dc.relation | [1] UNICEF, WHO, State of the World’s SANITATION, 2020.
[2] K.H. Luepke, K.J. Suda, H. Boucher, R.L. Russo, M.W. Bonney, T.D. Hunt, J.F. Mohr, Past, Present, and Future of Antibacterial Economics: Increasing Bacterial Resistance, Limited Antibiotic Pipeline, and Societal Implications., Pharmacotherapy. (2016) n/a-n/a. https://doi.org/10.1002/phar.1868.
[3] P. Villegas-Guzman, S. Giannakis, R.A. Torres-Palma, C. Pulgarin, Remarkable enhancement of bacterial inactivation in wastewater through promotion of solar photo-Fenton at near-neutral pH by natural organic acids, Appl. Catal. B Environ. 205 (2017) 219–227. https://doi.org/10.1016/j.apcatb.2016.12.021.
[4] Y. Zhou, J. Meng, M. Zhang, S. Chen, B. He, H. Zhao, Q. Li, S. Zhang, T. Wang, Which type of pollutants need to be controlled with priority in wastewater treatment plants: Traditional or emerging pollutants?, Environ. Int. 131 (2019). https://doi.org/10.1016/j.envint.2019.104982.
[5] B. Jain, A.K. Singh, H. Kim, E. Lichtfouse, V.K. Sharma, Treatment of organic pollutants by homogeneous and heterogeneous Fenton reaction processes, Environ. Chem. Lett. 16 (2018) 947–967. https://doi.org/10.1007/s10311-018-0738-3.
[6] R. Naidu, V. Andres, A. Espana, Y. Liu, J. Jit, Emerging contaminants in the environment : Risk-based analysis for better management, Chemosphere. 154 (2016) 350–357. https://doi.org/10.1016/j.chemosphere.2016.03.068.
[7] B. Petrie, R. Barden, B. Kasprzyk-Hordern, A review on emerging contaminants in wastewaters and the environment: Current knowledge, understudied areas and recommendations for future monitoring, Water Res. 72 (2014) 3–27. https://doi.org/10.1016/j.watres.2014.08.053.
[8] K.E. Murray, S.M. Thomas, A.A. Bodour, Prioritizing research for trace pollutants and emerging contaminants in the freshwater environment, Environ. Pollut. 158 (2010) 3462–3471. https://doi.org/10.1016/j.envpol.2010.08.009.
[9] N. Bolong, A.F. Ismail, M.R. Salim, T. Matsuura, A review of the effects of emerging contaminants in wastewater and options for their removal, Desalination. 238 (2009) 229–246. https://doi.org/10.1016/j.desal.2008.03.020.
[10] A.L. Giraldo, E.D. Erazo-erazo, O.A. Flórez-acosta, E.A. Serna-galvis, R.A. Torres-palma, Degradation of the antibiotic oxacillin in water by anodic oxidation with Ti / IrO 2 anodes : Evaluation of degradation routes , organic by-products and effects of water matrix components, Chem. Eng. J. 279 (2015) 103–114. https://doi.org/10.1016/j.cej.2015.04.140.
[11] W. Giger, A.C. Alder, E.M. Golet, H.E. Kohler, C.S. Mcardell, E. Molnar, H. Siegrist, M.J. Suter, Occurrence and Fate of Antibiotics as Trace Contaminants in Wastewaters , Sewage Sludges , and Surface Waters, Enviromental Anal. 57 (2003) 485–491.
[12] R. Kallenborn, E. Brorström-Lundén, L.O. Reiersen, S. Wilson, Pharmaceuticals and personal care products (PPCPs) in Arctic environments: indicator contaminants for assessing local and remote anthropogenic sources in a pristine ecosystem in change, Environ. Sci. Pollut. Res. (2017) 1–13. https://doi.org/10.1007/s11356-017-9726-6.
[13] A.M. Botero-Coy, D. Martínez-Pachón, C. Boix, R.J. Rincón, N. Castillo, L.P. Arias-Marín, L. Manrique-Losada, R. Torres-Palma, A. Moncayo-Lasso, F. Hernández, ‘An investigation into the occurrence and removal of pharmaceuticals in Colombian wastewater,’ Sci. Total Environ. 642 (2018) 842–853. https://doi.org/10.1016/j.scitotenv.2018.06.088.
[14] E. Brillas, C.A. Martínez-Huitle, Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review, Appl. Catal. B Environ. 166–167 (2015) 603–643. https://doi.org/10.1016/j.apcatb.2014.11.016.
[15] E.A. Serna-Galvis, A.M. Botero-Coy, D. Martínez-Pachón, A. Moncayo-Lasso, M. Ibáñez, F. Hernández, R.A. Torres-Palma, Degradation of seventeen contaminants of emerging concern in municipal wastewater effluents by sonochemical advanced oxidation processes, Water Res. 154 (2019) 349–360. https://doi.org/10.1016/j.watres.2019.01.045.
[16] N. Milić, M. Milanović, N.G. Letić, M.T. Sekulić, J. Radonić, I. Mihajlović, M.V. Miloradov, Occurrence of antibiotics as emerging contaminant substances in aquatic environment, Int. J. Environ. Health Res. 23 (2013) 296–310. https://doi.org/10.1080/09603123.2012.733934.
[17] UNESCO, Emerging Pollutants in Water and Wastewater, (n.d.). https://en.unesco.org/emergingpollutantsinwaterandwastewater (accessed March 20, 2021).
[18] Y. Wang, Y. Gao, L. Chen, H. Zhang, Goethite as an efficient heterogeneous Fenton catalyst for the degradation of methyl orange, Catal. Today. 252 (2015) 107–112. https://doi.org/10.1016/j.cattod.2015.01.012.
[19] J. Wang, C. Liu, I. Hussain, C. Li, J. Li, X. Sun, J. Shen, W. Han, L. Wang, Iron-copper bimetallic nanoparticles supported on hollow mesoporous silica spheres: The effect of Fe/Cu ratio on heterogeneous Fenton degradation of a dye, RSC Adv. 6 (2016) 54623–54635. https://doi.org/10.1039/c6ra08501f.
[20] J.A. Donadelli, L. Carlos, A. Arques, F.S. García Einschlag, Kinetic and mechanistic analysis of azo dyes decolorization by ZVI-assisted Fenton systems: pH-dependent shift in the contributions of reductive and oxidative transformation pathways, Appl. Catal. B Environ. 231 (2018) 51–61. https://doi.org/10.1016/j.apcatb.2018.02.057.
[21] S. Arzate, S. Pfister, C. Oberschelp, J.A. Sánchez-Pérez, Environmental impacts of an advanced oxidation process as tertiary treatment in a wastewater treatment plant, Sci. Total Environ. 694 (2019). https://doi.org/10.1016/j.scitotenv.2019.07.378.
[22] M.A. Quiroz, E.R. Bandala, C.A. Martinez-Huitle, Advanced Oxidation Processes (AOPs) for Removal of Pesticides from Aqueous Media, in: Pestic. - Formul. Eff. Fate, InTech, 2011: pp. 685–730. https://doi.org/10.5772/13597.
[23] L.P. Ramteke, P.R. Gogate, Treatment of real industrial wastewater using the combined approach of advanced oxidation followed by aerobic oxidation, Environ. Sci. Pollut. Res. 23 (2016) 9712–9729. https://doi.org/10.1007/s11356-016-6156-9.
[24] R. Andreozzi, V. Caprio, A. Insola, R. Marotta, Advanced oxidation processes ( AOP ) for water purification and recovery, Catal. Today. 53 (1999) 51–59.
[25] D.A. Armstronga, R.E. Huie, S. Lymar, W.H. Koppenol, G. Merényi, P. Neta, D.M. Stanbury, S. Steenken, P. Wardman, Standard electrode potentials involving radicals in aqueous solution: Inorganic radicals, Bioinorg. React. Mech. 9 (2013) 59–61. https://doi.org/10.1515/irm-2013-0005.
[26] J.J. Pignatello, E. Oliveros, A. MacKay, Advanced oxidation processes for organic contaminant destruction based on the fenton reaction and related chemistry, Crit. Rev. Environ. Sci. Technol. 36 (2006) 1–84. https://doi.org/10.1080/10643380500326564.
[27] S. Papoutsakis, C. Pulgarin, I. Oller, R. Sánchez-moreno, S. Malato, Enhancement of the Fenton and photo-Fenton processes by components found in wastewater from the industrial processing of natural products : The possibilities of cork boiling wastewater reuse, Chem. Eng. J. 304 (2016) 890–896.
[28] D. Vione, F. Merlo, V. Maurino, Effect of humic acids on the Fenton degradation of phenol, Enviromental Chem. Lett. 2 (2004) 129–133. https://doi.org/10.1007/s10311-004-0086-3.
[29] M. Fukushima, K. Tatsumi, Degradation Pathways of Pentachlorophenol by Photo-Fenton Systems in the Presence of Iron ( III ), Humic Acid , and Hydrogen Peroxide, Enviromental, Sci. Technol. 35 (2001) 1771–1778.
[30] D. Spuhler, J. Andrés Rengifo-Herrera, C. Pulgarin, The effect of Fe2+, Fe3+, H2O2 and the photo-Fenton reagent at near neutral pH on the solar disinfection (SODIS) at low temperatures of water containing Escherichia coli K12, Appl. Catal. B Environ. 96 (2010) 126–141. https://doi.org/10.1016/j.apcatb.2010.02.010.
[31] J.A. Sánchez Pérez, S. Arzate, P. Soriano-Molina, J.L. García Sánchez, J.L. Casas López, P. Plaza-Bolaños, Neutral or acidic pH for the removal of contaminants of emerging concern in wastewater by solar photo-Fenton? A techno-economic assessment of continuous raceway pond reactors, Sci. Total Environ. 736 (2020) 139681. https://doi.org/10.1016/j.scitotenv.2020.139681.
[32] N. De la Cruz, J. Giménez, S. Esplugas, D. Grandjean, L.F. De Alencastro, C. Pulgarín, Degradation of 32 emergent contaminants by UV and neutral photo-fenton in domestic wastewater effluent previously treated by activated sludge, Water Res. 46 (2012) 1947–1957. https://doi.org/10.1016/j.watres.2012.01.014.
[33] E.A. Serna-galvis, J. Silva-agredo, A.L. Giraldo, O.A. Flórez-acosta, R.A. Torres-palma, Comparative study of the effect of pharmaceutical additives on the elimination of antibiotic activity during the treatment of oxacillin in water by the photo-Fenton , TiO 2 -photocatalysis and electrochemical processes, Sci. Total Environ. 541 (2016) 1431–1438. https://doi.org/10.1016/j.scitotenv.2015.10.029.
[34] E. Brillas, E. Mur, R. Sauleda, L. Sánchez, J. Peral, X. Domenech, J. Casado, Aniline mineralization by AOP ’ s : anodic oxidation , photocatalysis , electro-Fenton and photoelectro-Fenton processes, Appl. Catal. B Environ. 16 (1998) 31–42.
[35] J.C. Colmenares, R. Luque, Heterogeneous photocatalytic nanomaterials: prospects and challenges in selective transformations of biomass-derived compounds., Chem. Soc. Rev. 43 (2014) 765–78. https://doi.org/10.1039/c3cs60262a.
[36] A. Kaur, S.K. Kansal, Bi 2 WO 6 nanocuboids : An efficient visible light active photocatalyst for the degradation of levofloxacin drug in aqueous phase, Chem. Eng. J. 302 (2016) 194–203. https://doi.org/10.1016/j.cej.2016.05.010.
[37] L. Cermenati, P. Pichat, C. Guillard, A. Albini, Probing the TiO2 photocatalytic mechanisms in water purification by use of quinoline, photo-fenton generated OH. radicals and superoxide dismutase, J. Phys. Chem. B. 101 (1997) 2650–2658. https://doi.org/10.1021/jp962700p.
[38] D. Zhou, Z. Xu, S. Dong, M. Huo, S. Dong, X. Tian, B. Cui, H. Xiong, T. Li, D. Ma, Intimate Coupling of Photocatalysis and Biodegradation for Degrading Phenol Using Different Light Types: Visible Light vs UV Light, Environ. Sci. Technol. 49 (2015) 7776–7783. https://doi.org/10.1021/acs.est.5b00989.
[39] R. Ullah, J. Dutta, Photocatalytic degradation of organic dyes with manganese-doped ZnO nanoparticles, J. Hazard. Mater. 156 (2008) 194–200. https://doi.org/10.1016/j.jhazmat.2007.12.033.
[40] M.I. Litter, Introduction to Photochemical Advanced Oxidation Processes for Water Treatment, in: Environ. Photochem. Part II, Springer-Verlag, Berlin/Heidelberg, 2005: pp. 325–366. https://doi.org/10.1007/b138188.
[41] B.C. Hodges, E.L. Cates, J.H. Kim, Challenges and prospects of advanced oxidation water treatment processes using catalytic nanomaterials, Nat. Nanotechnol. 13 (2018) 642–650. https://doi.org/10.1038/s41565-018-0216-x.
[42] B.D. Deshpande, P.S. Agrawal, M.K.N. Yenkie, S.J. Dhoble, Prospective of nanotechnology in degradation of waste water: A new challenges, Nano-Structures and Nano-Objects. 22 (2020) 100442. https://doi.org/10.1016/j.nanoso.2020.100442.
[43] V. Dhand, L. Soumya, S. Bharadwaj, S. Chakra, D. Bhatt, B. Sreedhar, Green synthesis of silver nanoparticles using Coffea arabica seed extract and its antibacterial activity, Mater. Sci. Eng. 58 (2016) 36–43. https://doi.org/10.1016/j.msec.2015.08.018.
[44] V. Prakash Sharma, U. Sharma, M. Chattopadhyay, V.N. Shukla, Advance Applications of Nanomaterials: A Review, Mater. Today Proc. 5 (2018) 6376–6380. https://doi.org/10.1016/j.matpr.2017.12.248.
[45] S. Hu, R. Tian, Y. Dong, J. Yang, J. Liu, Q. Chang, Modulation and effects of surface groups on photoluminescence and photocatalytic activity of carbon dots, Nanoscale. 5 (2013) 11665–11671. https://doi.org/10.1039/c3nr03893a.
[46] A. Azam, A.S. Ahmed, M. Oves, M.S. Khan, A. Memic, Size-dependent antimicrobial properties of CuO nanoparticles against Gram-positive and -negative bacterial strains, Int. J. Nanomedicine. 7 (2012) 3527–3535. https://doi.org/10.2147/IJN.S29020.
[47] A. Arunachalam, S. Dhanapandian, C. Manoharan, G. Sivakumar, Physical properties of Zn doped TiO2 thin films with spray pyrolysis technique and its effects in antibacterial activity, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 138 (2015) 105–112. https://doi.org/10.1016/j.saa.2014.11.016.
[48] M. Khalaj, M. Kamali, M.E. V. Costa, I. Capela, Green synthesis of nanomaterials - A scientometric assessment, J. Clean. Prod. 267 (2020) 122036. https://doi.org/10.1016/j.jclepro.2020.122036.
[49] A. Pal, Photochemical dissolution of gold nanoparticles by bromine containing trihalomethanes (THMs) in an aqueous triton X-100 medium and its analytical application, J. Photochem. Photobiol. A Chem. 142 (2001) 59–65. https://doi.org/10.1016/S1010-6030(01)00465-8.
[50] M.A. Asghar, E. Zahir, S.M. Shahid, M.N. Khan, M.A. Asghar, J. Iqbal, G. Walker, Iron, copper and silver nanoparticles: Green synthesis using green and black tea leaves extracts and evaluation of antibacterial, antifungal and aflatoxin B1 adsorption activity, LWT - Food Sci. Technol. 90 (2018) 98–107. https://doi.org/10.1016/j.lwt.2017.12.009.
[51] X. Qu, P.J.J. Alvarez, Q. Li, Applications of nanotechnology in water and wastewater treatment, Water Res. 47 (2013) 3931–3946. https://doi.org/10.1016/j.watres.2012.09.058.
[52] A. Gil, F.C.C. Assis, S. Albeniz, S.A. Korili, Removal of dyes from wastewaters by adsorption on pillared clays, Chem. Eng. J. 168 (2011) 1032–1040. https://doi.org/10.1016/j.cej.2011.01.078.
[53] B. Ozbey Unal, Z. Bilici, N. Ugur, Z. Isik, E. Harputlu, N. Dizge, K. Ocakoglu, Adsorption and Fenton oxidation of azo dyes by magnetite nanoparticles deposited on a glass substrate, J. Water Process Eng. 32 (2019) 100897. https://doi.org/10.1016/j.jwpe.2019.100897.
[54] C.L. Almeida, S. Garcia-segura, C. Arias, N. Bocchi, E. Brillas, Electrochemical mineralization of the azo dye Acid Red 29 ( Chromotrope 2R ) by photoelectro-Fenton process, Chemosphere. 89 (2012) 751–758. https://doi.org/10.1016/j.chemosphere.2012.07.007.
[55] S. Hu, L. Ma, J. You, F. Li, Z. Fan, G. Lu, D. Liu, J. Gui, Enhanced visible light photocatalytic performance of g-C 3 N 4 photocatalysts co-doped with iron and phosphorus, Appl. Surf. Sci. 311 (2014) 164–171. https://doi.org/10.1016/j.apsusc.2014.05.036.
[56] S. Haji, B. Benstaali, N. Al-Bastaki, Degradation of methyl orange by UV/H2O2 advanced oxidation process, Chem. Eng. J. 168 (2011) 134–139. https://doi.org/10.1016/j.cej.2010.12.050.
[57] N. Gupta, H.P. Singh, R.K. Sharma, Metal nanoparticles with high catalytic activity in degradation of methyl orange: An electron relay effect, J. Mol. Catal. A Chem. 335 (2011) 248–252. https://doi.org/10.1016/j.molcata.2010.12.001.
[58] I. Ali, N. Hasan, M. Ahmad, Z. Khan, Biosynthesis of iron nanoparticles using Trigonella foenum-graecum seed extract for photocatalytic methyl orange dye degradation and antibacterial applications, J. Photochem. Photobiol. B Biol. 183 (2018) 154–163. https://doi.org/10.1016/j.jphotobiol.2018.04.014.
[59] E. Neyens, J. Baeyens, A review of classic Fenton ’ s peroxidation as an advanced oxidation technique, J. Hazard. Mater. 98 (2003) 33–50.
[60] M. Munoz, Z.M. de Pedro, J.A. Casas, J.J. Rodriguez, Preparation of magnetite-based catalysts and their application in heterogeneous Fenton oxidation - A review, Appl. Catal. B Environ. 176–177 (2015) 249–265. https://doi.org/10.1016/j.apcatb.2015.04.003.
[61] J.H. Ramirez, F.J. Maldonado-Hódar, A.F. Pérez-Cadenas, C. Moreno-Castilla, C.A. Costa, L.M. Madeira, Azo-dye Orange II degradation by heterogeneous Fenton-like reaction using carbon-Fe catalysts, Appl. Catal. B Environ. 75 (2007) 312–323. https://doi.org/10.1016/j.apcatb.2007.05.003.
[62] M. Minella, G. Marchetti, E. De Laurentiis, M. Malandrino, V. Maurino, C. Minero, D. Vione, K. Hanna, Photo-Fenton oxidation of phenol with magnetite as iron source, Appl. Catal. B Environ. 154–155 (2014) 102–109. https://doi.org/10.1016/j.apcatb.2014.02.006.
[63] Z.R. Lin, L. Zhao, Y.H. Dong, Quantitative characterization of hydroxyl radical generation in a goethite-catalyzed Fenton-like reaction, Chemosphere. 141 (2015) 7–12. https://doi.org/10.1016/j.chemosphere.2015.05.066.
[64] C.K.J. Yeh, C.Y. Hsu, C.H. Chiu, K.L. Huang, Reaction efficiencies and rate constants for the goethite-catalyzed Fenton-like reaction of NAPL-form aromatic hydrocarbons and chloroethylenes, J. Hazard. Mater. 151 (2008) 562–569. https://doi.org/10.1016/j.jhazmat.2007.06.014.
[65] T. Zhou, X. Wu, Y. Zhang, J. Li, T.T. Lim, Synergistic catalytic degradation of antibiotic sulfamethazine in a heterogeneous sonophotolytic goethite/oxalate Fenton-like system, Appl. Catal. B Environ. 136–137 (2013) 294–301. https://doi.org/10.1016/j.apcatb.2013.02.004.
[66] I.R. Guimaraes, A. Giroto, L.C.A. Oliveira, M.C. Guerreiro, D.Q. Lima, J.D. Fabris, Synthesis and thermal treatment of cu-doped goethite: Oxidation of quinoline through heterogeneous fenton process, Appl. Catal. B Environ. 91 (2009) 581–586. https://doi.org/10.1016/j.apcatb.2009.06.030.
[67] X. Hou, X. Huang, F. Jia, Z. Ai, J. Zhao, L. Zhang, Hydroxylamine Promoted Goethite Surface Fenton Degradation of Organic Pollutants, Environ. Sci. Technol. 51 (2017) 5118–5126. https://doi.org/10.1021/acs.est.6b05906.
[68] H. Wu, X. Dou, D. Deng, Y. Guan, L. Zhang, G. He, Decolourization of the azo dye Orange G in aqueous solution via a heterogeneous Fenton-like reaction catalysed by goethite, Environ. Technol. (United Kingdom). 33 (2012) 1545–1552. https://doi.org/10.1080/09593330.2011.635709.
[69] D. Lorenzo, C.M. Dominguez, A. Romero, A. Santos, Wet peroxide oxidation of chlorobenzenes catalyzed by goethite and promoted by hydroxylamine, Catalysts. 9 (2019). https://doi.org/10.3390/catal9060553.
[70] X. Huang, X. Hou, F. Jia, F. Song, J. Zhao, L. Zhang, Ascorbate-Promoted Surface Iron Cycle for Efficient Heterogeneous Fenton Alachlor Degradation with Hematite Nanocrystals, ACS Appl. Mater. Interfaces. 9 (2017) 8751–8758. https://doi.org/10.1021/acsami.6b16600.
[71] X. Huang, X. Hou, J. Zhao, L. Zhang, Hematite facet confined ferrous ions as high efficient Fenton catalysts to degrade organic contaminants by lowering H2O2 decomposition energetic span, Appl. Catal. B Environ. 181 (2016) 127–137. https://doi.org/10.1016/j.apcatb.2015.06.061.
[72] L. Demarchis, M. Minella, R. Nisticò, V. Maurino, C. Minero, D. Vione, Photo-Fenton reaction in the presence of morphologically controlled hematite as iron source, J. Photochem. Photobiol. A Chem. 307–308 (2015) 99–107. https://doi.org/10.1016/j.jphotochem.2015.04.009.
[73] J.Y.T. Chan, S.Y. Ang, E.Y. Ye, M. Sullivan, J. Zhang, M. Lin, Heterogeneous photo-Fenton reaction on hematite (α-Fe2O3){104}, {113} and {001} surface facets, Phys. Chem. Chem. Phys. 17 (2015) 25333–25341. https://doi.org/10.1039/c5cp03332b.
[74] F.V.F. Araujo, L. Yokoyama, L.A.C. Teixeira, J.C. Campos, Heterogeneous Fenton process using the mineral hematite for the discolouration of a reactive dye solution, Brazilian J. Chem. Eng. 28 (2011) 605–616. https://doi.org/10.1590/S0104-66322011000400006.
[75] D. He, X. Wu, Y. Chen, Y. Situ, L. Zhong, H. Huang, In-situ growth of lepidocrocite on Bi2O3 rod: A perfect cycle coupling photocatalysis and heterogeneous fenton-like process by potential-level matching with advanced oxidation, Chemosphere. 210 (2018) 334–340. https://doi.org/10.1016/j.chemosphere.2018.06.142.
[76] M. Qin, B. Lu, S. Feng, Z. Zhen, R. Chen, H. Liu, Role of exposed facets and surface OH groups in the Fenton-like reactivity of lepidocrocite catalyst, Chemosphere. 230 (2019) 286–293. https://doi.org/10.1016/j.chemosphere.2019.05.071.
[77] H. Sun, G. Xie, D. He, L. Zhang, Ascorbic acid promoted magnetite Fenton degradation of alachlor: Mechanistic insights and kinetic modeling, Appl. Catal. B Environ. 267 (2020) 118383. https://doi.org/10.1016/j.apcatb.2019.118383.
[78] S.P. Sun, A.T. Lemley, P-Nitrophenol degradation by a heterogeneous Fenton-like reaction on nano-magnetite: Process optimization, kinetics, and degradation pathways, J. Mol. Catal. A Chem. 349 (2011) 71–79. https://doi.org/10.1016/j.molcata.2011.08.022.
[79] L. Hou, Q. Zhang, F. Jérôme, D. Duprez, H. Zhang, S. Royer, Shape-controlled nanostructured magnetite-type materials as highly efficient Fenton catalysts, Appl. Catal. B Environ. 144 (2014) 739–749. https://doi.org/10.1016/j.apcatb.2013.07.072.
[80] M. Usman, P. Faure, C. Ruby, K. Hanna, Remediation of PAH-contaminated soils by magnetite catalyzed Fenton-like oxidation, Appl. Catal. B Environ. 117–118 (2012) 10–17. https://doi.org/10.1016/j.apcatb.2012.01.007.
[81] L. Khanna, G. Gupta, S.K. Tripathi, Effect of size and silica coating on structural, magnetic as well as cytotoxicity properties of copper ferrite nanoparticles, Mater. Sci. Eng. C. 97 (2019) 552–566. https://doi.org/10.1016/j.msec.2018.12.051.
[82] M.T.. Zin, J. Borja, H. Hinode, W. Kurniawan, Synthesis of Bimetallic Fe/Cu Nanoparticles with Different Copper Loading Ratios, Int. J. Chem. Nucl. Metall. Mater. Eng. 7 (2013) 669–673. h.
[83] K. Ulucan-Altuntas, S.L. Kuzu, Modelling and optimization of dye removal by Fe/Cu bimetallic nanoparticles coated with different Cu ratios, Mater. Res. Express. 6 (2019). https://doi.org/10.1088/2053-1591/ab4bb5.
[84] P. Mondal, A. Anweshan, M.K. Purkait, Green synthesis and environmental application of iron-based nanomaterials and nanocomposite: A review, Chemosphere. 259 (2020) 127509. https://doi.org/10.1016/j.chemosphere.2020.127509.
[85] S. Saif, A. Tahir, Y. Chen, Green synthesis of iron nanoparticles and their environmental applications and implications, Nanomaterials. 6 (2016) 1–26. https://doi.org/10.3390/nano6110209.
[86] S.S.F. Carvalho, N.M.F. Carvalho, Dye degradation by green heterogeneous Fenton catalysts prepared in presence of Camellia sinensis, J. Environ. Manage. 187 (2017) 82–88. https://doi.org/10.1016/j.jenvman.2016.11.032.
[87] G. Magnacca, A. Allera, E. Montoneri, L. Celi, D.E. Benito, L.G. Gagliardi, L. Carlos, Novel magnetite nanoparticles coated with waste sourced bio- based substances as sustainable and renewable adsorbing materials, ACS Sustain. Chem. Eng. 2 (2014) 1518–1524. https://doi.org/10.1021/sc500213j.
[88] F.E. García, A.M. Senn, J.M. Meichtry, T.B. Scott, H. Pullin, A.G. Leyva, E.B. Halac, C.P. Ramos, J. Sacanell, M. Mizrahi, F.G. Requejo, M.I. Litter, Iron-based nanoparticles prepared from yerba mate extract. Synthesis, characterization and use on chromium removal, J. Environ. Manage. 235 (2019) 1–8. https://doi.org/10.1016/j.jenvman.2019.01.002.
[89] D.F. Mercado, A. Rubert, G. Magnacca, M. Malandrino, S. Sapino, P. Caregnato, A.B. Prevot, M.C. Gonzalez, Versatile Fe-containing hydroxyapatite nanomaterials as efficient substrates for lead ions adsorption, J. Nanosci. Nanotechnol. 17 (2017) 9081–9090. https://doi.org/10.1166/jnn.2017.13870.
[90] D.F. Mercado, G. Magnacca, M. Malandrino, A. Rubert, E. Montoneri, C. Gonzalez, L. Celi, A. Bianco Prevot, M.C. Gonzalez, Paramagnetic iron-doped hydroxyapatite nanoparticles with improved metal sorption properties. A bioorganic substrates-mediated synthesis, 6 (2014) 3937–3946. https://pubs.acs.org/doi/abs/10.1021/am405217j (accessed September 21, 2020).
[91] P. Salgado, K. Márquez, O. Rubilar, D. Contreras, G. Vidal, The effect of phenolic compounds on the green synthesis of iron nanoparticles (Fe x O y -NPs) with photocatalytic activity, Appl. Nanosci. 9 (2019) 371–385. https://doi.org/10.1007/s13204-018-0931-5.
[92] M.S.H. Bhuiyan, M.Y. Miah, S.C. Paul, T. Das Aka, O. Saha, M.M. Rahaman, M.J.I. Sharif, O. Habiba, M. Ashaduzzaman, Green synthesis of iron oxide nanoparticle using Carica papaya leaf extract: application for photocatalytic degradation of remazol yellow RR dye and antibacterial activity, Heliyon. 6 (2020) e04603. https://doi.org/10.1016/j.heliyon.2020.e04603.
[93] D.F. Mercado, P. Caregnato, L.S. Villata, M.C. Gonzalez, Ilex paraguariensis Extract-Coated Magnetite Nanoparticles: A Sustainable Nano-adsorbent and Antioxidant, J. Inorg. Organomet. Polym. Mater. 28 (2018) 519–527. https://doi.org/10.1007/s10904-017-0757-8.
[94] Y. Wu, S. Zeng, F. Wang, M. Megharaj, R. Naidu, Z. Chen, Heterogeneous Fenton-like oxidation of malachite green by iron-based nanoparticles synthesized by tea extract as a catalyst, Sep. Purif. Technol. 154 (2015) 161–167. https://doi.org/10.1016/j.seppur.2015.09.022.
[95] Q. Ouyang, F. Kou, P.E. Tsang, J. Lian, J. Xian, J. Fang, Z. Fang, Green synthesis of Fe-based material using tea polyphenols and its application as a heterogeneous Fenton-like catalyst for the degradation of lincomycin, J. Clean. Prod. 232 (2019) 1492–1498. https://doi.org/10.1016/j.jclepro.2019.06.043.
[96] Y. Kuang, Q. Wang, Z. Chen, M. Megharaj, R. Naidu, Heterogeneous Fenton-like oxidation of monochlorobenzene using green synthesis of iron nanoparticles, J. Colloid Interface Sci. 410 (2013) 67–73. https://doi.org/10.1016/j.jcis.2013.08.020.
[97] E.S. Önal, T. Yatkin, M. Ergüt, A. Özer, Green Synthesis of Iron Nanoparticles by Aqueous Extract of Eriobotrya japonica Leaves as a Heterogenous Fenton-like Catalyst: Degradation of Basic Red 46, Int. J. Chem. Eng. Appl. 8 (2017) 328–333. https://doi.org/10.18178/ijcea.2017.8.5.678.
[98] C. Gordon-falconí, M. Florencia, M. Sara, L. Cumbal, A. Debut, M. Daniela, Synthesis of silver nanoparticles with remediative potential using discarded yerba mate : An eco-friendly approach, J. Environ. Chem. Eng. 8 (2020) 104425. https://doi.org/10.1016/j.jece.2020.104425.
[99] D.F. Mercado, M. Cipollone, M.C. González, F.H. Sánchez, Yerba Mate applications: Magnetic response of powders and colloids of iron oxide nanoparticles coated with Ilex paraguariensis derivatives, J. Magn. Magn. Mater. 462 (2018) 13–21. https://doi.org/10.1016/j.jmmm.2018.04.048.
[100] S. Amaliyah, D.P. Pangesti, M. Masruri, A. Sabarudin, S.B. Sumitro, Green synthesis and characterization of copper nanoparticles using Piper retrofractum Vahl extract as bioreductor and capping agent, Heliyon. 6 (2020) e04636. https://doi.org/10.1016/j.heliyon.2020.e04636.
[101] N.T.K. Thanh, N. Maclean, S. Mahiddine, Mechanisms of nucleation and growth of nanoparticles in solution, Chem. Rev. 114 (2014) 7610–7630. https://doi.org/10.1021/cr400544s.
[102] Y.P. Yew, K. Shameli, M. Miyake, N. Kuwano, N.B. Bt Ahmad Khairudin, S.E. Bt Mohamad, K.X. Lee, Green Synthesis of Magnetite (Fe3O4) Nanoparticles Using Seaweed (Kappaphycus alvarezii) Extract, Nanoscale Res. Lett. 11 (2016) 276. https://doi.org/10.1186/s11671-016-1498-2.
[103] F. Azadi, A. Karimi-Jashni, M.M. Zerafat, Green synthesis and optimization of nano-magnetite using Persicaria bistorta root extract and its application for rosewater distillation wastewater treatment, Ecotoxicol. Environ. Saf. 165 (2018) 467–475. https://doi.org/10.1016/j.ecoenv.2018.09.032.
[104] G. Tabbì, A. Giuffrida, R.P. Bonomo, Determination of formal redox potentials in aqueous solution of copper(II) complexes with ligands having nitrogen and oxygen donor atoms and comparison with their EPR and UV-Vis spectral features, J. Inorg. Biochem. 128 (2013) 137–145. https://doi.org/10.1016/j.jinorgbio.2013.07.035.
[105] D.F. Mercado, M. Cipollone, M.C. Gonzalez, F.H. Sánchez, Yerba Mate applications: magnetic response of powders and colloids of magnetite nanoparticles coated with Ilex Paraguariensis derivatives., J. Magn. Magn. Mater. 462 (2018) 13–21. https://doi.org/10.1016/j.jmmm.2018.04.048.
[106] A.L. Rose, T.D. Waite, Kinetics of iron complexation by dissolved natural organic matter in coastal waters, Mar. Chem. 84 (2003) 85–103. https://doi.org/10.1016/S0304-4203(03)00113-0.
[107] N.A.S. Webster, M.J. Loan, I.C. Madsen, R.B. Knott, G.M. Brodie, J.A. Kimpton, An in situ synchrotron X-ray diffraction investigation of lepidocrocite and ferrihydrite-seeded Al(OH) 3 crystallisation from supersaturated sodium aluminate liquor, J. Cryst. Growth. 340 (2012) 112–117. https://doi.org/10.1016/j.jcrysgro.2011.12.002.
[108] N. Bost, M.R. Ammar, M.L. Bouchetou, J. Poirier, The catalytic effect of iron oxides on the formation of nano-carbon by the Boudouard reaction in refractories, J. Eur. Ceram. Soc. 36 (2016) 2133–2142. https://doi.org/10.1016/j.jeurceramsoc.2016.02.052.
[109] S. Kumar, A.K. Ojha, D. Bhorolua, J. Das, A. Kumar, A. Hazarika, Facile synthesis of CuO nanowires and Cu 2 O nanospheres grown on rGO surface and exploiting its photocatalytic, antibacterial and supercapacitive properties, Phys. B Condens. Matter. 558 (2019) 74–81. https://doi.org/10.1016/j.physb.2019.01.040.
[110] S. Rahimi, R.M.M. Moattari, L. Rajabi, A.A. Derakhshan, M. Keyhani, A. Ashraf, M. Keyhani, A.A. Derakhshan, M. Keyhani, Iron oxide/hydroxide (α,γ-FeOOH) nanoparticles as high potential adsorbents for lead removal from polluted aquatic media, J. Ind. Eng. Chem. 23 (2015) 33–43. https://doi.org/10.1016/j.jiec.2014.07.039.
[111] M. Veneranda, J. Aramendia, L. Bellot-Gurlet, P. Colomban, K. Castro, J.M. Madariaga, FTIR spectroscopic semi-quantification of iron phases: A new method to evaluate the protection ability index (PAI) of archaeological artefacts corrosion systems, Corros. Sci. 133 (2018) 68–77. https://doi.org/10.1016/j.corsci.2018.01.016.
[112] L. Nalbandian, E. Patrikiadou, V. Zaspalis, A. Patrikidou, E. Hatzidaki, C. N. Papandreou, Magnetic Nanoparticles in Medical Diagnostic Applications: Synthesis, Characterization and Proteins Conjugation, Curr. Nanosci. 12 (2015) 455–468. https://doi.org/10.2174/1573413712666151210230002.
[113] M.C.V.M. Starling, P.P. Souza, A. Le Person, C.C. Amorim, J. Criquet, Intensification of UV-C treatment to remove emerging contaminants by UV-C/H 2 O 2 and UV-C/S 2 O 82− : Susceptibility to photolysis and investigation of acute toxicity, Chem. Eng. J. (2019) 0–1. https://doi.org/10.1016/j.cej.2019.01.135.
[114] S. Kato, C. Walling, The Oxidation of Alcohols by Fenton’s Reagent. the Effect of Copper Ion, J. Am. Chem. Soc. 93 (1971) 4275–4281. https://doi.org/10.1021/ja00746a031.
[115] A. Santos, S. Rodríguez, F. Pardo, A. Romero, Use of Fenton reagent combined with humic acids for the removal of PFOA from contaminated water, Sci. Total Environ. 563–564 (2015) 657–663. https://doi.org/10.1016/j.scitotenv.2015.09.044.
[116] T. Xu, R. Zhu, H. Shang, Y. Xia, X. Liu, L. Zhang, Photochemical behavior of ferrihydrite-oxalate system : Interfacial reaction mechanism and charge transfer process, Water Res. 159 (2019) 10–19. https://doi.org/10.1016/j.watres.2019.04.055.
[117] P. Mazellier, B. Sulzberger, Diuron Degradation in Irradiated , Heterogeneous Iron/Oxalate Systems : The Rate-Determining Step, Enviromental, Sci. Technol. 35 (2001) 3314–3320.
[118] Y. Li, W. Zhang, J. Niu, Y. Chen, Surface-coating-dependent dissolution, aggregation, and reactive oxygen species (ROS) generation of silver nanoparticles under different irradiation conditions, Environ. Sci. Technol. 47 (2013) 10293–10301. https://doi.org/10.1021/es400945v.
[119] B. Sulzberger, H. Laubscher, Photochemical Reductive Dissolution of Lepidocrocite, (2009) 279–290. https://doi.org/10.1021/ba-1995-0244.ch014.
[120] X. Wang, Z. Nan, Highly efficient Fenton-like catalyst Fe-g-C3N4 porous nanosheets formation and catalytic mechanism, Sep. Purif. Technol. 233 (2020) 116023. https://doi.org/10.1016/j.seppur.2019.116023.
[121] K.K. Singh, K.K. Senapati, K.C. Sarma, Synthesis of superparamagnetic Fe3O4 nanoparticles coated with green tea polyphenols and their use for removal of dye pollutant from aqueous solution, J. Environ. Chem. Eng. 5 (2017) 2214–2221. https://doi.org/10.1016/j.jece.2017.04.022.
[122] A. Gao, H. Liu, L. Hu, H. Zhang, A. Hou, K. Xie, Synthesis of Fe3O4@SiO2-Au/Cu magnetic nanoparticles and its efficient catalytic performance for the Ullman coupling reaction of bromamine acid, Chinese Chem. Lett. 29 (2018) 1301–1304.
[123] J. Zhang, J. Zhuang, L. Gao, Y. Zhang, N. Gu, J. Feng, D. Yang, J. Zhu, X. Yan, Decomposing phenol by the hidden talent of ferromagnetic nanoparticles, Chemosphere. 73 (2008) 1524–1528. https://doi.org/10.1016/j.chemosphere.2008.05.050.
[124] V. Balan, I.A. Petrache, M.I. Popa, M. Butnaru, E. Barbu, J. Tsibouklis, L. Verestiuc, Biotinylated chitosan-based SPIONs with potential in blood-contacting applications, J. Nanoparticle Res. 14 (2012). https://doi.org/10.1007/s11051-012-0730-y.
[125] A. Tadesse, D. Ramadevi, M. Hagos, G. Battu, K. Basavaiah, Synthesis of nitrogen doped carbon quantum dots/magnetite nanocomposites for efficient removal of methyl blue dye pollutant from contaminated water, RSC Adv. 8 (2018) 8528–8536. https://doi.org/10.1039/c8ra00158h.
[126] R. Das, R. Bandyopadhyay, P. Pramanik, Carbon quantum dots from natural resource: A review, Mater. Today Chem. 8 (2018) 96–109. https://doi.org/10.1016/j.mtchem.2018.03.003.
[127] D.S. Monje, K.M. Chacon, I.C. Galindo, C. Castaño, L.M. Ballesteros-Rueda, G.C. Valencia, M.C. Gonzalez, D.F. Mercado, Carbon dots from agroindustrial residues: a critical comparison of the effect of physicochemical properties on their performance as photocatalyst and emulsion stabilizer, Mater. Today Chem. 20 (2021) 100445. https://doi.org/10.1016/j.mtchem.2021.100445.
[128] P. Zuo, X. Lu, Z. Sun, Y. Guo, H. He, A review on syntheses , properties , characterization and bioanalytical applications of fluorescent carbon dots, Microchim. Acta. 183 (2016) 519–542. https://doi.org/10.1007/s00604-015-1705-3.
[129] M.J. Molaei, The optical properties and solar energy conversion applications of carbon quantum dots: A review, Sol. Energy. 196 (2020) 549–566. https://doi.org/10.1016/j.solener.2019.12.036.
[130] D. Sun, R. Ban, P.H. Zhang, G.H. Wu, J.R. Zhang, J.J. Zhu, Hair fiber as a precursor for synthesizing of sulfur- and nitrogen-co-doped carbon dots with tunable luminescence properties, Carbon N. Y. 64 (2013) 424–434. https://doi.org/10.1016/j.carbon.2013.07.095.
[131] Z. Deng, C. Liu, Y. Jin, J. Pu, B. Wang, J. Chen, High quantum yield blue- and orange-emitting carbon dots: One-step microwave synthesis and applications as fluorescent films and in fingerprint and cellular imaging, Analyst. 144 (2019) 4569–4574. https://doi.org/10.1039/c9an00672a.
[132] Y. Zhou, E.M. Zahran, B.A. Quiroga, J. Perez, K.J. Mintz, Z. Peng, P.Y. Liyanage, R.R. Pandey, C.C. Chusuei, R.M. Leblanc, Size-dependent photocatalytic activity of carbon dots with surface-state determined photoluminescence, Appl. Catal. B Environ. 248 (2019) 157–166. https://doi.org/10.1016/j.apcatb.2019.02.019.
[133] Z.A. Qiao, Y. Wang, Y. Gao, H. Li, T. Dai, Y. Liu, Q. Huo, Commercially activated carbon as the source for producing multicolor photoluminescent carbon dots by chemical oxidation, Chem. Commun. 46 (2010) 8812–8814. https://doi.org/10.1039/c0cc02724c.
[134] M. Gholinejad, F. Zareh, C. Nájera, Nitro group reduction and Suzuki reaction catalysed by palladium supported on magnetic nanoparticles modified with carbon quantum dots generated from glycerol and urea, Appl. Organomet. Chem. 32 (2018) 1–14. https://doi.org/10.1002/aoc.3984.
[135] C. Hu, M. Li, J. Qiu, Y. Sun, Design and fabrication of carbon dots for energy conversion and storage, Chem. Soc. Rev. 48 (2019) 2315–2337. https://doi.org/10.1039/c8cs00750k.
[136] R. Ren, Z. Zhang, P. Zhao, J. Shi, K. Han, Z. Yang, D. Gao, F. Bi, Facile and one-step preparation carbon quantum dots from biomass residue and their applications as efficient surfactants, J. Dispers. Sci. Technol. 40 (2019) 627–633. https://doi.org/10.1080/01932691.2018.1475239.
[137] C. Wang, H. Shi, M. Yang, Y. Yan, E. Liu, Z. Ji, J. Fan, Facile synthesis of novel carbon quantum dots from biomass waste for highly sensitive detection of iron ions, Mater. Res. Bull. 124 (2020) 110730. https://doi.org/10.1016/j.materresbull.2019.110730.
[138] R. Aggarwal, D. Saini, B. Singh, J. Kaushik, A.K. Garg, S.K. Sonkar, Bitter apple peel derived photoactive carbon dots for the sunlight induced photocatalytic degradation of crystal violet dye, Sol. Energy. 197 (2020) 326–331. https://doi.org/10.1016/j.solener.2020.01.010.
[139] P. Surendran, A. Lakshmanan, G. Vinitha, G. Ramalingam, P. Rameshkumar, Facile preparation of high fluorescent carbon quantum dots from orange waste peels for nonlinear optical applications, Luminescence. 35 (2020) 196–202. https://doi.org/10.1002/bio.3713.
[140] W. Lu, X. Gong, M. Nan, Y. Liu, S. Shuang, C. Dong, Comparative study for N and S doped carbon dots: Synthesis, characterization and applications for Fe3+ probe and cellular imaging, Anal. Chim. Acta. 898 (2015) 116–127. https://doi.org/10.1016/j.aca.2015.09.050.
[141] A. Prasannan, T. Imae, One-pot synthesis of fluorescent carbon dots from orange waste peels, Ind. Eng. Chem. Res. 52 (2013) 15673–15678. https://doi.org/10.1021/ie402421s.
[142] X. Hu, Y. Li, Y. Xu, Z. Gan, X. Zou, J. Shi, X. Huang, Z. Li, Y. Li, Green one-step synthesis of carbon quantum dots from orange peel for fluorescent detection of Escherichia coli in milk, Food Chem. 339 (2021) 127775. https://doi.org/10.1016/j.foodchem.2020.127775.
[143] M. Wang, R. Shi, M. Gao, K. Zhang, L. Deng, Q. Fu, L. Wang, D. Gao, Sensitivity fluorescent switching sensor for Cr (VI) and ascorbic acid detection based on orange peels-derived carbon dots modified with EDTA, Food Chem. 318 (2020) 126506. https://doi.org/10.1016/j.foodchem.2020.126506.
[144] S.J. Phang, L.L. Tan, Recent advances in carbon quantum dot (CQD)-based two dimensional materials for photocatalytic applications, Catal. Sci. Technol. 9 (2019) 5882–5905. https://doi.org/10.1039/c9cy01452g.
[145] T. Arumugham, M. Alagumuthu, R.G. Amimodu, S. Munusamy, S.K. Iyer, A sustainable synthesis of green carbon quantum dot (CQD) from Catharanthus roseus (white flowering plant) leaves and investigation of its dual fluorescence responsive behavior in multi-ion detection and biological applications, Sustain. Mater. Technol. 23 (2020) e00138. https://doi.org/10.1016/j.susmat.2019.e00138.
[146] R. Wang, K.Q. Lu, Z.R. Tang, Y.J. Xu, Recent progress in carbon quantum dots: synthesis, properties and applications in photocatalysis, J. Mater. Chem. A. 5 (2017) 3717–3734. https://doi.org/10.1039/c6ta08660h.
[147] B. De, N. Karak, A green and facile approach for the synthesis of water soluble fluorescent carbon dots from banana juice, RSC Adv. 3 (2013) 8286–8290. https://doi.org/10.1039/c3ra00088e.
[148] J.J.M. Lenders, G. Mirabello, N.A.J.M. Sommerdijk, Bioinspired magnetite synthesis via solid precursor phases, Chem. Sci. 7 (2016) 5624–5634. https://doi.org/10.1039/c6sc00523c.
[149] S.P. Jovanović, Z. Syrgiannis, M.D. Budimir, D.D. Milivojević, D.J. Jovanovic, V.B. Pavlović, J.M. Papan, M. Bartenwerfer, M.M. Mojsin, M.J. Stevanović, B.T. Todorović Marković, Graphene quantum dots as singlet oxygen producer or radical quencher - The matter of functionalization with urea/thiourea, Mater. Sci. Eng. C. 109 (2020) 110539. https://doi.org/10.1016/j.msec.2019.110539.
[150] T. Fan, G. Zhang, L. Jian, I. Murtaza, H. Meng, Y. Liu, Y. Min, Facile synthesis of defect-rich nitrogen and sulfur Co-doped graphene quantum dots as metal-free electrocatalyst for the oxygen reduction reaction, J. Alloys Compd. 792 (2019) 844–850. https://doi.org/10.1016/j.jallcom.2019.04.097.
[151] M. Li, C. Yu, C. Hu, W. Yang, C. Zhao, S. Wang, M. Zhang, J. Zhao, X. Wang, J. Qiu, Solvothermal conversion of coal into nitrogen-doped carbon dots with singlet oxygen generation and high quantum yield, Chem. Eng. J. 320 (2017) 570–575. https://doi.org/10.1016/j.cej.2017.03.090.
[152] M.J. Perri, Y.B. Lim, S.P. Seitzinger, B.J. Turpin, Organosulfates from glycolaldehyde in aqueous aerosols and clouds: Laboratory studies, Atmos. Environ. 44 (2010) 2658–2664. https://doi.org/10.1016/j.atmosenv.2010.03.031.
[153] T. Wang, Y. Zhai, Y. Zhu, C. Li, G. Zeng, A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, fundamentals, and physicochemical properties, Renew. Sustain. Energy Rev. 90 (2018) 223–247. https://doi.org/10.1016/j.rser.2018.03.071.
[154] R. Andreozzi, M. Canterino, V. Caprio, I. Di Somma, R. Sanchirico, Batch salicylic acid nitration by nitric acid/acetic acid mixture under isothermal, isoperibolic and adiabatic conditions, J. Hazard. Mater. 138 (2006) 452–458. https://doi.org/10.1016/j.jhazmat.2006.05.104.
[155] M.L. Liu, B. Bin Chen, C.M. Li, C.Z. Huang, Carbon dots: Synthesis, formation mechanism, fluorescence origin and sensing applications, Green Chem. 21 (2019) 449–471. https://doi.org/10.1039/c8gc02736f.
[156] J. Wu, P. Wang, F. Wang, Y. Fang, Investigation of the Microstructures of Graphene Quantum Dots ( GQDs ) by Surface-Enhanced Raman Spectroscopy, Nanomaterials. 8 (2018) 864. https://doi.org/10.3390/nano8100864.
[157] A. Sachdev, I. Matai, P. Gopinath, Implications of surface passivation on physicochemical and bioimaging properties of carbon dots, RSC Adv. 4 (2014) 20915–20921. https://doi.org/10.1039/c4ra02017k.
[158] P. Roy, P. Chen, A.P. Periasamy, Y. Chen, H. Chang, Photoluminescent carbon nanodots : synthesis , physicochemical properties and analytical applications, Mater. Today. 00 (2015) 1–12. https://doi.org/10.1016/j.mattod.2015.04.005.
[159] L.M. Bronstein, X. Huang, J. Retrum, A. Schmucker, M. Pink, B.D. Stein, B. Dragnea, Influence of Iron Oleate Complex Structure on Iron Oxide Nanoparticle Formation, Chem. Mater. 19 (2007) 3624–3632.
[160] D. Iglesias, S. Sabater, A. Azua, J.A. Mata, Catalytic applications of Magnetic nanoparticles functionalized using iridium N-Heterocyclic carbene complexes, New J. Chem. (2015). https://doi.org/10.1039/C5NJ00803D.
[161] N. Vasimalai, V. Vilas-Boas, J. Gallo, M. de F. Cerqueira, M. Menéndez-Miranda, J.M. Costa-Fernández, L. Diéguez, B. Espiña, M.T. Fernández-Argüelles, Green synthesis of fluorescent carbon dots from spices for in vitro imaging and tumour cell growth inhibition, Beilstein J. Nanotechnol. 9 (2018) 530–544. https://doi.org/10.3762/bjnano.9.51.
[162] M. Singh, P. Ulbrich, V. Prokopec, P. Svoboda, E. Šantavá, F. Štěpánek, Vapour phase approach for iron oxide nanoparticle synthesis from solid precursors, J. Solid State Chem. 200 (2013) 150–156. https://doi.org/10.1016/j.jssc.2013.01.037.
[163] R. Bandi, B.R. Gangapuram, R. Dadigala, R. Eslavath, S.S. Singh, V. Guttena, Facile and green synthesis of fluorescent carbon dots from onion waste and their potential applications as sensor and multicolour imaging agents, RSC Adv. 6 (2016) 28633–28639. https://doi.org/10.1039/c6ra01669c.
[164] W.H. Chen, P.C. Kuo, A study on torrefaction of various biomass materials and its impact on lignocellulosic structure simulated by a thermogravimetry, Energy. 35 (2010) 2580–2586. https://doi.org/10.1016/j.energy.2010.02.054.
[165] B. Şenel, N. Demir, G. Büyükköroğlu, M. Yıldız, Graphene quantum dots: Synthesis, characterization, cell viability, genotoxicity for biomedical applications, Saudi Pharm. J. 27 (2019) 846–858. https://doi.org/10.1016/j.jsps.2019.05.006.
[166] O.N. Shebanova, P. Lazor, Raman spectroscopic study of magnetite (FeFe2O4): A new assignment for the vibrational spectrum, J. Solid State Chem. 174 (2003) 424–430. https://doi.org/10.1016/S0022-4596(03)00294-9.
[167] I. V. Chernyshova, M.F. Hochella, A.S. Madden, Size-dependent structural transformations of hematite nanoparticles. 1. Phase transition, Phys. Chem. Chem. Phys. 9 (2007) 1736–1750. https://doi.org/10.1039/b618790k.
[168] C.L. Chun, R.M. Hozalski, W.A. Arnold, Degradation of drinking water disinfection byproducts by synthetic goethite and magnetite, Environ. Sci. Technol. 39 (2005) 8525–8532. https://doi.org/10.1021/es051044g.
[169] H. Muthukumar, M. Manickam, Amaranthus spinosus leaf extract mediated FeO nanoparticles : Physicochemical traits , photocatalytic and antioxidant activity, ACS Sustain. Chem. Eng. 3 (2015) 3149–3156. https://doi.org/10.1021/acssuschemeng.5b00722.
[170] B. Zhu, P. Xia, W. Ho, J. Yu, Isoelectric point and adsorption activity of porous g-C 3 N 4, Appl. Surf. Sci. 344 (2015) 188–195. https://doi.org/10.1016/j.apsusc.2015.03.086.
[171] J. Rivera-Utrilla, M. Sánchez-Polo, M.Á. Ferro-García, G. Prados-Joya, R. Ocampo-Pérez, Pharmaceuticals as emerging contaminants and their removal from water. A review, Chemosphere. 93 (2013) 1268–1287. https://doi.org/10.1016/j.chemosphere.2013.07.059.
[172] I. Ahmad, S. Ahmed, Z. Anwar, M.A. Sheraz, M. Sikorski, Photostability and Photostabilization of Drugs and Drug Products, Int. J. Photoenergy. (2016) 1–19. https://doi.org/10.1155/2016/8135608.
[173] R. Rosal, A. Rodríguez, J.A. Perdigón-Melón, A. Petre, E. García-Calvo, M.J. Gómez, A. Agüera, A.R. Fernández-Alba, Occurrence of emerging pollutants in urban wastewater and their removal through biological treatment followed by ozonation, Water Res. 44 (2010) 578–588. https://doi.org/10.1016/j.watres.2009.07.004.
[174] E.A. Serna-Galvis, J. Silva-Agredo, A.M. Botero-Coy, A. Moncayo-Lasso, F. Hernández, R.A. Torres-Palma, Effective elimination of fifteen relevant pharmaceuticals in hospital wastewater from Colombia by combination of a biological system with a sonochemical process, Sci. Total Environ. 670 (2019) 623–632. https://doi.org/10.1016/j.scitotenv.2019.03.153.
[175] A.A. Godoy, F. Kummrow, P.A.Z. Pamplin, Occurrence, ecotoxicological effects and risk assessment of antihypertensive pharmaceutical residues in the aquatic environment - A review, Chemosphere. 138 (2015) 281–291. https://doi.org/10.1016/j.chemosphere.2015.06.024.
[176] C. Salazar, N. Contreras, H.D. Mansilla, J. Yáñez, R. Salazar, Electrochemical degradation of the antihypertensive losartan in aqueous medium by electro-oxidation with boron-doped diamond electrode, J. Hazard. Mater. 319 (2016) 84–92. https://doi.org/10.1016/j.jhazmat.2016.04.009.
[177] A. Ladhari, G. La Mura, C. Di Marino, G. Di Fabio, A. Zarrelli, Sartans: What they are for, how they degrade, where they are found and how they transform, Sustain. Chem. Pharm. 20 (2021) 100409. https://doi.org/10.1016/j.scp.2021.100409.
[178] D. Martínez-Pachón, M. Ibáñez, F. Hernández, R.A. Torres-Palma, A. Moncayo-Lasso, Photo-electro-Fenton process applied to the degradation of valsartan: Effect of parameters, identification of degradation routes and mineralization in combination with a biological system, J. Environ. Chem. Eng. 6 (2018) 7302–7311. https://doi.org/10.1016/j.jece.2018.11.015.
[179] D. Martínez-Pachón, P. Espinosa-Barrera, J. Rincón-Ortíz, A. Moncayo-Lasso, Advanced oxidation of antihypertensives losartan and valsartan by photo-electro-Fenton at near-neutral pH using natural organic acids and a dimensional stable anode-gas diffusion electrode (DSA-GDE) system under light emission diode (LED) lighting, Environ. Sci. Pollut. Res. 26 (2019) 4426–4437. https://doi.org/10.1007/s11356-018-2645-3.
[180] D.C. Castaño, Histidina , Metionina Y Hormona Estimulante De Los Melanocitos Inducidas Por Pterina, 2016.
[181] M. Lusina, T. Cindrić, J. Tomaić, M. Peko, L. Pozaić, N. Musulin, Stability study of losartan/hydrochlorothiazide tablets, Int. J. Pharm. 291 (2005) 127–137. https://doi.org/10.1016/j.ijpharm.2004.07.050.
[182] R.A. Seburg, J.M. Ballard, T.L. Hwang, C.M. Sullivan, Photosensitized degradation of losartan potassium in an extemporaneous suspension formulation, J. Pharm. Biomed. Anal. 42 (2006) 411–422. https://doi.org/10.1016/j.jpba.2006.04.030.
[183] M.C. De rosa, R.J. Crutchley, Photosensitized singlet oxygen and its applications, Coord. Chem. Rev. 233–234 (2002) 351–371. http://nathan.instras.com/MyDocsDB/doc-557.pdf (accessed April 13, 2018).
[184] C. Castaño, A.H. Thomas, C. Lorente, Type I Photosensitized Oxidation of Methionine†, Photochem. Photobiol. 97 (2021) 91–98. https://doi.org/10.1111/php.13314.
[185] L.O. Reid, C. Castaño, M.L. Dántola, V. Lhiaubet-Vallet, M.A. Miranda, M. Luisa Marin, A.H. Thomas, A novel synthetic approach to tyrosine dimers based on pterin photosensitization, Dye. Pigment. 147 (2017) 67–74. https://doi.org/10.1016/j.dyepig.2017.07.058.
[186] S. Onoue, N. Igarashi, S. Yamada, Y. Tsuda, High-throughput reactive oxygen species (ROS) assay: An enabling technology for screening the phototoxic potential of pharmaceutical substances, Pharm. Biomed. Anal. 46 (2008) 187–193.
[187] N.A. Ludin, A.M. Al-Alwani Mahmoud, A. Bakar Mohamad, A.A.H. Kadhum, K. Sopian, N.S. Abdul Karim, Review on the development of natural dye photosensitizer for dye-sensitized solar cells, Renew. Sustain. Energy Rev. 31 (2014) 386–396. https://doi.org/10.1016/j.rser.2013.12.001.
[188] V. Ramar, S. Moothattu, K. Balasubramanian, Metal free, sunlight and white light based photocatalysis using carbon quantum dots from Citrus grandis: A green way to remove pollution, Sol. Energy. 169 (2018) 120–127. https://doi.org/10.1016/j.solener.2018.04.040.
[189] C. Belver, J. Bedia, J.J. Rodriguez, Zr-doped TiO2 supported on delaminated clay materials for solar photocatalytic treatment of emerging pollutants, J. Hazard. Mater. (2016). https://doi.org/10.1016/j.jhazmat.2016.02.028.
[190] I. Fatimah, S. Wang, Narsito, K. Wijaya, Composites of TiO2-aluminum pillared montmorillonite: Synthesis, characterization and photocatalytic degradation of methylene blue, Appl. Clay Sci. 50 (2010) 588–593. https://doi.org/10.1016/j.clay.2010.08.016.
[191] S. Zhou, S. Zhang, F. Liu, J. Liu, J. Xue, D. Yang, C. Chang, ZnO nanoflowers photocatalysis of norfloxacin: Effect of triangular silver nanoplates and water matrix on degradation rates, J. Photochem. Photobiol. A Chem. 328 (2016) 97–104. https://doi.org/10.1016/j.jphotochem.2016.03.037.
[192] X. Li, X. Sun, L. Zhang, S. Sun, W. Wang, Efficient photocatalytic fixation of N2 by KOH-treated g-C3N4, J. Mater. Chem. A. 6 (2018) 3005–3011. https://doi.org/10.1039/c7ta09762j.
[193] Y. Zhou, L. Zhang, J. Liu, X. Fan, B. Wang, M. Wang, W. Ren, J. Wang, M. Li, J. Shi, Brand new P-doped g-C3N4: Enhanced photocatalytic activity for H2 evolution and Rhodamine B degradation under visible light, J. Mater. Chem. A. 3 (2015) 3862–3867. https://doi.org/10.1039/c4ta05292g.
[194] Y. Zhou, L. Zhang, W. Huang, Q. Kong, X. Fan, M. Wang, J. Shi, N-doped graphitic carbon-incorporated g-C3N4 for remarkably enhanced photocatalytic H2 evolution under visible light, Carbon N. Y. 99 (2016) 111–117. https://doi.org/10.1016/j.carbon.2015.12.008.
[195] N. Li, Y. Tian, J. Zhao, J. Zhang, W. Zuo, L. Kong, H. Cui, Z-scheme 2D/3D g-C3N4@ZnO with enhanced photocatalytic activity for cephalexin oxidation under solar light, Chem. Eng. J. 352 (2018) 412–422. https://doi.org/10.1016/j.cej.2018.07.038.
[196] M. Ismael, A review on graphitic carbon nitride (g-C3N4) based nanocomposites: Synthesis, categories, and their application in photocatalysis, J. Alloys Compd. 846 (2020) 156446. https://doi.org/10.1016/j.jallcom.2020.156446.
[197] M.J. Lima, M.J. Sampaio, C.G. Silva, A.M.T. Silva, J.L. Faria, Magnetically recoverable Fe3O4/g-C3N4 composite for photocatalytic production of benzaldehyde under UV-LED radiation, Catal. Today. 328 (2019) 293–299. https://doi.org/10.1016/j.cattod.2018.11.018.
[198] D. Zhu, S. Liu, M. Chen, J. Zhang, X. Wang, Flower-like-flake Fe3O4/g-C3N4 nanocomposite: Facile synthesis, characterization, and enhanced photocatalytic performance, Colloids Surfaces A Physicochem. Eng. Asp. 537 (2018) 372–382. https://doi.org/10.1016/j.colsurfa.2017.10.053.
[199] Y. Xu, F. Ge, Z. Chen, S. Huang, W. Wei, M. Xie, H. Xu, H. Li, One-step synthesis of Fe-doped surface-alkalinized g-C3N4 and their improved visible-light photocatalytic performance, Appl. Surf. Sci. 469 (2019) 739–746. https://doi.org/10.1016/j.apsusc.2018.11.062.
[200] J. Wen, J. Xie, X. Chen, X. Li, A review on g-C 3 N 4 -based photocatalysts, Appl. Surf. Sci. 391 (2017) 72–123. https://doi.org/10.1016/j.apsusc.2016.07.030.
[201] J. Jiang, S. Cao, C. Hu, C. Chen, A comparison study of alkali metal-doped g-C3N4 for visible-light photocatalytic hydrogen evolution, Cuihua Xuebao/Chinese J. Catal. 38 (2017) 1981–1989. https://doi.org/10.1016/S1872-2067(17)62936-X.
[202] Y. Wang, S. Zhao, Y. Zhang, J. Fang, Y. Zhou, S. Yuan, C. Zhang, W. Chen, One-pot synthesis of K-doped g-C 3 N 4 nanosheets with enhanced photocatalytic hydrogen production under visible-light irradiation, Appl. Surf. Sci. 440 (2018) 258–265. https://doi.org/10.1016/j.apsusc.2018.01.091.
[203] S. Sun, J. Li, J. Cui, X. Gou, Q. Yang, Y. Jiang, S. Liang, Z. Yang, Simultaneously engineering K-doping and exfoliation into graphitic carbon nitride (g-C3N4) for enhanced photocatalytic hydrogen production, Int. J. Hydrogen Energy. 44 (2019) 778–787. https://doi.org/10.1016/j.ijhydene.2018.11.019.
[204] H. Zhang, L. Jia, P. Wu, R. Xu, J. He, W. Jiang, Improved H2O2 photogeneration by KOH-doped g-C3N4 under visible light irradiation due to synergistic effect of N defects and K modification, Appl. Surf. Sci. 527 (2020) 146584. https://doi.org/10.1016/j.apsusc.2020.146584.
[205] V.K. Gupta, S. Agarwal, T.A. Saleh, Chromium removal by combining the magnetic properties of iron oxide with adsorption properties of carbon nanotubes, Water Res. 45 (2011) 2207–2212. https://doi.org/10.1016/j.watres.2011.01.012.
[206] Q. Su, J. Sun, J. Wang, Z. Yang, W. Cheng, S. Zhang, Urea-derived graphitic carbon nitride as an efficient heterogeneous catalyst for CO2 conversion into cyclic carbonates, Catal. Sci. Technol. 4 (2014) 1556–1562. https://doi.org/10.1039/c3cy00921a.
[207] W. Yan, L. Yan, C. Jing, Impact of doped metals on urea-derived g-C3N4 for photocatalytic degradation of antibiotics: Structure, photoactivity and degradation mechanisms, Appl. Catal. B Environ. 244 (2019) 475–485. https://doi.org/10.1016/j.apcatb.2018.11.069.
[208] L.K.B. Paragas, M.D.G. de Luna, R.A. Doong, Rapid removal of sulfamethoxazole from simulated water matrix by visible-light responsive iodine and potassium co-doped graphitic carbon nitride photocatalysts, Chemosphere. 210 (2018) 1099–1107. https://doi.org/10.1016/j.chemosphere.2018.07.109.
[209] H.-W. Dibbern, R.M. Müller, E. Wirbitzki, UV and IR Spectra Pharmaceutical Substances (UV and IR) and Pharmaceutical and Cosmetic Excipients (IR), 202AD.
[210] M.L. Dantola, L.O. Reid, C. Castanõ, C. Lorente, E. Oliveros, A.H. Thomas, Photosensitization of peptides and proteins by pterin derivatives, Pteridines. 28 (2017) 105–114. https://doi.org/10.1515/pterid-2017-0013.
[211] C. Castaño, E. Oliveros, A.H. Thomas, C. Lorente, Histidine oxidation photosensitized by pterin: PH dependent mechanism, J. Photochem. Photobiol. B Biol. 153 (2015) 483–489. https://doi.org/10.1016/j.jphotobiol.2015.10.026.
[212] E.I. Alarcon, H. Poblete, H.G. Roh, J.F. Couture, J. Comer, I.E. Kochevar, Rose Bengal binding to collagen and tissue photobonding, ACS Omega. 2 (2017) 6646–6657. https://doi.org/10.1021/acsomega.7b00675. | |