dc.contributorPabón-Gelves, Elizabeth
dc.contributorBuitrago-Sierra, Robison
dc.contributorUniversidad Nacional de Colombia - Sede Medellín
dc.contributorCiencia de Materiales Avanzados
dc.creatorBueno-Garcia, Gerson Oswaldo
dc.date.accessioned2020-05-06T20:25:18Z
dc.date.available2020-05-06T20:25:18Z
dc.date.created2020-05-06T20:25:18Z
dc.date.issued2020-03-16
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/77482
dc.description.abstractNanofluids are colloidal suspensions of nanoparticles in a base fluid, which are being widely studied searching improvements in thermophysical properties that they present in relation to the base fluid. In this work, graphene and multi-walled carbon nanotubes (MWCNT) were modified superficially with carboxyl and amino functional groups, through oxidation with nitric and sulfuric acid to generate the carboxyl groups, later, these were treated with 2-(2-aminoethoxy)ethanol to generate the amino group. Then, the modified carbonaceous materials were structurally, thermally and morphologically characterized by means of infrared spectroscopy with Fourier transform (FT-IR), Raman, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) ; obtaining as a result, the presence of carboxyl and amino groups on the surface of the materials, without affecting its structure. Next, using the two-step method, nanofluids of each functionalized and un-functionalized material were prepared at 0.1% w/w of nanomaterial and water as the base fluid; in the case of graphene and MWCNT without functionalizing the surfactant was used sodium dodecylbenzene sulphonate (SDBS) as a dispersing agent at 0.5 and 1.0 respecting critical micellar concentration (cmc). Lastly, each nanofluid is evaluated for stability by visual inspection, UV-Vis and zeta potential, giving as result that nanofluids of MWCNT functionalized and with surfactant are the most stable, remaining in suspension for thirty days. Finally, the thermal conductivity of the nanofluids was determined by the technique of the transient hot wire, obtaining for the nanofluid of MWCNT functionalized with carboxyl a maximum increment of 12.94% in the thermal conductivity respect to water.
dc.description.abstractLos nanofluidos son suspensiones coloidales de nanopartículas en un fluido base, los cuales están siendo ampliamente estudiados en busca de mejoras en las propiedades termofísicas que presentan en relación con el fluido base. En este trabajo se modificaron superficialmente grafeno y nanotubos de carbono de paredes múltiples (MWCNT) con grupos funcionales carboxilo y amino, por medio de una oxidación con ácido nítrico y sulfúrico para generar los grupos carboxilos y posteriormente tratarlos con 2-(2-aminoetoxi)etanol para generar el grupo amino. Después los materiales carbonosos modificados se caracterizaron estructural, térmica y morfológicamente por medio de espectroscopía infrarroja con transformada de Fourier (FT-IR), Raman, análisis termogravimétrico (TGA), microscopía electrónica de barrido (SEM) y microscopía electrónica de transmisión (TEM); obteniendo como resultado, la presencia de grupos carboxilo y amino en la superficie de los materiales, sin afectar la estructura de los mismos. Luego usando el método de dos pasos, se procedió a preparar nanofluidos de cada material funcionalizado y sin funcionalizar a una concentración de 0,1% en peso de nanomaterial y agua como fluido base; en el caso del grafeno y MWCNT sin funcionalizar se usó el tensoactivo dodecilbenceno sulfonato sódico (SDBS) como agente dispersor a 0,5 y 1,0 respecto a la concentración micelar crítica (cmc). Finalmente, cada nanofluido se le evalúa la estabilidad por medio de inspección visual, UV-Vis y potencial zeta, siendo el resultado de estas pruebas que los nanofluidos de MWCNT funcionalizados y con tensoactivo son los más estables, manteniéndose en suspensión por treinta días. Finalmente se determinó la conductividad térmica de los nanofluidos por la técnica del hilo caliente transitorio, obteniéndose para el nanofluido de MWCNT funcionalizado con carboxilo un aumento máximo en la conductividad térmica de 12,94% respecto al agua.
dc.languagespa
dc.publisherMedellín - Ciencias - Maestría en Ciencias - Química
dc.publisherEscuela de química
dc.publisherUniversidad Nacional de Colombia - Sede Medellín
dc.relationAbdul Kudus, M. H., Zakaria, M. R., Hafi Othman, M. B., & Md Akil, H. (2017). Preparation and characterization of colloidized diamine/oxidized-graphene via condensation polymerization of carboxyl groups epoxy/oxidized-graphene nanocomposite. Polymer, 124, 186–202. http://doi.org/10.1016/j.polymer.2017.07.072
dc.relationAgarwal, R., Verma, K., Agrawal, N. K., Duchaniya, R. K., & Singh, R. (2016). Synthesis, characterization, thermal conductivity and sensitivity of CuO nanofluids. Applied Thermal Engineering, 102, 1024–1036. http://doi.org/10.1016/j.applthermaleng.2016.04.051
dc.relationAhammed, N., Asirvatham, L. G., & Wongwises, S. (2016). Effect of volume concentration and temperature on viscosity and surface tension of graphene-water nanofluid for heat transfer applications. Journal of Thermal Analysis and Calorimetry, 123, 1399–1409. http://doi.org/10.1007/s10973-015-5034
dc.relationAlrashed, M. M., Soucek, M. D., & Jana, S. C. (2019). Role of graphene oxide and functionalized graphene oxide in protective hybrid coatings. Progress in Organic Coatings, 134, 197–208. http://doi.org/10.1016/j.porgcoat.2019.04.057
dc.relationAmiri, A., Sadri, R., Ahmadi, G., Chew, B. T., Kazi, S. N., Shanbedi, M., & Alehashem, M. S. (2015). Synthesis of polyethylene glycol-functionalized multi-walled carbon nanotubes with a microwave assisted approach for improved heat. RSC Advances, 5, 35425–35434. http://doi.org/10.1039/C5RA02736E
dc.relationAndrade Guel, M. L., López López, L. I., & Sáenz Galindo, A. (2012). Nanotubos de carbono: Funcionalización y aplicaciones biológicas. Revista Mexicana de Ciencias Farmaceuticas, 43, 9–18.
dc.relationAngayarkanni, S. A., & Philip, J. (2015). Review on thermal properties of nanofluids: Recent developments. Advances in Colloid and Interface Science, 225, 146–176. http://doi.org/10.1016/j.cis.2015.08.014
dc.relationArshad, A., Jabbal, M., Yan, Y., & Reay, D. (2019). A review on graphene based nanofluids: Preparation, characterization and applications. Journal of Molecular Liquids, 279, 444–484. http://doi.org/10.1016/j.molliq.2019.01.153
dc.relationAvilés, F., Cauich-Rodríguez, J. V., Moo-Tah, L., May-Pat, A., & Vargas-Coronado, R. (2009). Evaluation of mild acid oxidation treatments for MWCNT functionalization. Carbon, 47, 2970–2975. http://doi.org/10.1016/j.carbon.2009.06.044
dc.relationAzwadi, N., Sidik, C., Mohammed, H. a, Alawi, O. a, & Samion, S. (2014). A review on preparation methods and challenges of nano fluids , 54, 115–125. http://doi.org/10.1016/j.icheatmasstransfer.2014.03.002
dc.relationBabita, Sharma, S. K., & Gupta, S. M. (2016). Preparation and evaluation of stable nanofluids for heat transfer application: A review. Experimental Thermal and Fluid Science, 79, 202–212. http://doi.org/10.1016/j.expthermflusci.2016.06.029
dc.relationBahiraei, M., & Heshmatian, S. (2018). Electronics cooling with nanofluids: A critical review. Energy Conversion and Management, 172(July), 438–456. http://doi.org/10.1016/j.enconman.2018.07.047
dc.relationBahiraei, M., & Heshmatian, S. (2019). Graphene family nanofluids: A critical review and future research directions. Energy Conversion and Management, 196, 1222–1256. http://doi.org/10.1016/j.enconman.2019.06.076
dc.relationBalandin, A. A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., & Lau, C. N. (2008). Superior thermal conductivity of single-layer graphene. Nano Letters, 8, 902–907. http://doi.org/10.1021/nl0731872
dc.relationBasu-dutt, S., Minus, M. L., Jain, R., & Kumar, S. (2012). Chemistry of Carbon Nanotubes for Everyone. Chemical Education, 89, 221–229. http://doi.org/10.1021/ed1005163
dc.relationBhuiyan, M. H. U., Saidur, R., Amalina, M. A., Mostafizur, R. M., & Islam, A. (2015). Effect of nanoparticles concentration and their sizes on surface tension of nanofluids. Procedia Engineering, 105, 431–437. http://doi.org/10.1016/j.proeng.2015.05.030
dc.relationChae, S. J., Güneş, F., Kim, K. K., Kim, E. S., Han, G. H., Kim, S. M., … Lee, Y. H. (2009). Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapor deposition: Wrinkle formation. Advanced Materials, 21, 2328–2333. http://doi.org/10.1002/adma.200803016
dc.relationChen, M., He, Y., Zhu, J., & Kim, D. R. (2016). Enhancement of photo-thermal conversion using gold nanofluids with different particle sizes. Energy Conversion and Management, 112, 21–30. http://doi.org/10.1016/j.enconman.2016.01.009
dc.relationChoi, S. U. S. (1995). Enhancing thermal conductivity of fluids with nanoparticles. Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, 66, 99–105.
dc.relationChopkar, M., Sudarshan, S., Das, P. K., & Manna, I. (2008). Effect of particle size on thermal conductivity of nanofluid. Metallurgical and Materials Transactions A, 39A, 1535–1542. http://doi.org/10.1007/s11661-007-9444-7
dc.relationCruz Delgado, V. J., Ávila Orta, C. a., Pérez Camacho, O., García Zamora, M., Comparán Padilla, V. E., & Medellín Rodríguez, F. J. (2011). Funcionalización de Nanotubos de Carbono para la Preparación de Nanocompuestos Poliméricos. Ideas-CONCYTEG, 6, 675–692.
dc.relationDas, S. K., Choi, S. U. S., Yu, W., & Pradeep, T. (2007). Nanofluids: Science and Technology. Nanofluids: Science and Technology. http://doi.org/10.1002/9780470180693
dc.relationDecagon Devices, I. (2016). KD2 Pro Thermal Properties Analyzer, 1–71. http://doi.org/10.1007/978-3-642-10841-9_18
dc.relationDhinesh Kumar, D., & Valan Arasu, A. (2018). A comprehensive review of preparation, characterization, properties and stability of hybrid nanofluids. Renewable and Sustainable Energy Reviews, 81, 1669–1689. http://doi.org/10.1016/j.rser.2017.05.257
dc.relationDou, J., Gan, D., Huang, Q., Liu, M., Chen, J., Deng, F., … Wei, Y. (2019). Functionalization of carbon nanotubes with chitosan based on MALI multicomponent reaction for Cu2+ removal. International Journal of Biological Macromolecules, 136, 476–485. http://doi.org/10.1016/j.ijbiomac.2019.06.112
dc.relationEastman, J. A., Phillpot, S. R., Choi, S. U. S., & Keblinski, P. (2004). Thermal transport in nanofluids. Annual Review of Materials Research, 34, 219–246. http://doi.org/10.1146/annurev.matsci.34.052803.090621
dc.relationEbrahimi, R., de Faoite, D., Finn, D. P., & Stanton, K. T. (2019). Accurate measurement of nanofluid thermal conductivity by use of a polysaccharide stabilising agent. International Journal of Heat and Mass Transfer, 136, 486–500. http://doi.org/10.1016/j.ijheatmasstransfer.2019.03.030
dc.relationFarbod, M., Ahangarpour, A., & Etemad, S. G. (2015). Stability and thermal conductivity of water-based carbon nanotube nanofluids. Particuology, 22, 59–65. http://doi.org/10.1016/j.partic.2014.07.005
dc.relationFares, M., AL-Mayyahi, M., & AL-Saad, M. (2020). Heat transfer analysis of a shell and tube heat exchanger operated with graphene nanofluids. Case Studies in Thermal Engineering, 18(October 2019), 100584. http://doi.org/10.1016/j.csite.2020.100584
dc.relationFloyd, K. A., Eberly, A. R., & Hadjifrangiskou, M. (2017). Adhesion of bacteria to surfaces and biofilm formation on medical devices. In Biofilms and Implantable Medical Devices (pp. 47–95). Elsevier. http://doi.org/10.1016/B978-0-08-100382-4.00003-4
dc.relationGanvir, R. B., Walke, P. V., & Kriplani, V. M. (2017). Heat transfer characteristics in nanofluid—A review. Renewable and Sustainable Energy Reviews, 75, 451–460. http://doi.org/10.1016/j.rser.2016.11.010
dc.relationGhadimi, A., Saidur, R., & Metselaar, H. S. C. (2011). A review of nanofluid stability properties and characterization in stationary conditions. International Journal of Heat and Mass Transfer, 54, 4051–4068. http://doi.org/10.1016/j.ijheatmasstransfer.2011.04.014
dc.relationGhozatloo, A., Morad, A., & Shariaty-niasar, M. (2014). Effects of surface modi fi cation on the dispersion and thermal conductivity of CNT / water nano fluids , 54, 1–7. http://doi.org/10.1016/j.icheatmasstransfer.2014.02.013
dc.relationGupta, M., Singh, V., Kumar, R., & Said, Z. (2017). A review on thermophysical properties of nanofluids and heat transfer applications. Renewable and Sustainable Energy Reviews, 74, 638–670. http://doi.org/10.1016/j.rser.2017.02.073
dc.relationGupta, N. K., Tiwari, A. K., & Ghosh, S. K. (2018). Heat transfer mechanisms in heat pipes using nanofluids – A review. Experimental Thermal and Fluid Science, 90(July 2017), 84–100. http://doi.org/10.1016/j.expthermflusci.2017.08.013
dc.relationHaddad, Z., Abid, C., Oztop, H. F., & Mataoui, A. (2014). A review on how the researchers prepare their nanofluids. International Journal of Thermal Sciences, 76, 168–189. http://doi.org/10.1016/j.ijthermalsci.2013.08.010
dc.relationHajatzadeh Pordanjani, A., Aghakhani, S., Afrand, M., Mahmoudi, B., Mahian, O., & Wongwises, S. (2019). An updated review on application of nanofluids in heat exchangers for saving energy. Energy Conversion and Management, 198, 111886. http://doi.org/10.1016/j.enconman.2019.111886
dc.relationHajjar, Z., Rashidi, A. morad, & Ghozatloo, A. (2014). Enhanced thermal conductivities of graphene oxide nanofluids. International Communications in Heat and Mass Transfer, 57, 128–131. http://doi.org/10.1016/j.icheatmasstransfer.2014.07.018
dc.relationHamilton, R. L., & Crosser, O. K. (1962). Thermal conductivity of heterogeneous two-component systems. Industrial and Engineering Chemistry Fundamentals, 1, 187–191. http://doi.org/10.1021/i160003a005
dc.relationHemmat, M., Saedodin, S., Mahian, O., & Wongwises, S. (2014). Thermophysical properties , heat transfer and pressure drop of COOH-functionalized multi walled carbon nanotubes / water nano fl uids ☆. International Communications in Heat and Mass Transfer, 58, 176–183. http://doi.org/10.1016/j.icheatmasstransfer.2014.08.037
dc.relationHerrera-Alonso, M., Abdala, A. A., McAllister, M. J., Aksay, I. A., & Prud’homme, R. K. (2007). Intercalation and stitching of graphite oxide with diaminoalkanes. Langmuir, 23, 10644–10649. http://doi.org/10.1021/la0633839
dc.relationHirsch, A., & Vostrowsky, O. (2005). Functionalization of carbon nanotubes. Topics in Current Chemistry, 245, 193–237. http://doi.org/10.1007/b98169
dc.relationIlyas, S. U., Ridha, S., Ayad, F., & Kareem, A. (2020). Dispersion Stability and Surface Tension of SDS-Stabilized Saline Nanofluids with Graphene Nanoplatelets. Colloids and Surfaces A: Physicochemical and Engineering Aspects, (November 2019), 124584. http://doi.org/10.1016/j.colsurfa.2020.124584
dc.relationIn-Yup Jeon, D. W. C., Baek, N. A. K., & Jong-Beom, A. (2011). Functionalization of carbon nanotubes. Carbon Nanotubes - Polymer Nanocomposites, 91–110. http://doi.org/10.5772/979
dc.relationJaćimovski, S. K., Bukurov, M., Šetrajčić, J. P., & Raković, D. I. (2015). Phonon thermal conductivity of graphene. Superlattices and Microstructures, 88, 330–337. http://doi.org/10.1016/j.spmi.2015.09.027
dc.relationJames Clerk Maxwell. (1881). A Treatise on Electricity and Magnet, 91, 399–404.
dc.relationKarami, H., Papari-zare, S., Shanbedi, M., Eshghi, H., Sahin, A. Z., & Bee, C. (2019). The thermophysical properties and the stability of nano fl uids containing carboxyl-functionalized graphene nano-platelets and multi-walled carbon nanotubes. International Communications in Heat and Mass Transfer, 108(September), 104302. http://doi.org/10.1016/j.icheatmasstransfer.2019.104302
dc.relationKeblinski, P., Phillpot, S. ., Choi, S. U. ., & Eastman, J. . (2002). Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). International Journal of Heat and Mass Transfer, 45, 855–863. http://doi.org/10.1016/S0017-9310(01)00175-2
dc.relationKhanafer, K., & Vafai, K. (2018). A review on the applications of nanofluids in solar energy field. Renewable Energy, 123, 398–406. http://doi.org/10.1016/j.renene.2018.01.097
dc.relationKole, M., & Dey, T. K. (2013). Investigation of thermal conductivity, viscosity, and electrical conductivity of graphene based nanofluids. Journal of Applied Physics, 113(8). http://doi.org/10.1063/1.4793581
dc.relationKoo, J., & Kleinstreuer, C. (2005). Corrigendum. Journal of Nanoparticle Research, 7(2–3), 324–324. http://doi.org/10.1007/s11051-005-6635-2
dc.relationKuila, T., Bose, S., Mishra, A. K., Khanra, P., Kim, N. H., & Lee, J. H. (2012). Chemical functionalization of graphene and its applications. Progress in Materials Science, 57(7), 1061–1105. http://doi.org/10.1016/j.pmatsci.2012.03.002
dc.relationKumar, R., Gurjar, A., Singh, R., & Kumar, M. (2019). Surface modification of graphene oxide using esterification. Materials Today: Proceedings, 18, 1556–1561. http://doi.org/10.1016/j.matpr.2019.06.626
dc.relationLee, K., Hwang, Y., Cheong, S., Kwon, L., Kim, S., & Lee, J. (2009). Performance evaluation of nano-lubricants of fullerene nanoparticles in refrigeration mineral oil. Current Applied Physics, 9, e128–e131. http://doi.org/10.1016/j.cap.2008.12.054
dc.relationLi, H., He, Y., Hu, Y., Jiang, B., & Huang, Y. (2015). Thermophysical and natural convection characteristics of ethylene glycol and water mixture based ZnO nanofluids. International Journal of Heat and Mass Transfer, 91, 385–389. http://doi.org/10.1016/j.ijheatmasstransfer.2015.07.126
dc.relationLi, Y., Zhou, J., Tung, S., Schneider, E., & Xi, S. (2009). A review on development of nanofluid preparation and characterization. Powder Technology, 196(2), 89–101. http://doi.org/10.1016/j.powtec.2009.07.025
dc.relationLomascolo, M., Colangelo, G., Milanese, M., & de Risi, A. (2015). Review of heat transfer in nanofluids: Conductive, convective and radiative experimental results. Renewable and Sustainable Energy Reviews, 43, 1182–1198. http://doi.org/10.1016/j.rser.2014.11.086
dc.relationMahbubul, I. M. (2019). Application of nanofluid. In Preparation, Characterization, Properties and Application of Nanofluid (pp. 317–350). Elsevier. http://doi.org/10.1016/B978-0-12-813245-6.00008-3
dc.relationMahmudul Haque, A. K. M., Kwon, S., Kim, J., Noh, J., Huh, S., Chung, H., & Jeong, H. (2015). An experimental study on thermal characteristics of nanofluid with graphene and multi-wall carbon nanotubes. Journal of Central South University, 22, 3202–3210. http://doi.org/10.1007/s11771-015-2857-3
dc.relationMehrali, M., Sadeghinezhad, E., Latibari, S. T., Kazi, S. N., Mehrali, M., Nashrul, M., … Metselaar, C. (2014). Investigation of thermal conductivity and rheological properties of nanofluids containing graphene nanoplatelets, 1–12.
dc.relationMeibodi, M. E., Vafaie-Sefti, M., Rashidi, A. M., Amrollahi, A., Tabasi, M., & Kalal, H. S. (2010). The role of different parameters on the stability and thermal conductivity of carbon nanotube/water nanofluids. International Communications in Heat and Mass Transfer, 37, 319–323. http://doi.org/10.1016/j.icheatmasstransfer.2009.10.004
dc.relationMeng, L., Fu, C., & Lu, Q. (2009). Advanced technology for functionalization of carbon nanotubes. Progress in Natural Science, 19(7), 801–810. http://doi.org/10.1016/j.pnsc.2008.08.011
dc.relationMunyalo, J. M., & Zhang, X. (2018). Particle size effect on thermophysical properties of nanofluid and nanofluid based phase change materials: A review. Journal of Molecular Liquids, 265, 77–87. http://doi.org/10.1016/j.molliq.2018.05.129
dc.relationNasiri, A., Shariaty-Niasar, M., Rashidi, A. M., & Khodafarin, R. (2012). Effect of CNT structures on thermal conductivity and stability of nanofluid. International Journal of Heat and Mass Transfer, 55, 1529–1535. http://doi.org/10.1016/j.ijheatmasstransfer.2011.11.004
dc.relationNurdin, I., Yaacob, I. I., & Johan, M. R. (2016). Enhancement of thermal conductivity and kinematic viscosity in magnetically controllable maghemite (γ-Fe2O3) nanofluids. Experimental Thermal and Fluid Science. http://doi.org/10.1016/j.expthermflusci.2016.05.002
dc.relationÖzerinc, S. (2010). Heat transfer enhancement with nanofluids.
dc.relationÖzerinç, S., Kakaç, S., & Yazıcıoğlu, A. G. (2010). Enhanced thermal conductivity of nanofluids: A state-of-the-art review. Microfluidics and Nanofluidics, 8, 145–170. http://doi.org/10.1007/s10404-009-0524-4
dc.relationParametthanuwat, T., Bhuwakietkumjohn, N., Rittidech, S., & Ding, Y. (2015). Experimental investigation on thermal properties of silver nanofluids. International Journal of Heat and Fluid Flow, 56, 80–90. http://doi.org/10.1016/j.ijheatfluidflow.2015.07.005
dc.relationPaul, G., Chopkar, M., Manna, I., & Das, P. K. (2010). Techniques for measuring the thermal conductivity of nanofluids : A review. Renewable and Sustainable Energy Reviews, 14, 1913–1924. http://doi.org/10.1016/j.rser.2010.03.017
dc.relationPinto, R. V., & Fiorelli, F. A. S. (2016). Review of the mechanisms responsible for heat transfer enhancement using nanofluids. Applied Thermal Engineering, 108, 720–739. http://doi.org/10.1016/j.applthermaleng.2016.07.147
dc.relationRaja, M., Vijayan, R., Dineshkumar, P., & Venkatesan, M. (2016). Review on nanofluids characterization, heat transfer characteristics and applications. Renewable and Sustainable Energy Reviews, 64, 163–173. http://doi.org/10.1016/j.rser.2016.05.079
dc.relationRasuli, R., Mokarian, Z., Karimi, R., Shabanzadeh, H., & Abedini, Y. (2015). Wettability modification of graphene oxide by removal of carboxyl functional groups using non-thermal effects of microwave. Thin Solid Films, 589, 364–368. http://doi.org/10.1016/j.tsf.2015.06.002
dc.relationSadeghinezhad, E., Mehrali, M., Saidur, R., Mehrali, M., Tahan Latibari, S., Akhiani, A. R., & Metselaar, H. S. C. (2016). A comprehensive review on graphene nanofluids: Recent research, development and applications. Energy Conversion and Management, 111, 466–487. http://doi.org/10.1016/j.enconman.2016.01.004
dc.relationSahoo, N. G., Rana, S., Cho, J. W., Li, L., & Chan, S. H. (2010). Polymer nanocomposites based on functionalized carbon nanotubes. Progress in Polymer Science, 35, 837–867. http://doi.org/10.1016/j.progpolymsci.2010.03.002
dc.relationSaid, Z. (2016). Thermophysical and optical properties of SWCNTs nanofluids. International Communications in Heat and Mass Transfer, 78, 207–213. http://doi.org/10.1016/j.icheatmasstransfer.2016.09.017
dc.relationSajid, M. U., & Ali, H. M. (2018). Thermal conductivity of hybrid nanofluids: A critical review. International Journal of Heat and Mass Transfer, 126, 211–234. http://doi.org/10.1016/j.ijheatmasstransfer.2018.05.021
dc.relationSarsam, W. S., Amiri, A., Kazi, S. N., & Badarudin, A. (2016). Stability and thermophysical properties of non-covalently functionalized graphene nanoplatelets nanofluids. Energy Conversion and Management, 116, 101–111. http://doi.org/10.1016/j.enconman.2016.02.082
dc.relationSezer, N., Atieh, M. A., & Koç, M. (2019). A comprehensive review on synthesis, stability, thermophysical properties, and characterization of nanofluids. Powder Technology, 344, 404–431. http://doi.org/10.1016/j.powtec.2018.12.016
dc.relationSezer, N., & Koç, M. (2019). Oxidative acid treatment of carbon nanotubes. Surfaces and Interfaces, 14, 1–8. http://doi.org/10.1016/j.surfin.2018.11.001
dc.relationShieh, Y.-T., Liu, G.-L., Wu, H.-H., & Lee, C.-C. (2007). Effects of polarity and pH on the solubility of acid-treated carbon nanotubes in different media. Carbon, 45, 1880–1890. http://doi.org/10.1016/j.carbon.2007.04.028
dc.relationSidik, N. A. C., Mohammed, H. A., Alawi, O. A., & Samion, S. (2014). A review on preparation methods and challenges of nanofluids. International Communications in Heat and Mass Transfer, 54, 115–125. http://doi.org/10.1016/j.icheatmasstransfer.2014.03.002
dc.relationSoldano, C., Mahmood, A., & Dujardin, E. (2010). Production, properties and potential of graphene. Carbon, 48(8), 2127–2150. http://doi.org/10.1016/j.carbon.2010.01.058
dc.relationStankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., … Ruoff, R. S. (2007). Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 45, 1558–1565. http://doi.org/10.1016/j.carbon.2007.02.034
dc.relationSun, Y.-P., Fu, K., Lin, Y., & Huang, W. (2002). Functionalized Carbon Nanotubes: Properties and Applications. Acc. Chem. Res., 35(12), 1096–1104. http://doi.org/10.1021/ar010160v
dc.relationSwapna, M. S., & Sankararaman, S. (2019). Thermal induced order fluctuations in carbon nanosystem with carbon nanotubes. Nano-Structures & Nano-Objects, 19, 100375. http://doi.org/10.1016/j.nanoso.2019.100375
dc.relationTalaei, Z., Mahjoub, A. R., Rashidi, A. morad, Amrollahi, A., & Emami Meibodi, M. (2011a). The effect of functionalized group concentration on the stability and thermal conductivity of carbon nanotube fluid as heat transfer media. International Communications in Heat and Mass Transfer, 38, 513–517. http://doi.org/10.1016/j.icheatmasstransfer.2010.12.035
dc.relationTalaei, Z., Mahjoub, A. R., Rashidi, A. morad, Amrollahi, A., & Emami Meibodi, M. (2011b). The effect of functionalized group concentration on the stability and thermal conductivity of carbon nanotube fluid as heat transfer media. International Communications in Heat and Mass Transfer, 38, 513–517. http://doi.org/10.1016/j.icheatmasstransfer.2010.12.035
dc.relationTawfik, M. M. (2017a). Experimental studies of nanofluid thermal conductivity enhancement and applications: A review. Renewable and Sustainable Energy Reviews, 75, 1239–1253. http://doi.org/10.1016/j.rser.2016.11.111
dc.relationTawfik, M. M. (2017b). Experimental studies of nanofluid thermal conductivity enhancement and applications: A review. Renewable and Sustainable Energy Reviews, 75(January 2015), 1239–1253. http://doi.org/10.1016/j.rser.2016.11.111
dc.relationThi Mai Hoa, L. (2018). Characterization of multi-walled carbon nanotubes functionalized by a mixture of HNO3/H2SO4. Diamond and Related Materials, 89, 43–51. http://doi.org/10.1016/j.diamond.2018.08.008
dc.relationUddin, M. E., Kuila, T., Nayak, G. C., Kim, N. H., Ku, B.-C., & Lee, J. H. (2013). Effects of various surfactants on the dispersion stability and electrical conductivity of surface modified graphene. Journal of Alloys and Compounds, 562, 134–142. http://doi.org/10.1016/j.jallcom.2013.01.127
dc.relationVargas, C., Simarro, R., Reina, J. A., Bautista, L. F., Molina, M. C., & González-Benítez, N. (2019). New approach for biological synthesis of reduced graphene oxide. Biochemical Engineering Journal, 151, 107331. http://doi.org/10.1016/j.bej.2019.107331
dc.relationVermahmoudi, Y., Peyghambarzadeh, S. M., Hashemabadi, S. H., & Naraki, M. (2014). Experimental investigation on heat transfer performance of /water nanofluid in an air-finned heat exchanger. European Journal of Mechanics - B/Fluids, 44, 32–41. http://doi.org/10.1016/j.euromechflu.2013.10.002
dc.relationWang, J. J., Zheng, R. T., Gao, J. W., & Chen, G. (2012). Heat conduction mechanisms in nanofluids and suspensions. Nano Today, 7, 124–136. http://doi.org/10.1016/j.nantod.2012.02.007
dc.relationWang, X., Xu, X., & S. Choi, S. U. (1999). Thermal conductivity of nanoparticle - fluid mixture. Journal of Thermophysics and Heat Transfer, 13, 474–480. http://doi.org/10.2514/2.6486
dc.relationWen, D., & Ding, Y. (2004). Effective thermal conductivity of aqueous suspensions of carbon nanotubes (carbon nanotube nanofluids). Journal of Thermophysics and Heat Transfer, 18(4), 481–485. http://doi.org/10.2514/1.9934
dc.relationXia, G., Jiang, H., Liu, R., & Zhai, Y. (2014). Effects of surfactant on the stability and thermal conductivity of Al 2O3/de-ionized water nanofluids. International Journal of Thermal Sciences, 84, 118–124. http://doi.org/10.1016/j.ijthermalsci.2014.05.004
dc.relationXie, H., & Chen, L. (2011). Review on the preparation and thermal performances of carbon nanotube contained nanofluids. Journal of Chemical and Engineering Data, 56(4), 1030–1041. http://doi.org/10.1021/je101026j
dc.relationXing, M., Yu, J., & Wang, R. (2015). Experimental study on the thermal conductivity enhancement of water based nanofluids using different types of carbon nanotubes. International Journal of Heat and Mass Transfer, 88, 609–616. http://doi.org/10.1016/j.ijheatmasstransfer.2015.05.005
dc.relationYu, W., & Xie, H. (2012). A Review on nanofluids: Preparation, stability mechanisms, and applications. Journal of Nanomaterials, 2012, 1–17. http://doi.org/10.1155/2012/435873
dc.relationYu, W., Xie, H., & Chen, W. (2010). Experimental investigation on thermal conductivity of nanofluids containing graphene oxide nanosheets. Journal of Applied Physics, 107(9). http://doi.org/10.1063/1.3372733
dc.relationZakaria, M. R., Md. Akil, H., Abdul Kudus, M. H., & Kadarman, A. H. (2015). Improving flexural and dielectric properties of MWCNT/epoxy nanocomposites by introducing advanced hybrid filler system. Composite Structures, 132, 50–64. http://doi.org/10.1016/j.compstruct.2015.05.020
dc.relationZhang, L., Kiny, V. U., Peng, H., Zhu, J., Lobo, R. F. M., Margrave, J. L., & Khabashesku, V. N. (2004). Sidewall functionalization of single-walled carbon nanotubes with hydroxyl group-terminated moieties. Chemistry of Materials, 16(11), 2055–2061. http://doi.org/10.1021/cm035349a
dc.relationZhang, P., Hong, W., Wu, J. F., Liu, G. Z., Xiao, J., Chen, Z. B., & Cheng, H. B. (2015). Effects of Surface Modificationon the Suspension Stability and Thermal Conductivity of Carbon Nanotubes Nanofluids. Energy Procedia, 69, 699–705. http://doi.org/10.1016/j.egypro.2015.03.080
dc.relationZhang, Q., Wu, J., Gao, L., Liu, T., Zhong, W., Sui, G., … Yang, X. (2016). Dispersion stability of functionalized MWCNT in the epoxy–amine system and its effects on mechanical and interfacial properties of carbon fiber composites. Materials & Design, 94, 392–402. http://doi.org/10.1016/j.matdes.2016.01.062
dc.relationZhang, Y., Wen, G., Fan, S., Ma, W., Li, S., Wu, T., … Zhao, B. (2019). 3D carboxyl and hydroxyl co-enriched graphene hydrogels as binder-free electrodes for symmetric supercapacitors. International Journal of Hydrogen Energy, 44, 23726–23740. http://doi.org/10.1016/j.ijhydene.2019.07.045
dc.relationZhang, Z., Schniepp, H. C., & Adamson, D. H. (2019). Characterization of graphene oxide: Variations in reported approaches. Carbon, 154, 510–521. http://doi.org/10.1016/j.carbon.2019.07.103
dc.relationZhao, N., Yang, J., Li, S., & Wang, Q. (2016). Numerical investigation of laminar thermal-hydraulic performance of Al2O3–water nanofluids in offset strip fins channel. International Communications in Heat and Mass Transfer, 75, 42–51. http://doi.org/10.1016/j.icheatmasstransfer.2016.03.024
dc.relationZhao, Z., Yang, Z., Hu, Y., Li, J., & Fan, X. (2013a). Multiple functionalization of multi-walled carbon nanotubes with carboxyl and amino groups. Applied Surface Science, 276, 476–481. http://doi.org/10.1016/j.apsusc.2013.03.119
dc.relationZhao, Z., Yang, Z., Hu, Y., Li, J., & Fan, X. (2013b). Multiple functionalization of multi-walled carbon nanotubes with carboxyl and amino groups. Applied Surface Science, 276, 476–481. http://doi.org/10.1016/j.apsusc.2013.03.119
dc.rightsAtribución-SinDerivadas 4.0 Internacional
dc.rightsAtribución-SinDerivadas 4.0 Internacional
dc.rightsAtribución-SinDerivadas 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titlePreparación y caracterización de nanofluidos de grafeno y nanotubos de carbono funcionalizados para su uso en procesos de transferencia de calor
dc.typeOtro


Este ítem pertenece a la siguiente institución