dc.contributor | Rodríguez Nieto, José Gregorio | |
dc.creator | Giraldo Galeano, Oscar Iván | |
dc.date.accessioned | 2021-10-11T16:45:38Z | |
dc.date.available | 2021-10-11T16:45:38Z | |
dc.date.created | 2021-10-11T16:45:38Z | |
dc.date.issued | 2021 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/80486 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.description.abstract | El objetivo de este trabajo es probar que las laminaciones invariantes bajo un homeomorfismo final periódico f induce una estructura compleja en la superficie. Y para esto, se pasa de laminaciones medibles a foliaciones con singularidades y con medidas transversales. Luego se usa la estructura Euclidiana inducida por las foliaciones para encontrar una estructura conforme. Por último se prueba que f es una función Pseudo Anosov generalizada en el sentido de [deC-H1]. En particular, se prueba que un diferencial cuadrático asociado a las foliaciones tiene área finita. Además se presentan ejemplos particulares del teorema central. (Texto tomado de la fuente) | |
dc.description.abstract | The main result of this paper is to prove that the minimal invariant laminations of an irreducible generalized Pseudo-Anosov homeomorphism isotopic to an endperiodic homeomorphism induces a conformal structure on the singular surface. To have a better understanding of the given theory, three propositions are presented that are original examples, which will give us an idea of the proof of the main theorem. | |
dc.language | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Medellín - Ciencias - Doctorado en Ciencias - Matemáticas | |
dc.publisher | Escuela de matemáticas | |
dc.publisher | Facultad de Ciencias | |
dc.publisher | Medellín | |
dc.publisher | Universidad Nacional de Colombia - Sede Medellín | |
dc.relation | [Ahl] Ahlfors L, Conformal invariants: topics in geometric function theory,
McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co. New
York (1973) MR0357743 | |
dc.relation | [Be-Ha] Bestvida M, Handel M. 1995. Train-Tracks for surfacenhomeomorphisms.
Topology Vol. 34. No. I, pp. 109-MO,1995 | |
dc.relation | [deC-H1] de Carvalho A, Hall T. 2004. Unimodal generalized pseudo-Anosov maps.
Geom Topol 8:1127-1188. | |
dc.relation | [deC2] de Carvalho A. 2005. Extensions, quotients and genelized pseudo-Anosov
maps. AMS Proc. Sympos. Pure Math 75:315-338. | |
dc.relation | [deC-P3] de Carvalho A, Patermain M. 2004. Monotone quotients of surface diffeomorphisms. Math. Res. Lett 10:603-619 | |
dc.relation | [deC-H4] de Carvalho A, Hall T. 2010. Paper folding, Riemann surfaces, and convergence of pseudo-Anosov sequences, arXiv:1010.3448. | |
dc.relation | [Fe1] Fenley S. 1990. Endperiodic surface homeomorphisms and 3-manifolds.
Math Z. 224:1-24 | |
dc.relation | [Fe2] Fenley S. 1992. Asymptotic properties of depth one foliations in hyperbolic
3-manifolds. Jour. Diff. Geo. 36:269-313. | |
dc.relation | [Forster] O. Forster, Riemann Surfaces, Springer-Verlag, 1981. | |
dc.relation | [Ca-Bl] Casson A, Bleiler S. 1988. Automorphisms of surface after Nielsen and
Thurston. London Math. Soc. student Text 9 Cambridge Univ. Press. | |
dc.relation | [Ca-Co1] Cantwell J, Conlon L. 2011. Handel-Miller theory and finite depth foliations,
arXiv:1006.4525. | |
dc.relation | [Ca-Co2] Cantwell J, Conlon L. 2010. Examples of endperiodic maps, arXiv:1008.2549 | |
dc.relation | [Ca-Co3] Cantwell J, Conlon L. 1999. Foliations cones. Geometry and Topology Monographs, Proceedings of the Kirbyfest. 2: 35-86. | |
dc.relation | [Ca-Co4] Cantwell J, Conlon L. 2000. Foliations I. AMS | |
dc.relation | [Ch-Ga-La] Chamanara R, Gardiner F, Lakic N. 2006. A hyperelliptic realization of
the horseshoe and baker maps. Ergod. Th. and Dynam. Sys. 26:1749-1768. | |
dc.relation | Fle] Fleming, W. “Nondegenerate surfaces of finite topological type.” Transactions of the American Mathematical Society 90 (1959): 323-335. | |
dc.relation | [Ghys] E. Ghys, Laminations par surfaces de Riemann, Panorames e Synthesis,
SMF, 2000. | |
dc.relation | [Ga-La] Gardiner F, Lakic N. 2000. Quasiconformal Teichmuller Theory. AMS.
Math. Sur. and Monog. Vol 76. | |
dc.relation | [Ga-Fre] Gardiner F,Frederick P. Measured foliations and the minimal norm property
for quadratic differentials. Acta Math., 152(1-2):57-76, 1984. | |
dc.relation | [Gi-Fi] Gilbert H, Ulrich H. Introduction to the geometry of foliations. Part A.
Friedr. Vieweg and Sohn, Braunschweig, second edition, 1986. Foliations on
compact surfaces, fundamentals for arbitrary codimension, and holonomy | |
dc.relation | Gaspard] Gaspard, P. (1998). Chaos, Scattering and Statistical Mechanics (Cambridge Nonlinear Science Series). Cambridge: Cambridge University Press.
doi:10.1017/CBO9780511628856 | |
dc.relation | [Hu-Ma] Hubbard J, Masur H. 1979. Quadratic differentials and foliations. Acta
Math. 142:221-274. | |
dc.relation | [Mi] Sappala M. Foliations and Quadratic Differentials of Riemann Surface. | |
dc.relation | [St] Strebel K. 1988. On the extremality and unique extremality of certain Teichmuller mappings. Complex Analysis, J. Hersch and A. Huber, eds. Birhhauser, Basel. 225-238. | |
dc.relation | [St] Strebel K, Quadratic Differentials, Springer-Verlag, Berlin, 1984. | |
dc.relation | [Th1] Thurston. W. The geometry and tology of 3-manifolds. Princeton University
Notes, 1982. | |
dc.relation | [Th2] Thurston. W. On the geometry and dynamics of diffeomorphisms of surface.
Bull. AMS 19. (1988) 417-431 | |
dc.relation | [Th3] Thurston. W. Hyperbolic structures on 3-manifolds II. Surface grups and
3-manifolds that fiber over the circle. Preprint. | |
dc.rights | Atribución-NoComercial-CompartirIgual 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | Homeomorfismos finales periódicos y Pseudo-Anosov generalizados. | |
dc.type | Trabajo de grado - Doctorado | |