ardila Forero, “Medición de la capacidad de Chlorella vulgaris y Scenedesmus acutus para la remoción de cromo de aguas de curtiembre,” Universidad Nacional de Colombia, 2012.
dc.relation[4] O. Komolafe, S. B. Velasquez Orta, I. Monje-Ramirez, I. Y. Noguez, A. P. Harvey, and M. T. Orta Ledesma, “Biodiesel production from indigenous microalgae grown in wastewater,” Bioresour. Technol., vol. 154, pp. 297–304, 2014.
dc.relation[5] X. Y. Deng et al., “Glucose addition-induced changes in the growth and chemical compositions of a freshwater microalga Chlorella kessleri,” J. Chem. Technol. Biotechnol., vol. 94, no. 4, pp. 1202–1209, 2019.
dc.relation[6] T. Heredia-Arroyo, W. Wei, and B. Hu, “Oil accumulation via heterotrophic/mixotrophic Chlorella protothecoides,” Appl. Biochem. Biotechnol., vol. 162, no. 7, pp. 1978–1995, 2010.
dc.relation[7] A. K. Patel, J. M. Joun, M. E. Hong, and S. J. Sim, “Effect of light conditions on mixotrophic cultivation of green microalgae,” Bioresour. Technol., vol. 282, pp. 245–253, Jun. 2019.
dc.relation[9] Y. Liang, N. Sarkany, and Y. Cui, “Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions,” Biotechnol. Lett., vol. 31, no. 7, pp. 1043–1049, 2009.
dc.relation[10] T. Heredia-Arroyo, W. Wei, R. Ruan, and B. Hu, “Mixotrophic cultivation of Chlorella vulgaris and its potential application for the oil accumulation from non-sugar materials,” Biomass and Bioenergy, vol. 35, no. 5, pp. 2245–2253, 2011.
dc.relation[11] P. Spolaore, C. Joannis-Cassan, E. Duran, and A. Isambert, “Commercial applications of microalgae,” J. Biosci. Bioeng., vol. 101, no. 2, pp. 87–96, 2006.
dc.relation[12] O. P. Ward and A. Singh, “Omega-3/6 fatty acids: Alternative sources of production,” Process Biochem., vol. 40, no. 12, pp. 3627–3652, 2005.
dc.relation[13] R. Kroes, E. J. Schaefer, R. A. Squire, and G. M. Williams, “A review of the safety of DHA45-oil,” Food Chem. Toxicol., vol. 41, no. 11, pp. 1433–1446, 2003.
dc.relation[14] D. Morales-Sánchez, O. A. Martinez-Rodriguez, J. Kyndt, and A. Martinez, “Heterotrophic growth of microalgae: metabolic aspects,” World J. Microbiol. Biotechnol., vol. 31, no. 1, pp. 1–9, 2015.
dc.relation[15] J. O’Grady and J. A. Morgan, “Heterotrophic growth and lipid production of Chlorella protothecoides on glycerol,” Bioprocess Biosyst. Eng., vol. 34, no. 1, pp. 121–125, 2011.
dc.relation[16] M. Shamzi Mohamed, L. Zee Wei, and A. B. Ariff, “Heterotrophic Cultivation of Microalgae for Production of Biodiesel,” Recent Pat. Biotechnol., vol. 5, no. 2, pp. 95–107, 2011.
dc.relation[17] J. M. Lv, L. H. Cheng, X. H. Xu, L. Zhang, and H. L. Chen, “Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions,” Bioresour. Technol., vol. 101, no. 17, pp. 6797–6804, 2010.
dc.relation[18] Y. Liang, N. Sarkany, Y. Cui, and J. W. Blackburn, “Batch stage study of lipid production from crude glycerol derived from yellow grease or animal fats through microalgal fermentation,” Bioresour. Technol., vol. 101, no. 17, pp. 6745–6750, 2010.
dc.relation[19] M. S. Narayan, G. P. Manoj, K. Vatchravelu, N. Bhagyalakshmi, and M. Mahadevaswamy, “Utilization of glycerol as carbon source on the growth, pigment and lipid production in Spirulina platensis,” Int. J. Food Sci. Nutr., vol. 56, no. 7, pp. 521–528, 2005.
dc.relation[20] Ö. Tokuşoglu and M. K. Ünal, “Biomass nutrient profiles of three microalgae: Spirulina platensis, Chlorella vulgaris, and Isochrisis galbana,” J. Food Sci., vol. 68, no. 4, pp. 1144–1148, 2003.
dc.relation[21] M. C. Cerón García, J. M. Fernandez Sevilla, F. G. Acien Fernandez, E. Molina Grima, and F. García Camacho, “Mixotrophic growth of Phaeodactylum tricornutum on glycerol : growth rate and fatty acid profile,” J. Appl. Phycol. 12, vol. 12, pp. 239–248, 2000.
dc.relation[22] K. L. Yeh and J. S. Chang, “Nitrogen starvation strategies and photobioreactor design for enhancing lipid content and lipid production of a newly isolated microalga Chlorella vulgaris ESP-31: Implications for biofuels,” Biotechnol. J., vol. 6, no. 11, pp. 1358–1366, Nov. 2011.
dc.relation[23] R. D. Ashby, D. K. Y. Solaiman, and G. D. Strahan, “Efficient utilization of crude glycerol as fermentation substrate in the synthesis of poly(3-hydroxybutyrate) Biopolymers,” JAOCS, J. Am. Oil Chem. Soc., vol. 88, no. 7, pp. 949–959, 2011.
dc.relation[24] A. Bahadar and M. Bilal Khan, “Progress in energy from microalgae: A review,” Renew. Sustain. Energy Rev., vol. 27, pp. 128–148, 2013.
dc.relation[25] Y. Chisti, “Biodiesel from microalgae beats bioethanol,” Trends Biotechnol., vol. 26, no. 3, pp. 126–131, 2008.
dc.relation[26] S. N. Naik, V. V. Goud, P. K. Rout, and A. K. Dalai, “Production of first and second generation biofuels: A comprehensive review,” Renew. Sustain. Energy Rev., vol. 14, no. 2, pp. 578–597, 2010.
dc.relation[27] N. R. Moheimani, M. P. McHenry, K. de Boer, and P. Bahri, Biomass and Biofuels from Microalgae, vol. 2. 2015.
dc.relation[28] L. Moreno-Garcia, K. Adjallé, S. Barnabé, and G. S. V. Raghavan, “Microalgae biomass production for a biorefinery system: Recent advances and the way towards sustainability,” Renew. Sustain. Energy Rev., vol. 76, no. January, pp. 493–506, 2017.
dc.relation[29] Y. Guan, M. Deng, X. Yu, and W. Zang, “Two stage photo-production of hydrogen by marine green algae Platymonas subcordiformis.,” Biochem Eng J, vol. 19, pp. 69–73, 2004.
dc.relation[30] T. V. Laurinavichene, S. N. Kosourov, M. L. Ghirardi, M. Seibert, and A. A. Tsygankov, “Prolongation of H2 photoproduction by immobilized, sulfur-limited Chlamydomonas reinhardtii cultures,” J. Biotechnol., vol. 134, no. 3–4, pp. 275–277, 2008.
dc.relation[31] C. Tian, B. Li, Z. Liu, Y. Zhang, and H. Lu, “Hydrothermal liquefaction for algal biorefinery: A critical review,” Renew. Sustain. Energy Rev., vol. 38, pp. 933–950, 2014.
dc.relation[32] S. Leow, J. R. Witter, D. R. Vardon, B. K. Sharma, J. S. Guest, and T. J. Strathmann, “Prediction of microalgae hydrothermal liquefaction products from feedstock biochemical composition,” Green Chem, vol. 17, no. 6, pp. 3584–3599, 2015.
dc.relation[33] D. Zhou, L. Zhang, S. Zhang, H. Fu, and J. Chen, “Hydrothermal liquefaction of macroalgae Enteromorpha prolifera to bio oil,” Energy and Fuels, vol. 24, no. 7, pp. 4054–4061, 2010.
dc.relation[34] U. Jena, K. C. Das, and J. R. Kastner, “Comparison of the effects of Na2CO3, Ca3(PO4)2, and NiO catalysts on the thermochemical liquefaction of microalga Spirulina platensis,” Appl. Energy, vol. 98, pp. 368–375, 2012.
dc.relation[35] P. Biller and A. B. Ross, “Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content,” Bioresour. Technol., vol. 102, no. 1, pp. 215–225, 2011.
dc.relation[36] P. Biller, R. Riley, and A. B. Ross, “Catalytic hydrothermal processing of microalgae: Decomposition and upgrading of lipids,” Bioresour. Technol., vol. 102, no. 7, pp. 4841–4848, 2011.
dc.relation[37] P. Duan, B. Wang, and Y. Xu, “Catalytic hydrothermal upgrading of crude bio-oils produced from different thermo-chemical conversion routes of microalgae,” Bioresour. Technol., vol. 186, pp. 58–66, 2015.
dc.relation[38] ASTM, “D5291-16, Standard Test Methods for Instrumental Determination of Carbon, Hydrogen, and Nitrogen in Petroleum Products and Lubricants.” ASTM, West Conshohocken, PA, 2016.
dc.relation[39] N. Neveux et al., “Pre- and post-harvest treatment of macroalgae to improve the quality of feedstock for hydrothermal liquefaction,” Algal Res., vol. 6, pp. 22–31, Oct. 2014.
dc.relation[40] International Energy Agency, “Key world energy statistics,” 2019. .
dc.relation[41] International Energy Agency, “CO2 emissions from fuel combustion: Overview (2017 edition),” 2017.
dc.relation[42] A. Vengoechea, “Las cumbres de las naciones unidas sobre cambio climático,” 2012.
dc.relation[43] Instituto de Hidrología Meteorología y Estudios Ambientales, Primera Comunicación Nacional ante la Convención Marco de las Naciones Unidas sobre Cambio Climático. 2001.
dc.relation[44] International Energy Agency, “CO2 emmisions from fuel combustion highlights,” 2019.
dc.relation[45] Congreso de la República, “Ley 788,” Diario Oficial No. 45.046, 2002. [Online]. Available: http://www.alcaldiabogota.gov.co/sisjur/normas/Norma1.jsp?i=7260.
dc.relation[46] L. M. Serrano Bermúdez, “Estudio de cuatro cepas nativas de microalgas para evaluar su potencial uso en la producción de biodiesel,” Universidad Nacional de Colombia, Bogotá, 2012.
dc.relation[47] R. M. Herrera, “Evaluación de los exopolisacáridos producidos por una cepa nativa de cianobacteria Nostoc sp. como sustrato en la producción de bioetanol,” p. 105, 2012.
dc.relation[48] J. Moncada, J. J. Jaramillo, J. C. Higuita, C. Younes, and C. A. Cardona, “Production of bioethanol using Chlorella vulgaris cake: A technoeconomic and environmental assessment in the colombian context,” Ind. Eng. Chem. Res., vol. 52, no. 47, pp. 16786–16794, 2013.
dc.relation[49] A. Rojan, P. J.; Anisha, G. S.; Nampoothiri, K. M.; Pandey, “Micro and macroalgal biomass: A renewable source for bioethanol.,” Bioresour. Technol., vol. 102, no. 1, pp. 186–196, 2011.
dc.relation[50] J. C. Quinn, A. Hanif, S. Sharvelle, and T. H. Bradley, “Microalgae to biofuels: Life cycle impacts of methane production of anaerobically digested lipid extracted algae,” Bioresour. Technol., vol. 171, pp. 37–43, 2014.
dc.relation[51] F. Passos, M. Solé, J. García, and I. Ferrer, “Biogas production from microalgae grown in wastewater: Effect of microwave pretreatment,” Appl. Energy, vol. 108, pp. 168–175, 2013.
dc.relation[52] C. Santibáñez, M. T. Varnero, and M. Bustamante, “Residual Glycerol from Biodiesel Manufacturing, Waste or Potential Source of Bioenergy: A Review,” Chil. J. Agric. Res., vol. 71, no. 3, pp. 469–475, 2011.
dc.relation[53] K. K. Lum, J. Kim, and X. G. Lei, “Dual potential of microalgae as a sustainable biofuel feedstock and animal feed,” J. Anim. Sci. Biotechnol., vol. 4, no. 1, p. 53, 2013.
dc.relation[54] M. J. Griffiths, Microalgal cultivation reactor systems, vol. 6, no. 126. Taylor & Francis Group, 2013.
dc.relation[55] N. F. Santos-Sánchez, R. Valadez-Blanco, B. Hernández-Carlos, A. Torres-Ariño, P. C. Guadarrama-Mendoza, and R. Salas-Coronado, “Lipids rich in ω-3 polyunsaturated fatty acids from microalgae,” Appl. Microbiol. Biotechnol., vol. 100, no. 20, pp. 8667–8684, 2016.
dc.relation[56] I. Priyadarshani and B. Rath, “Commercial and industrial applications of micro algae – A review,” J. Algal Biomass Util., vol. 3, no. 4, pp. 89–100, 2012.
dc.relation[57] M. Koller, A. Muhr, and G. Braunegg, “Microalgae as versatile cellular factories for valued products,” Algal Res., vol. 6, no. PA, pp. 52–63, 2014.
dc.relation[58] A. E. Harman-Ware et al., “Microalgae as a renewable fuel source: Fast pyrolysis of Scenedesmussp.,” Renew. Energy, vol. 60, pp. 625–632, Dec. 2013.
dc.relation[59] R. Thilakaratne, M. M. Wright, and R. C. Brown, “A techno-economic analysis of microalgae remnant catalytic pyrolysis and upgrading to fuels,” Fuel, vol. 128, pp. 104–112, Jul. 2014.
dc.relation[60] E. B. Connelly, L. M. Colosi, A. F. Clarens, and J. H. Lambert, “Life cycle assessment of biofuels from algae hydrothermal liquefaction: The upstream and downstream factors affecting regulatory compliance,” Energy and Fuels, vol. 29, no. 3, pp. 1653–1661, 2015.
dc.relation[61] H. Xu, X. Miao, and Q. Wu, “High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters,” J Biotechno, vol. 126, pp. 499–507, 2006.
dc.relation[62] I. T. D. Cabanelas et al., “From waste to energy: Microalgae production in wastewater and glycerol,” Appl. Energy, vol. 109, pp. 283–290, 2013.
dc.relation[63] V. Kumar, M. Muthuraj, B. Palabhanvi, A. K. Ghoshal, and D. Das, “High cell density lipid rich cultivation of a novel microalgal isolate Chlorella sorokiniana FC6 IITG in a single-stage fed-batch mode under mixotrophic condition,” Bioresour. Technol., vol. 170, pp. 115–124, 2014.
dc.relation[64] R. Praveenkumar et al., “Improved biomass and lipid production in a mixotrophic culture of Chlorella sp. KR-1 with addition of coal-fired flue-gas,” Bioresour. Technol., vol. 171, pp. 500–505, 2014.
dc.relation[65] J. M. Girard et al., “Mixotrophic cultivation of green microalgae Scenedesmus obliquus on cheese whey permeate for biodiesel production,” Algal Res., vol. 5, no. 1, pp. 241–248, 2014.
dc.relation[66] Z. Chi, D. Pyle, Z. Wen, C. Frear, and S. Chen, “A laboratory study of producing docosahexaenoic acid from biodiesel-waste glycerol by microalgal fermentation,” Process Biochem., vol. 42, no. 11, pp. 1537–1545, 2007.
dc.relation[67] Y. H. Chen and T. H. Walker, “Biomass and lipid production of heterotrophic microalgae Chlorella protothecoides by using biodiesel-derived crude glycerol,” Biotechnol. Lett., vol. 33, no. 10, pp. 1973–1983, 2011.
dc.relation[68] I. Shihira and R. W. Krauss, Chlorella. Physiology and taxonomy of forty-one isolates. Maryland, 1965.
dc.relation[69] P. J. Syrett and H. A. Wong, “The fermentation of glucose by Chlorella vulgaris,” Biochem. J., vol. 89, no. 1958, pp. 308–315, 1963.
dc.relation[70] M. Vinayakumar and E. Kessler, “Physiological and biochemical contributions to the taxonomy of the genus Chlorella - X. Products of glucose fermentation,” Arch. Microbiol., vol. 103, no. 1, pp. 13–19, 1975.
dc.relation[71] E. P. Karlander and R. W. Krauss, “Responses of Heterotrophic Cultures of Chlorella vulgaris Beyerinck to Darkness and Light. II. Action Spectrum for and Mechanism of the Light Requirement for Heterotrophic Growth,” Plant Physiol., vol. 41, no. 1, pp. 7–14, 1966.
dc.relation[72] D. J. Griffiths, C. L. Thresher, and H. E. Street, “The heterotrophic nutrition of Chlorella vulgaris (Brannon No. 1 strain),” Ann. Bot., vol. 24, no. 1, pp. 1–11, 1960.
dc.relation[73] A. Kamiya and W. Kowallik, “Photoinhibition of glucose uptake in Chlorella,” Plant Cell Physiol., vol. 28, no. April, pp. 611–619, 1987.
dc.relation[74] K. Chojnacka and A. Noworyta, “Evaluation of Spirulina sp. growth in photoautotrophic, heterotrophic and mixotrophic cultures,” Enzyme Microb. Technol., vol. 34, no. 5, pp. 461–465, 2004.
dc.relation[75] M. E. de Swaaf, T. C. de Rijk, G. Eggink, and L. Sijtsma, “Optimisation of docosahexaenoic acid production in batch cultivations by Crypthecodinium cohnii,” J. Biotechnol., vol. 70, no. 1–3, pp. 185–192, Apr. 1999.
dc.relation[76] W. Q. Xiong W, Li X, Xiang J, “High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production,” Appl Microbiol Biotechnol, vol. 78, pp. 29–36, 2008.
dc.relation[77] X. Miao and Q. Wu, “Biodiesel production from heterotrophic microalgal oil,” Bioresour. Technol., vol. 97, no. 6, pp. 841–846, 2006.
dc.relation[78] B. Cheirsilp and S. Torpee, “Enhanced growth and lipid production of microalgae under mixotrophic culture condition: Effect of light intensity, glucose concentration and fed-batch cultivation,” Bioresour. Technol., vol. 110, pp. 510–516, 2012.
dc.relation[79] F. Yang, M. A. Hanna, and R. Sun, “Value-added uses for crude glycerol--a byproduct of biodiesel production,” Biotechnol. Biofuels, vol. 5, no. 1, p. 13, 2012.
dc.relation[80] Federación Nacional de Biocombustibles, “Producción y ventas del biodiesel,” 2018. [Online]. Available: http://www.fedebiocombustibles.com/v3/estadistica-mostrar_info-titulo-Biodiesel.htm. [Accessed: 01-Jul-2018].
dc.relation[81] D. Montoya, “Bioprocesos aplicados a la valorización del glicerol residual en la producción de biodiésel,” Palmas, vol. 31, no. 2, pp. 126–135, 2010.
dc.relation[82] M. Ayoub and A. Z. Abdullah, “Critical review on the current scenario and significance of crude glycerol resulting from biodiesel industry towards more sustainable renewable energy industry,” Renew. Sustain. Energy Rev., vol. 16, no. 5, pp. 2671–2686, 2012.
dc.relation[83] R. Ciriminna, C. Della Pina, M. Rossi, and M. Pagliaro, “Understanding the glycerol market,” Eur. J. Lipid Sci. Technol., vol. 116, no. 10, pp. 1432–1439, 2014.
dc.relation[84] Asad-ur-Rehman, R. G. Saman Wijesekara, N. Nomura, S. Sato, and M. Matsumura, “Pre-treatment and utilization of raw glycerol from sunflower oil biodiesel for growth and 1,3-propanediol production by Clostridium butyricum,” J. Chem. Technol. Biotechnol., vol. 83, no. 7, pp. 1072–1080, 2008.
dc.relation[85] T. Ito, Y. Nakashimada, K. Senba, T. Matsui, and N. Nishio, “Hydrogen and ethanol production from glycerol-containing wastes discharged after biodiesel manufacturing process,” J. Biosci. Bioeng., vol. 100, no. 3, pp. 260–265, 2005.
dc.relation[86] R. Jitrwung and V. Yargeau, “Optimization of media composition for the production of biohydrogen from waste glycerol,” Int. J. Hydrogen Energy, vol. 36, no. 16, pp. 9602–9611, 2011.
dc.relation[87] S. Papanikolaou and G. Aggelis, “Biotechnological valorization of biodiesel derived glycerol waste through production of single cell oil and citric acid by Yarrowia lipolytica,” Lipid Technol., vol. 21, no. 4, pp. 83–87, 2009.
dc.relation[88] G. Mothes, C. Schnorpfeil, and J. U. Ackermann, “Production of PHB from crude glycerol,” Eng. Life Sci., vol. 7, no. 5, pp. 475–479, 2007.
dc.relation[89] J. D. Taconi KA, Venkataramanan KP, “Growth and solvent production by Clostridium pasteurianu ATCC® 6013TM utilizing biodiesel- derived crude glycerol as the sole carbon source,” Env. Prog Sustain. Energy, vol. 28, pp. 100–110, 2009.
dc.relation[90] S. S. Yazdani and R. Gonzalez, “Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry,” Curr. Opin. Biotechnol., vol. 18, no. 3, pp. 213–219, 2007.
dc.relation[91] R. G. Wijesekara, N. Nomura, S. Sato, and M. Matsumura, “Pre-treatment and utilization of raw glycerol from sunflower oil biodiesel for growth and 1,3-propanediol production by Clostridium butyricum,” J. Chem. Technol. Biotechnol., vol. 83, pp. 1072–1080, 2008.
dc.relation[92] M. González-Pajuelo, I. Meynial-Salles, F. Mendes, J. C. Andrade, I. Vasconcelos, and P. Soucaille, “Metabolic engineering of Clostridium acetobutylicum for the industrial production of 1,3-propanediol from glycerol,” Metab. Eng., vol. 7, no. 5–6, pp. 329–336, 2005.
dc.relation[93] K. R. Hampy et al., “Glycerol as a supplemental energy source for meat goats,” Arkansas Anim. Sci. Dep. Rep., vol. 553, pp. 65–66, 2007.
dc.relation[94] Glicerol Bio D, “GlicerolBio una fuente de energía alternativa,” 2016. [Online]. Available: http://gys.com.co/glicerol_biod/. [Accessed: 27-Oct-2016].
dc.relation[95] J. A. Posada Duque and C. A. Cardona Alzate, “Análisis de la refinación de glicerina obtenida como coproducto en la producción de biodiesel,” Ing. y Univ., vol. 14, no. 1, pp. 9–28, 2010.
dc.relation[96] D. Cárdenas, C. Pulido, Ó. Aragón, F. Aristizábal, Z. Suárez, and D. Montoya, “Evaluación de la producción de 1,3-propanodiol por cepas nativas de Clostridium sp. mediante fermentación a partir de glicerol USP y glicerol industrial subproducto de la producción de biodiésel,” Rev. Colomb. Ciencias Químico - Farm., vol. 35, no. 1, pp. 120–137, 2006.
dc.relation[97] D. J. Pyle, R. A. Garcia, and Z. Wen, “Producing docosahexaenoic acid (DHA)-rich algae from biodiesel-derived crude glycerol: Effects of impurities on DHA production and algal biomass composition,” J. Agric. Food Chem., vol. 56, no. 11, pp. 3933–3939, 2008.
dc.relation[98] W. Kong, H. Song, Y. Cao, H. Yang, S. Hua, and C. Xia, “The characteristics of biomass production, lipid accumulation and chlorophyll biosynthesis of Chlorella vulgaris under mixotrophic cultivation.,” Afr. J. Biotechnol., vol. 10, no. 55, pp. 11620–11630, 2011.
dc.relation[99] B. J. B. Wood, P. H. K. Grimson, J. B. German, and M. Turner, “Photoheterotrophy in the production of phytoplankton organisms,” Prog. Ind. Microbiol., vol. 35, no. C, pp. 175–183, 1999.
dc.relation[100] W. B. Kong, H. Yang, Y. T. Cao, H. Song, S. F. Hua, and C. G. Xia, “Effect of glycerol and glucose on the enhancement of biomass, lipid and soluble carbohydrate production by Chlorella vulgaris in mixotrophic culture,” Food Technol. Biotechnol., vol. 51, no. 1, pp. 62–69, 2013.
dc.relation[101] L. L. Estévez-Landazábal, A. F. Barajas-Solano, C. Barajas-Ferreira, and V. Kafarov, “Improvement of lipid productivity on Chlorella vulgaris using waste glycerol and sodium acetate,” CTyF - Ciencia, Tecnol. y Futur., vol. 5, no. 2, pp. 113–126, 2013.
dc.relation[102] M. C. Cerón García, M. D. Macías Sánchez, A. ánchez Mirón, F. García Camacho, and E. Molina Grima, “A process for biodiesel production involving the heterotrophic fermentation of Chlorella protothecoides with glycerol as the carbon source,” Appl. Energy, vol. 103, pp. 341–349, 2013.
dc.relation[103] G. Markou, E. Kougia, I. Kefalogianni, V. Tsagou, D. Arapoglou, and I. Chatzipavlidis, “Effect of glycerol concentration and light intensity on growth and biochemical composition of Arthrospira (Spirulina) platensis: A study in semi-continuous mode with non-aseptic conditions,” Appl. Sci., vol. 9, no. 21, 2019.
dc.relation[104] V. A. R. Huss, G. Huss, and E. Kessler, “Deoxyribonucleic acid reassociation and interspecies relationships of the genus Chlorella (Chlorophyceae),” Plant Syst. Evol., vol. 168, no. 1–2, pp. 71–82, 1989.
dc.relation[105] V. A. R. Huss, A. Hehenberger, and E. Kessler, “Deoxyribonucleic acid reassociation in the taxonomy of the genus Chlorella - III. Chlorella fusca and Chlorella kessleri,” Arch. Microbiol., vol. 149, no. 1, pp. 1–3, 1987.
dc.relation[106] V. A. R. Huss et al., “Biochemical Taxonomy and Molecular Phylogeny of the Genus Chlorella Sensu Lato (Chlorophyta),” J. Phycol., vol. 35, no. 3, pp. 587–598, 1999.
dc.relation[107] L. Krienitz, E. H. Hegewald, D. Hepperle, V. A. R. Huss, T. Rohr, and M. Wolf, “Phylogenetic relationship of Chlorella and Parachlorella gen. nov. (Chlorophyta, Trebouxiophyceae),” Phycologia, vol. 43, no. 5, pp. 529–542, Sep. 2004.
dc.relation[108] K. Brandt, “Ueber Das Zussamenleben von Thieren und Algen,” Sitzungsberichte der Gesellschaft Naturforschender Freunde zu Berlin, vol. 9, pp. 140–146, 1881.
dc.relation[109] A. Artari, “Untersuchungen über die entwicklung und systematik einiger Protococcoiden.,” Bull. Soc. Impr. Nat., vol. 6, pp. 222–261, 1893.
dc.relation[110] E. A. George, The culture collection of algae and protozoa. List of strains. Cambridge: The Botany School, 1966.
dc.relation[111] W. Koch, “Verzeichnis der Sammlung von Algenkulturen am Pflanzenphysiologischen Institut der Universität Göttingen,” Arch. Mikrobiol., vol. 47, no. 4, pp. 402–432, 1964.
dc.relation[112] R. . Starr, “A comparative study of Chlorococcum meneghini and other spherical, , zoospore-producing genera of the Chlorococcales,” Indiana Univ. Publ. Sci., vol. 20, pp. 1–111, 1955.
dc.relation[110] E. A. George, The culture collection of algae and protozoa. List of strains. Cambridge: The Botany School, 1966.
dc.relation[111] W. Koch, “Verzeichnis der Sammlung von Algenkulturen am Pflanzenphysiologischen Institut der Universität Göttingen,” Arch. Mikrobiol., vol. 47, no. 4, pp. 402–432, 1964.
dc.relation[112] R. . Starr, “A comparative study of Chlorococcum meneghini and other spherical, , zoospore-producing genera of the Chlorococcales,” Indiana Univ. Publ. Sci., vol. 20, pp. 1–111, 1955.
dc.relation[113] E. Kessler, W. Langner, I. Ludewing, and H. Wiechmann, “Bildung von sekundar-carotinoiden bei stickstoffmangel und hydrogenase-activitat als taxonomische markmale in der gattung Chlorella,” in Studies on microalgae and photosyntetic bacteria, University of Tokio, Ed. Tokio, Japan, 1963, pp. 7–20.
dc.relation[114] B. Fott and M. Nováková, “A monograph of the genus Chlorella. The fresh water species,” in Studies in Phycology, no. 11, Prague, 1969, pp. 10–74.
dc.relation[115] R. E. Lee, “Phycology, fourth edition,” in Phycology, Fourth Edition, 4th editio., Cambridge: Cambridge University Press, 2008, pp. 1–547.
dc.relation[116] C. Bock, L. Krienitz, and T. Pröschold, “Taxonomic reassessment of the genus Chlorella (Trebouxiophyceae) using molecular signatures (barcodes), including description of seven new species,” Fottea, vol. 11, no. 2, pp. 293–312, 2011.
dc.relation[117] E. Kessler, “Chemotaxonomy in the Chlorococcales,” in Progr.Phycol.Res., vol. 1, E. B. P. B.V., Ed. Amsterdam, 1982, pp. 111–135.
dc.relation[118] E. Kessler, W. Langner, and I. Ludewing, “Separation of Chlorella ellipsoidea from C. saccharophila (Chlorophyceae): No growth on mannitol and cadmium sensitivity,” Plant Syst. Evol., vol. 157, no. 3–4, pp. 247–251, 1987.
dc.relation[119] E. Kessler, “A general review on the contribution of chemotaxonomy to the systematics of green algae,” in Systematics of the green algae, vol. 27, J. D. Irvine DEG, Ed. London Orlando, 1984, pp. 391–407.
dc.relation[120] E. Hegewald, “Taxonomisch–morphologische Untersuchungen von Scenedesmus–Isolaten aus Stammsammlungen,” Arch. für Hydrobiol., vol. 60, pp. 375–406, 1982.
dc.relation[121] F. Hindák, “Taxonomic position of the chlorococcal alga Chlorella zofingiensis,” Arch. Hydrobiol. Suppl. Algol. Stud., vol. 40, pp. 13–23, 1982.
dc.relation[122] J. Komarek, “Species concept in coccal green algae,” Arch. für Hydrobiol., vol. 73, no. 4, pp. 437–471, 1987.
dc.relation[123] T. Kalina and M. Puncochárová, “Taxonomy of the subfamily Scotiellocystoideae Fott 1976 (Chlorellaceae, Chlorophyceae),” Arch. Hydrobiol. Suppl. Algol. Stud., vol. 45, pp. 473–521, 1987.
dc.relation[123] T. Kalina and M. Puncochárová, “Taxonomy of the subfamily Scotiellocystoideae Fott 1976 (Chlorellaceae, Chlorophyceae),” Arch. Hydrobiol. Suppl. Algol. Stud., vol. 45, pp. 473–521, 1987.
dc.relation[124] V. A. R. Huss and M. L. Sogin, “Phylogenetic position of some Chlorella species within the chlorococcales based upon complete small-subunit ribosomal RNA sequences,” J. Mol. Evol., vol. 31, no. 5, pp. 432–442, Nov. 1990.
dc.relation[125] E. Kessler, “Limits of growth of five Chlorella species in the presence of toxic heavy metals.,” Algol. Stud., vol. 73, pp. 123–128, 1986.
dc.relation[126] E. Kessler, “Physiologische und biochemische Beiträge zur Taxonomie der Gattung Chlorella - VII. Die Thermophilie von Chlorella vulgaris f. tertia Fott et Nováková,” Arch. Mikrobiol., vol. 87, no. 3, pp. 243–248, 1972.
dc.relation[127] E. Kessler, “Upper limits of temperature for growth in Chlorella (Chlorophyceae),” Plant Syst. Evol., vol. 151, no. 1–2, pp. 67–71, Dec. 1985.
dc.relation[128] E. Kessler and F.-C. Czygan, “Physiologische und biochemische Beiträge zur Taxonomie der Gattung Chlorella IV. Verwertung organischer Stickstoffverbindungen,” Arch. Mikrobiol., vol. 70, no. 3, pp. 211–216, 1970.
dc.relation[129] T. Ikeda and H. Takeda, “Species‐Specific Differences of Pyrenoids in Chlorella (Chlorophyta),” J. Phycol., vol. 31, no. 5, pp. 813–818, 1995.
dc.relation[130] V. A. R. Huss, T. K. Scharpf, and E. Kessler, “Deoxyribonucleic acid reassociation in the taxonomy of the genus Chlorella - V. Chlorella vulgaris, C. luteoviridis, C. minutissima, and C. zofingiensis,” Arch. Microbiol., vol. 152, no. 5, pp. 512–514, Oct. 1989.
dc.relation[131] V. Hellmann and E. Kessler, “Physiologische und biochemische Beiträge zur Taxonomie der Gattung Chlorella VIII. Die Basenzusammensetzung der DNS,” Arch. Microbiol., vol. 95, no. 1, pp. 311–318, Dec. 1974.
dc.relation[132] K. Wolgfan and E. Kessler, “Physiological and Biochemical Contributions to the Taxonomy of the Genus Chlorella XI. DNA Hybridization,” Arch. Microbiol., vol. 116, pp. 97–103, 1978.
dc.relation[133] J. S. Heeg and M. Wolf, “ITS2 and 18S rDNA sequence-structure phylogeny of Chlorella and allies (Chlorophyta, Trebouxiophyceae, Chlorellaceae),” Plant Gene, vol. 4, pp. 20–28, 2015.
dc.relation[134] M. Turmel, C. Otis, and C. Lemieux, “The chloroplast genomes of the green algae pedinomonas minor, Parachlorella kessleri, and Oocystis solitaria reveal a shared ancestry between the pedinomonadales and chlorellales,” Mol. Biol. Evol., vol. 26, no. 10, pp. 2317–2331, 2009.
dc.relation[135] E. Kessler, “Physiologische und biochemische Beiträge zur Taxonomie der Gattung Chlorella - IX. Salzresistenz als taxonomisches merkmal,” Arch. Microbiol., vol. 100, no. 1, pp. 51–56, 1974.
dc.relation[136] E. Kessler, “Physiological and biochemical contributions to the taxonomy of the genus Chlorella. XII. Starch hydrolysis and a key for the identification of 13 species,” Arch. Microbiol., vol. 119, no. 1, pp. 13–16, 1978.
dc.relation[137] A. B. Juarez et al., “A Parachlorella kessleri (Trebouxiophyceae, Chlorophyta) strain from an extremely acidic geothermal pond in Argentina,” Phycologia, vol. 50, no. 4, pp. 413–421, 2011.
dc.relation[138] A. B. Juarez and C. G. Velez, “Sobre la presencia de Chlorella kessleri (Chlorococcales, Chlorophyta) en aguas del complejo termal Copahue (prov. Del Neuquen, Argentina),” Bol. Soc. Argent. Bot., vol. 29, no. 1–2, pp. 105–107, 1993.
dc.relation[139] E. Kessler, “Physiologische und biochemische Beiträge zur Taxonomie der Gattung Chlorella I. Saiureresistenz als taxonomisehes Merkmal,” Arch. Mikrobiol., vol. 52, no. 4, pp. 291–296, 1965.
dc.relation[140] T. Řezanka and M. Podojil, “The very long chain fatty acids of the green alga, Chlorella kessleri,” Lipids, vol. 19, no. 6, pp. 472–473, 1984.
dc.relation[141] T. Rězanka, J. Vokoun, J. Slavíček, and M. Podojil, “Determination of fatty acids in algae by capillary gas chromatography-mass spectrometry,” J. Chromatogr. A, vol. 268, no. C, pp. 71–78, 1983.
dc.relation[142] X. Li et al., “The microalga Parachlorella kessleri - A novel highly efficient lipid producer,” Biotechnol. Bioeng., vol. 110, no. 1, pp. 97–107, Jan. 2013.
dc.relation[143] Y. Mizuno et al., “Sequential accumulation of starch and lipid induced by sulfur deficiency in Chlorella and Parachlorella species,” Bioresour. Technol., vol. 129, pp. 150–155, 2013.
dc.relation[144] K. Liang, Q. Zhang, M. Gu, and W. Cong, “Effect of phosphorus on lipid accumulation in freshwater microalga Chlorella sp.,” J. Appl. Phycol., vol. 25, no. 1, pp. 311–318, 2013.
dc.relation[145] T. Yamazaki et al., “Independent regulation of the lipid and starch synthesis pathways by sulfate metabolites in the green microalga Parachlorella kessleri under sulfur starvation conditions,” Algal Res., vol. 36, no. January, pp. 37–47, 2018.
dc.relation[146] B. Fernandes et al., “Relationship between starch and lipid accumulation induced by nutrient depletion and replenishment in the microalga Parachlorella kessleri,” Bioresour. Technol., vol. 144, pp. 268–274, Sep. 2013.
dc.relation[147] M. M. El-Sheek and A. A. Rady, “Effect of phosphorus starvation on growth, photosynthesis and some metabolic processes in the unicellular green alga Chlorella kessleri,” Phyton (B. Aires)., vol. 35, pp. 139–151, 1995.
dc.relation[148] P. Přibyl, V. Cepák, and V. Zachleder, “Production of lipids in 10 strains of Chlorella and Parachlorella, and enhanced lipid productivity in Chlorella vulgaris,” Appl. Microbiol. Biotechnol., vol. 94, no. 2, pp. 549–561, 2012.
dc.relation[149] G. G. Bozzo, B. Colman, and Y. Matsuda, “Active transport of CO2 and bicarbonate is induced in response to external CO2 concentration in the green alga Chlorella kessleri,” J. Exp. Bot., vol. 51, no. 349, pp. 1341–1348, 2000.
dc.relation[150] N. Sato, M. Tsuzuki, and A. Kawaguchi, “Glycerolipid synthesis in Chlorella kessleri 11 h - II. Effect of the CO2 concentration during growth,” Biochim. Biophys. Acta - Mol. Cell Biol. Lipids, vol. 1633, no. 1, pp. 35–42, 2003.
dc.relation[151] B. Zhao and Y. Su, “Process effect of microalgal-carbon dioxide fixation and biomass production: A review,” Renew. Sustain. Energy Rev., vol. 31, pp. 121–132, 2014.
dc.relation[152] O. El-Ansari and B. Colman, “Inorganic carbon acquisition in the acid-tolerant alga Chlorella kessleri,” Physiol. Plant., vol. 153, no. 1, pp. 175–182, 2015.
dc.relation[153] N. Sato, M. Tsuzuki, and A. Kawaguchi, “Glycerolipid synthesis in Chlorella kessleri 11h - I. Existence of a eukaryotic pathway,” Biochim. Biophys. Acta - Mol. Cell Biol. Lipids, vol. 1633, no. 1, pp. 27–34, 2003.
dc.relation[154] R. Grotjohann, M. ‐S Rho, and W. Kowallik, “Influences of Blue and Red Light on the Photosynthetic Apparatus of Chlorella kessleri,” Bot. Acta, vol. 105, no. 3, pp. 168–173, 1992.
dc.relation[155] A. B. Juarez et al., “In vivo microspectroscopy monitoring of chromium effects on the photosynthetic and photoreceptive apparatus of Eudorina unicocca and Chlorella kessleri,” J. Environ. Monit., vol. 10, no. 11, pp. 1313–1318, 2008.
dc.relation[156] D. M. Romero, M. C. Rios de Molina, and A. B. Juarez, “Oxidative stress induced by a commercial glyphosate formulation in a tolerant strain of Chlorella kessleri,” Ecotoxicol. Environ. Saf., vol. 74, no. 4, pp. 741–747, 2011.
dc.relation[157] S. Kasiri, S. Abdulsalam, A. Ulrich, and V. Prasad, “Optimization of CO2 fixation by Chlorella kessleri using response surface methodology,” Chem. Eng. Sci., vol. 127, pp. 31–39, 2015.
dc.relation[158] M. G. De Morais and J. A. V Costa, “Carbon dioxide fixation by Chlorella kessleri, C. vulgaris, Scenedesmus obliquus and Spirulina sp. cultivated in flasks and vertical tubular photobioreactors,” Biotechnol. Lett., vol. 29, no. 9, pp. 1349–1352, 2007.
dc.relation[159] J. H. Mussgnug, V. Klassen, A. Schlüter, and O. Kruse, “Microalgae as substrates for fermentative biogas production in a combined biorefinery concept,” J. Biotechnol., vol. 150, no. 1, pp. 51–56, 2010.
dc.relation[160] K. K. Dandinpet, “Dark grown Chlorella kessleri corn, sorghum and lignocellulosic hydrosylates for algal biodiesel production,” no. July, p. 86, 2013.
dc.relation[161] Y. Wang, T. Chen, and S. Qin, “Differential fatty acid profiles of Chlorella kessleri grown with organic materials,” J. Chem. Technol. Biotechnol., vol. 88, no. 4, pp. 651–657, 2013.
dc.relation[162] T. Shiratake, A. Sato, A. Minoda, M. Tsuzuki, and N. Sato, “Air-drying of cells, the novel conditions for stimulated synthesis of triacylglycerol in a green alga, Chlorella kessleri,” PLoS One, vol. 8, no. 11, pp. 1–9, 2013.
dc.relation[163] L. Gabrielyan, L. Hakobyan, and A. Trchounian, “Characterization of light-dependent hydrogen production by new green microalga Parachlorella kessleri in various conditions,” J. Photochem. Photobiol. B Biol., vol. 175, pp. 207–210, 2017.
dc.relation[164] X. Y. Deng, B. Chen, C. Xue, D. Li, X. Hu, and K. Gao, “Biomass production and biochemical profiles of a freshwater microalga Chlorella kessleri in mixotrophic culture: Effects of light intensity and photoperiodicity,” Bioresour. Technol., vol. 273, no. 2, pp. 358–367, 2019.
dc.relation[165] H. A. Hamza, R. A. Hamouda, S. S. Abd-Elwahid, and M. H. Husein, “The characteristics of biomass production and lipid accumulation of Chlorella kessleri growth under mixotrophic and heterotrophic conditions.,” Egypt. Soc. Exp. Biol., vol. 9, no. 1, pp. 19–26, 2013.
dc.relation[166] J. Wang, H. Yang, and F. Wang, “Mixotrophic cultivation of microalgae for biodiesel production: Status and prospects,” Appl. Biochem. Biotechnol., vol. 172, no. 7, pp. 3307–3329, 2014.
dc.relation[167] D. Mitra, J. (Hans) van Leeuwen, and B. Lamsal, “Heterotrophic/mixotrophic cultivation of oleaginous Chlorella vulgaris on industrial co-products,” Algal Res., vol. 1, no. 1, pp. 40–48, 2012.
dc.relation[168] N. Zhang, “Mixotrophic Cultivation of Microalgae for Biomass Production Optimization Using Statistical Methods,” Clemson University, 2016.
dc.relation[169] Y. K. Lee, S. Y. Ding, C. H. Hoe, and C. S. Low, “Mixotrophic growth of Chlorella sorokiniana in outdoor enclosed photobioreactor.,” J Appl Phycol, vol. 8, pp. 163–169, 1996.
dc.relation[170] O. Perez-Garcia and Y. Bashan, Microalgal heterotrophic and mixotrophic culturing for bio-refining: From metabolic routes to techno-economics. 2015.
dc.relation[171] L. Brennan and P. Owende, “Biofuels from microalgae – a review of technologies for production, processing, and extractions of biofuels and co-products.,” Renew Sustain Energy Rev, vol. 14, pp. 557–577, 2010.
dc.relation[172] F. Chen, “High cell density culture of microalgae in heterotrophic growth,” Trends Biotechnol., vol. 14, no. 11, pp. 421–426, 1996.
dc.relation[173] X. Li, H. Xu, and Q. Wu, “Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors,” Biotechnol. Bioeng., vol. 98, no. 4, pp. 764–771, 2007.
dc.relation[174] Y. Lu, Y. Zhai, M. Liu, and Q. Wu, “Biodiesel production from algal oil using cassava (Manihot esculenta Crantz) as feedstock,” J. Appl. Phycol., vol. 22, no. 5, pp. 573–578, 2010.
dc.relation[175] J. C. Ogbonna, H. Yoshizawa, and H. Tanaka, “Treatment of high strength organic wastewater by a mixed culture of photosynthetic microorganisms,” J. Appl. Phycol., vol. 12, no. 3–5, pp. 277–284, 2000.
dc.relation[176] O. Perez-Garcia, L. E. De-Bashan, J. P. Hernandez, and Y. Bashan, “Efficiency of growth and nutrient uptake from wastewater by heterotrophic, autotrophic, and mixotrophic cultivation of Chlorella vulgaris immobilized with Azospirillum brasilense,” J. Phycol., vol. 46, no. 4, pp. 800–812, 2010.
dc.relation[177] P. G. Falkowski, “Photosynthesis: the paradoxon of carbon dioxide efflux.,” Curr Biol, vol. 7, pp. R637–R639, 1997.
dc.relation[178] P. G. Falkowski, “The ocean’s invisible forest,” Sci. Am., vol. 287, no. 2, p. 54, 2002.
dc.relation[179] J. Masojídek, G. Torzillo, and M. Koblížek, “Photosynthesis in Microalgae,” Handb. Microalgal Cult. Appl. Phycol. Biotechnol., pp. 21–36, 2013.
dc.relation[180] C. Posten and S. F. Chen, Microalgae Biotechnology. Springer International Publishing, 2016.
dc.relation[181] P. J. L. B. Williams and L. M. L. Laurens, “Microalgae as biodiesel & biomass feedstocks: Review & analysis of the biochemistry, energetics & economics,” Energy Environ. Sci., vol. 3, no. 5, pp. 554–590, 2010.
dc.relation[182] M. T. Madigan, J. M. Martinko, K. T. Bender, and D. A. Stahl, Brock biology of microorganisms, Fourteenth. Boston: Pearson Education, Inc., 2015.
dc.relation[183] M. K. Ji et al., “Simultaneous nutrient removal and lipid production from pretreated piggery wastewater by Chlorella vulgaris YSW-04,” Appl. Microbiol. Biotechnol., vol. 97, no. 6, pp. 2701–2710, 2013.
dc.relation[184] C. Yang, Q. Hua, and K. Shimizu, “Energetics and carbon metabolism during growth of microalgal cells under photoautotrophic, mixotrophic and cyclic light-autotrophic/dark-heterotrophic conditions,” Biochem. Eng. J., vol. 6, no. 2, pp. 87–102, 2000.
dc.relation[185] M. A. B. J. B. J. A. Raven, The Physiology of Microalgae. Springer International Publishing, 2016.
dc.relation[186] C. Li, K. L. Lesnik, and H. Liu, “Microbial conversion of waste glycerol from biodiesel production into value-added products,” Energies, vol. 6, no. 9, pp. 4739–4768, 2013.
dc.relation[187] O. Perez-Garcia, F. M. E. Escalante, L. E. De-Bashan, and Y. Bashan, “Heterotrophic cultures of microalgae: Metabolism and potential products,” Water Res., vol. 45, no. 1, pp. 11–36, 2011.
dc.relation[188] H. H. Chen and J. G. Jiang, “Lipid Accumulation Mechanisms in Auto- and Heterotrophic Microalgae,” J. Agric. Food Chem., vol. 65, no. 37, pp. 8099–8110, 2017.
dc.relation[189] R. Wünschiers, “Metabolism,” in Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology: Second Edition, 2013, pp. 37–209.
dc.relation[190] S. Ota et al., “Highly efficient lipid production in the green alga Parachlorella kessleri: Draft genome and transcriptome endorsed by whole-cell 3D ultrastructure,” Biotechnol. Biofuels, vol. 9, no. 1, Jan. 2016.
dc.relation[191] J. McMurry, Química Orgánica, Séptima. CengageE Learning, 2008.
dc.relation[192] P. Mayes and K. Botham, “Biosynthesis of Fatty Acids,” in Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology, Twenty-Six., McGraw-Hill, pp. 173–193.
dc.relation[193] I. Khozin-Goldberg, “Lipid Metabolism in Microalgae,” in The Physiology of Microalgae, vol. 6, M.A. Borowitzka et al. (eds.), Ed. 2016, pp. 413–484.
dc.relation[194] D. J. Oliver, B. J. Nikolau, and E. S. Wurtele, “Acetyl-CoA-Life at the metabolic nexus,” Plant Sci., vol. 176, no. 5, pp. 597–601, 2009.
dc.relation[195] J. C. Ogbonna and N. R. Moheimani, “Potentials of Exploiting Heterotrophic Metabolism for Biodiesel Oil Production by Microalgae,” in Biofuel and Biorefinery Technologies 2 Biomass and Biofuels from Microalgae Advances in Engineering and Biology, 2015, pp. 45–61.
dc.relation[196] R. O’Rourke, M. Gaffney, and R. Murphy, “The effects of Parachlorella kessleri cultivation on brewery wastewater,” Water Sci. Technol., vol. 73, no. 6, pp. 1401–1408, 2016.
dc.relation[197] S. S. M. Mostafa, E. A. Shalaby, and G. I. Mahmoud, “Cultivating Microalgae in Domestic Wastewater for Biodiesel Production,” Not. Sci. Biol., vol. 4, no. 1, pp. 56–65, 2012.
dc.relation[198] C. F. Yang, Z. Y. Ding, and K. C. Zhang, “Growth of Chlorella pyrenoidosa in wastewater from cassava ethanol fermentation,” World J. Microbiol. Biotechnol., vol. 24, no. 12, pp. 2919–2925, 2008.
dc.relation[199] Y. Li, W. Zhou, B. Hu, M. Min, P. Chen, and R. R. Ruan, “Effect of light intensity on algal biomass accumulation and biodiesel production for mixotrophic strains Chlorella kessleri and Chlorella protothecoide cultivated in highly concentrated municipal wastewater,” Biotechnol. Bioeng., vol. 109, no. 9, pp. 2222–2229, 2012.
dc.relation[200] E. Doria, P. Longoni, L. Scibilia, N. Iazzi, R. Cella, and E. Nielsen, “Isolation and characterization of a Scenedesmus acutus strain to be used for bioremediation of urban wastewater,” J. Appl. Phycol., vol. 24, no. 3, pp. 375–383, 2012.
dc.relation[201] J. Lalucat, J. Imperial, and R. Pares, “Utilization of light for the assimilation of organic matter in Chlorella sp. VJ79.,” Biotechnol Bioeng, vol. 26, no. 7, pp. 677–681, 1984.
dc.relation[202] W. Komor, E., Tanner, “The hexose-proton symport system of Chlorella vulgaris: specificity, stoichiometry and energetics of sugar-induced proton uptake,” Eur. J. Biochem, vol. 44, pp. 219–223, 1974.
dc.relation[203] W. Hilgarth, C., Sauer, N., Tanner, “Glucose increases the expression of the ATP/ADP translocator and the glyceraldehyde-3-phosphate dehydrogenase genes in Chlorella.,” J. Biol. Chem, vol. 266, pp. 24044–24047, 1991.
dc.relation[204] N. R. Boyle and J. A. Morgan, “Flux balance analysis of primary metabolism in Chlamydomonas reinhardtii,” BMC Syst. Biol, vol. 3, p. 4, 2009.
dc.relation[205] C. Yang, Q. Hua, and K. Shimizu, “Integration of the information from gene expression and metabolic fluxes for the analysis of the regulatory mechanisms in Synechocystis,” Appl. Microbiol. Biotechnol., vol. 58, no. 6, pp. 813–822, 2002.
dc.relation[206] S. J. Hong and C. G. Lee, “Evaluation of central metabolism based on a genomic database of Synechocystis,” Biotechnol. Bioprocess Eng., vol. 12, pp. 165–173, 2007.
dc.relation[207] B. H. Cho, N. Sauer, E. Komor, and W. Tanner, “Glucose induces two amino acid transport systems in Chlorella,” Proc. Natl. Acad. Sci. U. S. A., vol. 78, no. 6 I, pp. 3591–3594, 1981.
dc.relation[208] Y. K. Lee, “Algal nutrition. Heterotrophic carbon nutrition,” in Handbook of Microalgal Culture. Biotechnology and Applied Phycology., A. Richmond, Ed. Oxford, UK: Blackwell Publishing, 2004, p. 116.
dc.relation[209] F. Martinez and M. I. Orus, “Interactions between glucose and inorganic carbon metabolism in Chlorella vulgaris strain UAM101,” Plant Physiol., vol. 95, no. 1150–1155, 1991.
dc.relation[210] E. F. Valiente, M. Nieva, C. Avendano, and E. S. Maeso, “Uptake and utilization of fructose by Anabaena variabilis ATCC 29413. Effect on respiration and photosynthesis.,” Plant Cell Physiol., vol. 33, pp. 307–313, 1992.
dc.relation[211] H. Zhang, W. Wang, Y. Li, W. Yang, and G. Shen, “Mixotrophic cultivation of Botryococcus braunii,” Biomass and Bioenergy, vol. 35, no. 5, pp. 1710–1715, 2011.
dc.relation[212] J. Lowrey, R. E. Armenta, and M. S. Brooks, “Nutrient and media recycling in heterotrophic microalgae cultures,” Appl. Microbiol. Biotechnol., vol. 100, no. 3, pp. 1061–1075, 2016.
dc.relation[213] A. J. Lewitus, D. A. Caron, and K. R. Miller, “Effects of Light and Glycerol on the Organization of the Photosynthetic Apparatus in the Facultative Heterotroph Pyrenomonas Salina (Cryptophyceae),” J. Phycol., vol. 27, no. 5, pp. 578–587, 1991.
dc.relation[214] F. Chen and M. R. Johns, “Effect of C/N ratio and aeration on the fatty acid composition of heterotrophic Chlorella sorokiniana,” J. Appl. Phycol., vol. 3, no. 3,pp. 203–209, 1991.
dc.relation[215] M. E. De Swaaf, L. Sijtsma, and J. T. Pronk, “High-cell-density fed-batch cultivation of the docosahexaenoic acid producing marine alga Crypthecodinium cohnii,” Biotechnol. Bioeng., vol. 81, no. 6, pp. 666–672, 2003.
dc.relation[216] C. Ratledge, K. Kanagachandran, A. J. Anderson, D. J. Grantham, and J. C. Stephenson, “Production of docosahexaenoic acid by Crypthecodinium cohnii grown in a pH-auxostat culture with acetic acid as principal carbon source,” Lipids, vol. 36, no. 11, pp. 1241–1246, 2001.
dc.relation[217] C. Ratledge and J. P. Wynn, “The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms,” Adv. Appl. Microbiol., vol. 51, pp. 1–52, 2002.
dc.relation[218] J. Leman, “Oleaginous microorganisms: an assessment of the potential.,” Adv. Appl. Microbiol, vol. 43, pp. 195–243, 1997.
dc.relation[219] M. I. Orús, E. Marco, and F. Martínez, “Suitability of Chlorella vulgaris UAM 101 for heterotrophic biomass production,” Bioresour. Technol., vol. 38, no. 2–3, pp. 179–184, 1991.
dc.relation[220] M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding,” Anal. Biochem., vol. 72, pp. 248–254, 1976.
dc.relation[221] M. DuBois, K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith, “Colorimetric Method for Determination of Sugars and Related Substances,” Anal. Chem., vol. 28, no. 3, pp. 350–356, 1956.
dc.relation[222] Y.-S. Cheng, Y. Zheng, and J. S. VanderGheynst, “Rapid Quantitative Analysis of Lipids Using a Colorimetric Method in a Microplate Format,” Lipids, vol. 46, pp. 95–103, 2011.
dc.relation[223] S. S. Nielsen, “Phenol-Sulfuric Acid Method for Total Carbohydrates,” in Food Analysis Laboratory Manual, 2010, pp. 47–53.
dc.relation[224] C. Crofcheck, M. Monstross, E. Xinyi, A. Shea, M. Crocker, and R. Andrews, “Influence of media composition on the growth rate of Chlorella vulgaris and Scenedesmus acutus utilized for CO2 mitigation,” Am. Soc. Agric. Biol. Eng. Annu. Int. Meet. 2012, ASABE 2012, vol. 1, no. 2012, pp. 532–549, 2012.
dc.relation[225] S. W. Illman, A. M., Scragg, A. H. and Shales, “Increase in Chlorella strains calorific values when grown in low nitrogen medium.,” Enzyme Microb. Technol., vol. 27, no. 8, pp. 631–635, 2000.
dc.relation[226] W. M et al., “The effect of mixotrophy on microalgal growth, lipid content, and expression levels of three pathway genes in Chlorella sorokiniana .,” Appl Microbiol Biotechnol, vol. 91, pp. 835–844.
dc.relation[227] T. S. Lin and J. Y. Wu, “Effect of carbon sources on growth and lipid accumulation of newly isolated microalgae cultured under mixotrophic condition,” Bioresour. Technol., vol. 184, pp. 100–107, 2015.
dc.relation[228] K. L. Yeh and J. S. Chang, “Effects of cultivation conditions and media composition on cell growth and lipid productivity of indigenous microalga Chlorella vulgaris ESP-31,” Bioresour. Technol., vol. 105, pp. 120–127, 2012.
dc.relation[229] L. M. Bauer, J. A. V. Costa, A. P. C. da Rosa, and L. O. Santos, “Growth stimulation and synthesis of lipids, pigments and antioxidants with magnetic fields in Chlorella kessleri cultivations,” Bioresour. Technol., vol. 244, pp. 1425–1432, 2017.
dc.relation[230] A. K. Sharma, Parul, and T. General, “Variation of both chemical composition and antioxidant properties of newly isolated Parachlorella kessleri GB1, by growing in different culture conditions,” LWT-Food Sci. Technol., vol. 112, 2019.
dc.relation[231] K. Lee and C. Lee, “Effect of Light / dark Cycles on Wastewater Treatments by Microalgae Cell Growth under Different Light Conditions,” Biotechnol. Bioprocess Eng., vol. 6, pp. 194–199, 2001.
dc.relation[232] R. A. Andersen, J. A. Berges, P. J. Harrison, and M. M. Watanabe, “Recipes for Freshwater and Seawater Media,” in Algal culturing techniques, Elsevier Inc., 2005, p. 429.
dc.relation[233] Z. Yu et al., “The effects of combined agricultural phytohormones on the growth, carbon partitioning and cell morphology of two screened algae.,” Bioresour. Technol., vol. 239, pp. 87–96, 2017.
dc.relation[234] S. Subramanian, A. N. Barry, S. Pieris, and R. T. Sayre, “Comparative energetics and kinetics of autotrophic lipid and starch metabolism in chlorophytic microalgae: Implications for biomass and biofuel production,” Biotechnol. Biofuels, vol. 6, no. 1, pp. 1–12, 2013.
dc.relation[235] S. Aubert, E. Gout, R. Bligny, and R. Douce, “Multiple effects of glycerol on plant cell metabolism. Phosphorus-31 nuclear magnetic resonance studies,” J. Biol. Chem., vol. 269, no. 34, pp. 21420–21427, 1994.
dc.relation[236] A. Negrulescu, V. Patrulea, M. M. Mincea, C. Ionascu, B. A. Vlad-Oros, and V. Ostafe, “Adapting the Reducing Sugars Method with Dinitrosalicylic Acid to Microtiter Plates and Microwave Heating,” J. Braz. Chem. Soc., vol. 23, no. 12, pp. 2176–2182, 2012.
dc.relation237] I. P. Wood, A. Elliston, P. Ryden, I. Bancroft, I. N. Roberts, and K. W. Waldron, “Rapid quantification of reducing sugars in biomass hydrolysates : Improving the speed and precision of the dinitrosalicylic acid assay,” Biomass and Bioenergy, vol. 44, no. 0, pp. 117–121, 2012.
dc.relation[238] S. Sengupta, M. L. Jana, D. Sengupta, and A. K. Naskar, “A note on the estimation of microbial glycosidase activities by dinitrosalicylic acid reagent,” Appl Microbiol Biotechnol, vol. 53, pp. 732–735, 2000.
dc.relation[239] M. Bailey, “A note on the use of dinitrosalicylic acid for determining the products of enzymatic reactions,” Appl. Microbiol. Biotechnol., vol. 29, no. October, pp. 494–496, 1988.
dc.relation[240] K. R. Uday, “Conjugation of Dextran with Antibiotic Drugs and Release Studies,” Indian Institute of Technology, 2016.
dc.relation[241] B. Horstkotte et al., “Sequential injection analyzer for glycerol monitoring in yeast cultivation medium,” Talanta, vol. 71, no. 2, pp. 941–947, Feb. 2007.
dc.relation[242] J. Kuhn, H. Müller, D. Salzig, and P. Czermak, “A rapid method for an offline glycerol determination during microbial fermentation,” Electron. J. Biotechnol., vol. 18, no. 3, pp. 252–255, 2015.
dc.relation[243] A. Bioquest®., “Potassium Phosphate (pH 5.8 to 8.0) recipe and preparation,” 2018. [Online]. Available: https://www.aatbio.com/resources/buffer-preparations-and-recipes/potassium-phosphate-ph-5-8-to-8-0.
dc.relation[244] Bio-Rad, “Bio-Rad Protein Assay.” .
dc.relation[245] L. M. Melgarejo, Luz MarinaMelgarejo, Experimentos en fisiología vegetal. Bogotá D.C.: Universidad Nacional de Colombia, 2010.
dc.relation[246] A. McMahon, H. Lu, and I. A. Butovich, “The Spectrophotometric Sulfo-Phospho-Vanillin Assessment of Total Lipids in Human Meibomian Gland Secretions,” Lipids, vol. 48, no. 5, pp. 513–525, 2013.
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleEvaluación del efecto de la fuente de carbono sobre el crecimiento y la composición bioquímica de la microalga Parachlorella kessleri
dc.typeOtro


Este ítem pertenece a la siguiente institución