dc.contributorRodríguez Nieto, José Gregorio
dc.creatorGiraldo Galeano, Oscar Iván
dc.date.accessioned2021-10-11T16:45:38Z
dc.date.available2021-10-11T16:45:38Z
dc.date.created2021-10-11T16:45:38Z
dc.date.issued2021
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/80486
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.description.abstractEl objetivo de este trabajo es probar que las laminaciones invariantes bajo un homeomorfismo final periódico f induce una estructura compleja en la superficie. Y para esto, se pasa de laminaciones medibles a foliaciones con singularidades y con medidas transversales. Luego se usa la estructura Euclidiana inducida por las foliaciones para encontrar una estructura conforme. Por último se prueba que f es una función Pseudo Anosov generalizada en el sentido de [deC-H1]. En particular, se prueba que un diferencial cuadrático asociado a las foliaciones tiene área finita. Además se presentan ejemplos particulares del teorema central. (Texto tomado de la fuente)
dc.description.abstractThe main result of this paper is to prove that the minimal invariant laminations of an irreducible generalized Pseudo-Anosov homeomorphism isotopic to an endperiodic homeomorphism induces a conformal structure on the singular surface. To have a better understanding of the given theory, three propositions are presented that are original examples, which will give us an idea of the proof of the main theorem.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherMedellín - Ciencias - Doctorado en Ciencias - Matemáticas
dc.publisherEscuela de matemáticas
dc.publisherFacultad de Ciencias
dc.publisherMedellín
dc.publisherUniversidad Nacional de Colombia - Sede Medellín
dc.relation[Ahl] Ahlfors L, Conformal invariants: topics in geometric function theory, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co. New York (1973) MR0357743
dc.relation[Be-Ha] Bestvida M, Handel M. 1995. Train-Tracks for surfacenhomeomorphisms. Topology Vol. 34. No. I, pp. 109-MO,1995
dc.relation[deC-H1] de Carvalho A, Hall T. 2004. Unimodal generalized pseudo-Anosov maps. Geom Topol 8:1127-1188.
dc.relation[deC2] de Carvalho A. 2005. Extensions, quotients and genelized pseudo-Anosov maps. AMS Proc. Sympos. Pure Math 75:315-338.
dc.relation[deC-P3] de Carvalho A, Patermain M. 2004. Monotone quotients of surface diffeomorphisms. Math. Res. Lett 10:603-619
dc.relation[deC-H4] de Carvalho A, Hall T. 2010. Paper folding, Riemann surfaces, and convergence of pseudo-Anosov sequences, arXiv:1010.3448.
dc.relation[Fe1] Fenley S. 1990. Endperiodic surface homeomorphisms and 3-manifolds. Math Z. 224:1-24
dc.relation[Fe2] Fenley S. 1992. Asymptotic properties of depth one foliations in hyperbolic 3-manifolds. Jour. Diff. Geo. 36:269-313.
dc.relation[Forster] O. Forster, Riemann Surfaces, Springer-Verlag, 1981.
dc.relation[Ca-Bl] Casson A, Bleiler S. 1988. Automorphisms of surface after Nielsen and Thurston. London Math. Soc. student Text 9 Cambridge Univ. Press.
dc.relation[Ca-Co1] Cantwell J, Conlon L. 2011. Handel-Miller theory and finite depth foliations, arXiv:1006.4525.
dc.relation[Ca-Co2] Cantwell J, Conlon L. 2010. Examples of endperiodic maps, arXiv:1008.2549
dc.relation[Ca-Co3] Cantwell J, Conlon L. 1999. Foliations cones. Geometry and Topology Monographs, Proceedings of the Kirbyfest. 2: 35-86.
dc.relation[Ca-Co4] Cantwell J, Conlon L. 2000. Foliations I. AMS
dc.relation[Ch-Ga-La] Chamanara R, Gardiner F, Lakic N. 2006. A hyperelliptic realization of the horseshoe and baker maps. Ergod. Th. and Dynam. Sys. 26:1749-1768.
dc.relationFle] Fleming, W. “Nondegenerate surfaces of finite topological type.” Transactions of the American Mathematical Society 90 (1959): 323-335.
dc.relation[Ghys] E. Ghys, Laminations par surfaces de Riemann, Panorames e Synthesis, SMF, 2000.
dc.relation[Ga-La] Gardiner F, Lakic N. 2000. Quasiconformal Teichmuller Theory. AMS. Math. Sur. and Monog. Vol 76.
dc.relation[Ga-Fre] Gardiner F,Frederick P. Measured foliations and the minimal norm property for quadratic differentials. Acta Math., 152(1-2):57-76, 1984.
dc.relation[Gi-Fi] Gilbert H, Ulrich H. Introduction to the geometry of foliations. Part A. Friedr. Vieweg and Sohn, Braunschweig, second edition, 1986. Foliations on compact surfaces, fundamentals for arbitrary codimension, and holonomy
dc.relationGaspard] Gaspard, P. (1998). Chaos, Scattering and Statistical Mechanics (Cambridge Nonlinear Science Series). Cambridge: Cambridge University Press. doi:10.1017/CBO9780511628856
dc.relation[Hu-Ma] Hubbard J, Masur H. 1979. Quadratic differentials and foliations. Acta Math. 142:221-274.
dc.relation[Mi] Sappala M. Foliations and Quadratic Differentials of Riemann Surface.
dc.relation[St] Strebel K. 1988. On the extremality and unique extremality of certain Teichmuller mappings. Complex Analysis, J. Hersch and A. Huber, eds. Birhhauser, Basel. 225-238.
dc.relation[St] Strebel K, Quadratic Differentials, Springer-Verlag, Berlin, 1984.
dc.relation[Th1] Thurston. W. The geometry and tology of 3-manifolds. Princeton University Notes, 1982.
dc.relation[Th2] Thurston. W. On the geometry and dynamics of diffeomorphisms of surface. Bull. AMS 19. (1988) 417-431
dc.relation[Th3] Thurston. W. Hyperbolic structures on 3-manifolds II. Surface grups and 3-manifolds that fiber over the circle. Preprint.
dc.rightsAtribución-NoComercial-CompartirIgual 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleHomeomorfismos finales periódicos y Pseudo-Anosov generalizados.
dc.typeTrabajo de grado - Doctorado


Este ítem pertenece a la siguiente institución