dc.contributor | Olaya Morales, Natalia | |
dc.creator | Bárcenas Salazar, Linda Paola | |
dc.date.accessioned | 2021-01-25T12:24:30Z | |
dc.date.available | 2021-01-25T12:24:30Z | |
dc.date.created | 2021-01-25T12:24:30Z | |
dc.date.issued | 2021-01-20 | |
dc.identifier | Bárcenas, L. (2021). Caracterización clínica y patológica de una serie de meduloblastomas en pacientes de un hospital pedriátrico en Bogotá [Tesis de especialidad, Universidad Nacional de Colombia]. Repositorio Institucional. | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/78888 | |
dc.description.abstract | Introduction: Medulloblastoma (MB) is the most frequent embryonal tumor of the central nervous system in the pediatric population. It is a highly aggressive malignant neoplasm with mortality rates. Genetically it is heterogeneous, with genomic alterations that affect proteins of the signaling pathways of normal brain development, which have allowed them to be classified by the World Health Organization (2016) into four genetically defined subgroups: WNT, SHH, Group 3 and Group. Objective: To evaluate the clinical characteristics, the morphological variant and the expression of proteins involved in the pathogenesis of medulloblastoma in samples obtained from patients with a diagnosis of medulloblastoma at the Hospital Fundación de la Misericordia during the period between 2009 and 2017. Methodology: A total of 49 cases with a diagnosis of medulloblastoma were studied, which underwent six immunohistochemical markers of proteins related to the signaling pathways of the genetically defined groups (Betacatenin, YAP1, PIGU, OTX2, NGFR5 and p53) and its molecular classification and clinical characterization were carried out. Results: 49 patients with histopathological diagnosis of medulloblastoma were included. 5 subgroups were identified: WNT group with 1 patient, SHH group with Mutated p53 with 10 patients, SHH group with wild-type p53 with 22 patients, group 3/4 with 15 patients and one patient in Indefinite group. The average age was 6.9 ± 3.6 years, 57.1% were female. The most frequent location was the cerebellar vermis (34.7%), followed by the IV ventricle (24.5%). In all the genetically defined subgroups, the most frequent variant was the classic one. When analyzing the immunohistochemical studies, it was found that in the WNT the patient had nuclear and cytoplasmic reactivity greater than 5% of the tumor cells for Betacatenin, and nuclear reactivity of YAP1. In the SHH group with mutated p53, 70% presented reactivity for PIGU, 100% presented nuclear reactivity greater than 50% for p53, 80% nuclear reactivity and cytoplasm for YAP1 and 60% cytoplasmic reactivity for p75NTR. In the SHH group with wild-type p53, 54.5% for PIGU, 77.3% showed no
reactivity for p53, 59.1% showed nuclear and cytoplasmic reactivity for YAP1. In group 3/4, 60% had cytoplasmic reactivity for Betacatenin and all presented nuclear reactivity greater than 10% of tumor cells for OTX2. Conclusion: Our study will allow us to characterize clinically and morphologically medulloblastomas in the pediatric population of a national referral hospital. The immunohistochemistry panel that we used included classifying medulloblastomas in a practical and cost effective manner. However, to ensure a reliable classification it is necessary to perform the complete immunohistochemical panel. | |
dc.description.abstract | Introducción: El meduloblastoma (MB) es el tumor embrionario del sistema nervioso central más frecuente en la población pediátrica. Es una neoplasia maligna de alta agresividad y tasas de mortalidad. Genéticamente es heterogéneo, con alteraciones genómicas que afectan proteínas características de las vías de señalización del desarrollo cerebral normal, que han permitido clasificarlas por la Organización Mundial de la Salud (2016) en cuatro subgrupos genéticamente definidos: WNT, SHH, Grupo 3 y Grupo 4. Objetivo: Evaluar las características clínicas, la variante morfológica y la expresión de proteínas implicadas en la patogénesis del meduloblastoma en muestras obtenidas de pacientes con diagnóstico de meduloblastoma del Hospital Fundación de la Misericordia durante el periodo comprendido entre 2009 y 2017. Metodología: Se estudiaron en total 49 casos con diagnóstico de meduloblastoma, a los que se les realizó seis marcadores de inmunohistoquímica de proteínas relacionadas con las vías de señalización de los grupos genéticamente definidos (Betacatenina, YAP1, PIGU, OTX2, NGFR5 y p53) y se realizó su clasificación molecular y caracterización clínica.Resultados: Se incluyeron 49 pacientes con diagnóstico histopatológico de meduloblastoma. Se identificaron 5 subgrupos: Grupo WNT con 1 paciente, grupo SHH con p53 Mutado con 10 pacientes, grupo SHH con p53 de tipo silvestre con 22 pacientes, grupo 3/4 con 15 pacientes y un paciente en grupo Indefinido. El promedio de la edad fue de 6.9 3.6 años, 57.1% fueron de sexo femenino. La localización más frecuente fue el vermis cerebeloso (34,7%), seguido del IV ventrículo (24,5%). En todos los subgrupos genéticamente definidos la variante más frecuente fue la clásica. Al analizar los estudios de inmunohistoquímica se encontró que en el grupo WNT el paciente tuvo reactividad nuclear y citoplasmática mayor al 5% de las células tumorales para Betacatenina, y reactividad nuclear de YAP1. En el grupo SHH con p53 mutado, el 70% presentó reactividad para PIGU, el 100% presentó reactividad nuclear mayor al 50% de p53, el 80% reactividad nuclear y citoplasma de YAP1 y 60% reactividad citoplasmática para p75NTR. En el grupo SHH con p53 de tipo silvestre, el 54,5% para PIGU, el 77,3% no mostró reactividad para p53, el 59,1% presentó reactividad nuclear y citoplasmática para YAP1. En el grupo 3/4, el 60% tenía reactividad citoplasmática para Betacatenina y todos presentaron reactividad nuclear mayor al 10% de las células tumorales para OTX2. Conclusión: Nuestro estudio nos permitió caracterizar clínica y morfológicamente los meduloblastomas en la población pediátrica de un hospital de referencia nacional. El panel de inmunohistoquímica que utilizamos nos permitió clasificar los meduloblastomas de una manera práctica y costo efectiva. Sin embargo, para garantizar una clasificación confiable es necesario realizar el panel de inmunohistoquímica completo. | |
dc.language | spa | |
dc.publisher | Bogotá - Medicina - Especialidad en Patología Anatómica y Clínica | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | Louis D, Ohgaki H, Wiestler O, Cavenee W. WHO Classification of Tumours of the Central Nervous System. 4TH ed. Vol. 1. Lyon ; 2016. | |
dc.relation | Cancer Today [Internet]. [cited 2019 Mar 11]. Available from: https://gco.iarc.fr/today/fact-sheets-cancers | |
dc.relation | Skowron P, Ramaswamy V, Taylor MD. Genetic and molecular alterations across medulloblastoma subgroups. J Mol Med. 2015 Oct 3;93(10):1075–84. | |
dc.relation | Massimino M, Biassoni V, Gandola L, Garrè ML, Gatta G, Giangaspero F, et al. Childhood medulloblastoma. Crit Rev Oncol Hematol. 2016 Sep 1;105:35–51. | |
dc.relation | Hortal AM, Vermeulen JF, Van Hecke W, Bovenschen N. Oncogenic role of cytomegalovirus in medulloblastoma? Cancer Lett. 2017 Nov 1;408:55–9. | |
dc.relation | Martirosian V, Chen TC, Lin M, Neman J. Medulloblastoma initiation and spread: Where neurodevelopment, microenvironment and cancer cross pathways. J Neurosci Res. 2016 Dec 1;94(12):1511–9. | |
dc.relation | Dangouloff-Ros V, Varlet P, Levy R, Beccaria K, Puget S, Dufour C, et al. Imaging features of medulloblastoma: Conventional imaging, diffusion- weighted imaging, perfusion-weighted imaging, and spectroscopy: From general features to subtypes and characteristics. Neurochirurgie [Internet]. 2018 [cited 2020 Nov 9]; Available from: https://pubmed.ncbi.nlm.nih.gov/30170827/ | |
dc.relation | Marshall GM, Carter DR, Cheung BB, Liu T, Mateos MK, Meyerowitz JG, et al. The prenatal origins of cancer [Internet]. Vol. 14, Nature Reviews Cancer. Nature Publishing Group; 2014 [cited 2020 Nov 9]. p. 277–89. Available from: https://pubmed.ncbi.nlm.nih.gov/24599217/ | |
dc.relation | Archer TC, Mahoney EL, Pomeroy SL. Medulloblastoma: Molecular Classification-Based Personal Therapeutics. Neurotherapeutics. 2017 Apr
1;14(2):265–73. | |
dc.relation | Rimkus TK, Carpenter RL, Qasem S, Chan M, Lo HW. Targeting the sonic
hedgehog signaling pathway: Review of smoothened and GLI inhibitors [Internet]. Vol. 8, Cancers. MDPI AG; 2016 [cited 2020 Nov 9]. Available from: https://pubmed.ncbi.nlm.nih.gov/26891329/ | |
dc.relation | Neumann JE, Swartling FJ, Schüller U. Medulloblastoma: experimental models and reality. Acta Neuropathol. 2017 Nov 1;134(5):679–89. | |
dc.relation | Roussel MF, Robinson GW. Role of MYC in medulloblastoma. Cold Spring Harb Perspect Med. 2013;3(11). | |
dc.relation | Ospina M, Muñetón C. Alteraciones del gen c-Myc en la oncogénesis. Iatreia. 2011;24(4):389–401. | |
dc.relation | Ruiz M, Henley A, Arsenian M. The MYCN protein in health and disease. Genes (Basel). 2017 Apr 1;8(4). | |
dc.relation | Hutter S, Bolin S, Weishaupt H, Swartling FJ. Modeling and targeting MYC genes in childhood brain tumors. Genes (Basel). 2017 Apr 1;8(4). | |
dc.relation | Wang J, Garancher A, Ramaswamy V, Wechsler-Reya RJ. Medulloblastoma: From Molecular Subgroups to Molecular Targeted Therapies. Annu Rev Neurosci. 2018 Jul 8;41(1):207–32. | |
dc.relation | Taylor MD, Northcott PA, Korshunov A, Remke M, Cho YJ, Clifford SC, et al. Molecular subgroups of medulloblastoma: The current consensus. Acta Neuropathol. 2012 Apr;123(4):465–72. | |
dc.relation | Northcott PA, Dubuc AM, Pfister S, Taylor MD. Molecular subgroups of medulloblastoma. Expert Rev Neurother. 2012 Jul;12(7):871–84. | |
dc.relation | Gajjar AJ, Robinson GW. Medulloblastoma - Translating discoveries from the bench to the bedside. Nat Rev Clin Oncol. 2014 Dec 11;11(12):714–22. | |
dc.relation | Khatua S, Song A, Sridhar DC, Mack SC. Childhood Medulloblastoma: Current Therapies, Emerging Molecular Landscape and Newer Therapeutic Insights. Curr Neuropharmacol. 2018 Jul 13;16(7):1045–58. | |
dc.relation | Shuangshoti S, Tadadontip P, Techavichit P, Thorner PS, Shuangshoti S, Teerapakpinyo C. Simplified Molecular Subtyping of Medulloblastoma for Reduced Cost and Improved Turnaround Time. Appl Immunohistochem Mol
Morphol. 2020 Aug 1;28(7):538–43. | |
dc.relation | Jiang T, Zhang Y, Wang J, Du J, Raynald, Qiu X, et al. A retrospective study
of progression-free and overall survival in pediatric medulloblastoma based on molecular subgroup classification: A single-institution experience. Front Neurol. 2017 May 12;8(MAY). | |
dc.relation | Kaur K, Kakkar A, Kumar A, Mallick S, Julka PK, Gupta D, et al. Integrating Molecular Subclassification of Medulloblastomas into Routine Clinical Practice: A Simplified Approach. Brain Pathol. 2016 May 1;26(3):334–43. | |
dc.relation | De la Cruz J, Patiño M, Quiceno E, Toro A. Meduloblastoma: de la clasificación histológica a la molecular. Med UPB. 2018;37(1):47–54. | |
dc.relation | Kool M, Korshunov A, Remke M, Jones DTW, Schlanstein M, Northcott PA, et al. Molecular subgroups of medulloblastoma: An international meta- analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and Group 4 medulloblastomas. Acta Neuropathol. 2012 Apr;123(4):473–84. | |
dc.relation | Zhao F, Ohgaki H, Xu L, Giangaspero F, Li C, Li P, et al. Molecular subgroups of adult medulloblastoma: A long-term single-institution study. Neuro Oncol. 2016 Jul 1;18(7):982–90. | |
dc.relation | Thompson EM, Hielscher T, Bouffet E, Remke M, Luu B, Gururangan S, et al. Prognostic value of medulloblastoma extent of resection after accounting for molecular subgroup: a retrospective integrated clinical and molecular analysis. Lancet Oncol. 2016 Apr 1;17(4):484–95. | |
dc.relation | Kijima N, Kanemura Y. Molecular classification of medulloblastoma. Neurol Med Chir (Tokyo). 2016;56(11):687–97. | |
dc.relation | Martínez J, Salcedo C, Corral M, Poza M. Medulloblastomas in neurofibromatosis type 1. Case report and literature review. Neurocirugia. 2002;13(2):128–31. | |
dc.relation | Orr BA, Bai H, Odia Y, Jain D, Anders RA, Eberhart CG. Yes-associated protein 1 is widely expressed in human brain tumors and promotes glioblastoma growth. J Neuropathol Exp Neurol. 2011;70(7):568–77. | |
dc.relation | Erman T, Saşmaz I, Göçer AI, Tuna M, Ildan F, Tanriverdi N. Turner Syndrome and Medulloblastoma: A Case Report. Neurosurg Q. 2004;14(1):17–8. | |
dc.relation | Harder T, Plagemann A, Harder A. Birth weight and subsequent risk of childhood primary brain tumors: A meta-analysis. Am J Epidemiol. 2008;168(4):366–73. | |
dc.relation | Ellison DW, Dalton J, Kocak M, Nicholson SL, Fraga C, Neale G, et al. Medulloblastoma: clinicopathological correlates of SHH, WNT, and non- SHH/WNT molecular subgroups. Acta Neuropathol. 2011;121(3):381–96. | |
dc.relation | Ellison DW, Dalton J, Kocak M, Nicholson SL, Fraga C, Neale G, et al. Medulloblastoma: clinicopathological correlates of SHH, WNT, and non- SHH/WNT molecular subgroups. Acta Neuropathol. 2011;121(3):381–96. | |
dc.relation | Adamson DC, Shi Q, Wortham M, Northcott PA, Di C, Duncan CG, et al. OTX2 is critical for the maintenance and progression of Shh-independent medulloblastomas. Cancer Res. 2010;70(1):181–91. | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights | Acceso abierto | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Derechos reservados - Universidad Nacional de Colombia | |
dc.title | Clasificación de una serie de meduloblastomas en grupos genéticamente definidos por medio de un panel de inmunohistoquímica en pacientes de un hospital pediátrico | |
dc.type | Otro | |