dc.creatorRamirez, Jorge M.
dc.date.accessioned2019-06-28T10:39:21Z
dc.date.available2019-06-28T10:39:21Z
dc.date.created2019-06-28T10:39:21Z
dc.date.issued2012
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/42249
dc.identifierhttp://bdigital.unal.edu.co/32346/
dc.description.abstractLet $\Gamma$ be geometric tree graph with $m$ edges and consider the second order Sturm-Liouville operator $\mathcal{L}[u]=(-pu')'+qu$ acting on functions that are continuous on all of $\Gamma$, and twice continuously differentiable in the interior of each edge. The functions $p$ and $q$ are assumed continuous on each edge, and $p$ strictly positive on $\Gamma$. The problem is to find a solution $f:\Gamma \to \mathbb{R}$ to the problem $\mathcal{L}[f] = h$ with $2m$ additional conditions at the nodes of $\Gamma$. These node conditions include continuity at internal nodes, and jump conditions on the derivatives of $f$ with respect to a positive measure $\rho$. Node conditions are given in the form of linear functionals $\l_1,\ldots,\l_{2m}$ acting on the space of admissible functions. A novel formula is given for the Green's function $G:\Gamma\times \Gamma \to \mathbb{R}$ associated to this problem. Namely, the solution to the semi-homogenous problem $\mathcal{L}[f] = h$, $\l_i[f] =0$ for $i=1,\ldots,2m$ is given by $f(x) = \int_\Gamma G(x,y) h(y)\,d\rho$.
dc.languagespa
dc.publisherUniversidad Nacuional de Colombia; Sociedad Colombiana de matemáticas
dc.relationUniversidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de Matemáticas
dc.relationRevista Colombiana de Matemáticas
dc.relationRevista Colombiana de Matemáticas; Vol. 46, núm. 1 (2012); 15-25 0034-7426
dc.relationRamirez, Jorge M. (2012) Green's functions for sturm-liouville problems on directed tree graphs. Revista Colombiana de Matemáticas; Vol. 46, núm. 1 (2012); 15-25 0034-7426 .
dc.relationhttp://revistas.unal.edu.co/index.php/recolma/article/view/31839
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleGreen's functions for sturm-liouville problems on directed tree graphs
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución