dc.contributorPrado-Rubio, Oscar Andrés
dc.contributorFontalvo Alzate, Javier
dc.contributorGrupo de Investigación en Aplicación de Nuevas Tecnologías
dc.creatorVillada Atehortúa, Laura Andrea
dc.date.accessioned2022-08-11T16:16:34Z
dc.date.accessioned2022-09-21T15:52:32Z
dc.date.available2022-08-11T16:16:34Z
dc.date.available2022-09-21T15:52:32Z
dc.date.created2022-08-11T16:16:34Z
dc.date.issued2021
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/81848
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3386196
dc.description.abstractUna de las principales desventajas de la producción de bioetanol por fermentación es que el producto la inhibe. Por ello, actualmente se está desarrollando e implementando la pervaporación in situ para la eliminación del etanol durante el proceso de fermentación. Como tecnología de membranas, la pervaporación se utiliza para mejorar la producción de etanol porque no afecta a los microorganismos. La pervaporación tiene numerosas ventajas sobre los procesos convencionales; sin embargo, puede mejorarse intensificando el proceso, concretamente, mediante una intensificación dinámica que no implique grandes alteraciones en los sistemas existentes. En este trabajo se desarrolla un modelo dinámico para analizar el funcionamiento periódico de un módulo de pervaporación que utiliza una membrana de PDMS para la eliminación de etanol. Las variables estudiadas para conseguir la intensificación fueron el tiempo de uso del módulo y el tiempo de recuperación de la membrana. Se compara el flujo medio de etanol y la composición media de etanol en el permeado con una operación periódica y convencional. Como resultado, se muestran las condiciones de operación periódica para una mejor productividad y se propone una configuración del módulo de pervaporación de pervaporación para implementar una operación dinámica. Este estudio muestra cómo la forma de operar un sistema puede mejorar significativamente su productividad. (Texto tomado de la fuente)
dc.description.abstractA major disadvantage of bioethanol production by fermentation is that the product inhibits it. Thus, it is currently developing and implementing in situ pervaporation for the removal of ethanol during the fermentation process. As a membrane technology, pervaporation is used to improve ethanol production because it doesn’t affect microorganisms. Pervaporation has numerous advantages over conventional processes; however, it can be improved by intensifying the process, specifically, by dynamic intensification that does not entail major alterations to existing systems. Herein, a dynamic model is developed to analyze the periodic operation of a pervaporation module using a PDMS membrane for ethanol removal. The variables studied to achieve the intensification were the usage time of the module and the recovery time of the membrane. The average flux of ethanol and the average composition of ethanol in the permeate with a periodic and conventional operation are compared. As a result, periodic operating conditions are shown for better productivity and a pervaporation module configuration is proposed to implement a dynamic operation. This study shows how the way a system is operated can significantly improve its productivity.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherManizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Ingeniería Química
dc.publisherDepartamento de Ingeniería Química
dc.publisherFacultad de Ingeniería y Arquitectura
dc.publisherManizales, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Manizales
dc.relationAbdehagh, N., Tezel, F. H., y Thibault, J. (2014). Separation techniques in butanol produc- tion: Challenges and developments. Biomass and Bioenergy, 60:222–246.
dc.relationAguilera, A. F., Alopaeus, V., Christensen, L. P., Contreras-Zarazúa, G., Errico, M., Feng, X., Gómez-Castro, F. I., Antonio, C. G., Herrera, V. S., Kiss, A. A., et al. (2017). Pro- cess Synthesis and Process Intensification: Methodological Approaches. Walter de Gruyter GmbH & Co KG.
dc.relationAhmad, S. A. y Lone, S. R. (2012). Hybrid process (pervaporation-distillation): a review. Int. J. Sci. Eng. Res, 3(5):1–5.
dc.relationAmnuaypanich, S., Patthana, J., y Phinyocheep, P. (2009). Mixed matrix membranes pre- pared from natural rubber/poly (vinyl alcohol) semi-interpenetrating polymer network (nr/pva semi-ipn) incorporating with zeolite 4a for the pervaporation dehydration of water–ethanol mixtures. Chemical Engineering Science, 64(23):4908–4918.
dc.relationANH (2020). Agencia nacional de hidrocarburos: Reservas y producción de petróleo y gas, avaliable: https://www.anh.gov.co/atencion-al-ciudadano/documents.
dc.relationAryanti, P., Ariono, D., Hakim, A., y Wenten, I. (2018). Flory-huggins based model to de- termine thermodynamic property of polymeric membrane solution. In Journal of Physics: Conference Series, volume 1090, page 012074. IOP Publishing.
dc.relationBabi, D. K. y Gani, R. (2014). Hybrid distillation schemes: design, analysis, and application. In Distillation, pages 357–381. Elsevier.
dc.relationBabi, D. K., Holtbruegge, J., Lutze, P., Gorak, A., Woodley, J. M., y Gani, R. (2015). Sustainable process synthesis–intensification. Computers & Chemical Engineering, 81:218– 244.
dc.relationBaker, R. (2004). Membrane technology and applications, john wiley & sons. Ltd., New York, NY.
dc.relationBaker, R. W. (2012). Membrane technology and applications. John Wiley & Sons.
dc.relationBaldea, M. y Edgar, T. F. (2018). Dynamic process intensification. Current opinion in chemical engineering, 22:48–53.
dc.relationBausa, J. y Marquardt, W. (2001). Detailed modeling of stationary and transient mass transfer across pervaporation membranes. AIChE journal, 47(6):1318–1332.
dc.relationBeltrán Gómez, L. V. et al. (2016). Análisis de los diferentes tipos de energías alternativas y su implementación en colombia. Master’s thesis.
dc.relationBolto, B., Hoang, M., y Xie, Z. (2011). A review of membrane selection for the dehydra- tion of aqueous ethanol by pervaporation. Chemical Engineering and Processing: Process Intensification, 50(3):227–235.
dc.relationBolto, B., Tran, T., Hoang, M., y Xie, Z. (2009). Crosslinked poly (vinyl alcohol) membranes. Progress in polymer science, 34(9):969–981.
dc.relationBetancourt Grajales, R. (2003). Transferencia molecular de calor, masa y/o cantidad de movimiento. Univ. Nacional de Colombia.
dc.relationChapman, P. D., Oliveira, T., Livingston, A. G., y Li, K. (2008). Membranes for the dehy- dration of solvents by pervaporation. Journal of Membrane Science, 318(1-2):5–37.
dc.relationChung, T.-S., Jiang, L. Y., Li, Y., y Kulprathipanja, S. (2007). Mixed matrix membranes (mmms) comprising organic polymers with dispersed inorganic fillers for gas separation. Progress in polymer science, 32(4):483–507.
dc.relationCrespo, J. y Brazinha, C. (2015). Fundamentals of pervaporation. In Pervaporation, Vapour Permeation and Membrane Distillation, pages 3–17. Elsevier.
dc.relationCen, Y., Staudt-Bickel, C., y Lichtenthaler, R. N. (2002). Sorption properties of organic solvents in peba membranes. Journal of membrane science, 206(1-2):341–349.
dc.relationCinelli, B. A., Freire, D. M., y Kronemberger, F. A. (2019). Membrane distillation and pervaporation for ethanol removal: are we comparing in the right way? Separation Science and Technology, 54(1):110–127.
dc.relationClark, J. H. y Deswarte, F. (2014). Introduction to chemicals from biomass. John Wiley & Sons.
dc.relationDavis, R. A. (2002). Simple gas permeation and pervaporation membrane unit operation models for process simulators. Chemical Engineering & Technology: Industrial Chemistry– Plant Equipment–Process Engineering–Biotechnology, 25(7):717–722.
dc.relationDíaz, V. H. G., Prado-Rubio, O. A., Willis, M. J., y von Stosch, M. (2017). Dynamic hybrid model for ultrafiltration membrane processes. In Computer Aided Chemical Engineering, volume 40, pages 193–198. Elsevier.
dc.relationDong, Y., Zhang, L., Shen, J., Song, M., y Chen, H. (2006). Preparation of poly (vinyl alcohol)-sodium alginate hollow-fiber composite membranes and pervaporation dehydra- tion characterization of aqueous alcohol mixtures. Desalination, 193(1-3):202–210.
dc.relationDrioli, E., Stankiewicz, A. I., y Macedonio, F. (2011). Membrane engineering in process intensification—an overview. Journal of Membrane Science, 380(1-2):1–8.
dc.relationDuque Escobar, G. (2018). Calentamiento global en colombia. Escuela de Arquitectura y Urbanismo.
dc.relationEchevarría Villa, D. et al. (2018). Membranas compuestas con selectividad mejorada para la separación de butanol mediante pervaporación.
dc.relationEnagi, I. I., Al-Attab, K., y Zainal, Z. (2018). Liquid biofuels utilization for gas turbines: a review. Renewable and Sustainable Energy Reviews, 90:43–55.
dc.relationEdgar, T. F., Himmelblau, D. M., Lasdon, L. S., et al. (2001). Optimization of chemical processes.
dc.relationFan, S., Xiao, Z., Li, M., Li, S., Zhou, T., Hu, Y., y Wu, S. (2017). Pervaporation performance in pdms membrane bioreactor for ethanol recovery with running water and air as coolants at room temperature. Journal of Chemical Technology & Biotechnology, 92(2):292–297.
dc.relationFeng, X. y Huang, R. Y. (1997). Liquid separation by membrane pervaporation: a review. Industrial & Engineering Chemistry Research, 36(4):1048–1066.
dc.relationFernández-Linares, L. C., Montiel-Montoya, J., Millán-Oropeza, A., y Badillo-Corona, J. A. (2012). Producción de biocombustibles a partir de microalgas. Ra Ximhai, 8(3):101–115.
dc.relationFNB (2018). Federación nacional de biocombustibles: Oferta y demanda de etanol, avaliable: https://www.fedebiocombustibles.com/.
dc.relationFu, C., Cai, D., Hu, S., Miao, Q., Wang, Y., Qin, P., Wang, Z., y Tan, T. (2016). Ethanol fermentation integrated with pdms composite membrane: An effective process. Bioresource technology, 200:648–657.
dc.relationFu, Y.-J., Lai, C.-L., Chen, J.-T., Liu, C.-T., Huang, S.-H., Hung, W.-S., Hu, C.-C., y Lee, K.-R. (2014). Hydrophobic composite membranes for separating of water–alcohol mixture by pervaporation at high temperature. Chemical Engineering Science, 111:203–210.
dc.relationFavre, E., Nguyen, Q., Sacco, D., Moncuy, A., y Clement, R. (1995). Multicomponent polymer/solvents equilibria: an evaluation of flory-huggins theory for crosslinked pdms networks swelled by binary mixtures. Chemical Engineering Communications, 140(1):193– 205.
dc.relationFigueroa Paredes, D. A. (2018). Optimización de procesos híbridos destilación/membranas.
dc.relationGooding, C. H. y Bahouth, F. J. (1985). Membrane-aided distillation of azeotropic solutions. Chemical Engineering Communications, 35(1-6):267–279.
dc.relationGórak, A. y Stankiewicz, A. (2018). Intensification of Biobased Processes, volume 55. Royal Society of Chemistry.
dc.relationGuerrero, A. B., Ballesteros, I., y Ballesteros, M. (2018). The potential of agricultural banana waste for bioethanol production. Fuel, 213:176–185.
dc.relationGVR (2020). Grand view research: Ethanol market size, share & trends analysis re- port by source, 2020 - 2027, avaliable: https://www.grandviewresearch.com/industry- analysis/ethanol-market.
dc.relationGonçalves, C. B., Batista, E., y Meirelles, A. J. (2002). Liquid- liquid equilibrium data for the system corn oil+ oleic acid+ ethanol+ water at 298.15 k. Journal of Chemical & Engineering Data, 47(3):416–420.
dc.relationHafid, H. S., Shah, U. K. M., Baharuddin, A. S., Ariff, A. B., et al. (2017). Feasibility of using kitchen waste as future substrate for bioethanol production: A review. Renewable and Sustainable Energy Reviews, 74:671–686.
dc.relationHajjari, M., Tabatabaei, M., Aghbashlo, M., y Ghanavati, H. (2017). A review on the prospects of sustainable biodiesel production: A global scenario with an emphasis on waste- oil biodiesel utilization. Renewable and Sustainable Energy Reviews, 72:445–464.
dc.relationHeintz, A. y Stephan, W. (1994). A generalized solution—diffusion model of the pervapora- tion process through composite membranes part i. prediction of mixture solubilities in the dense active layer using the uniquac model. Journal of Membrane Science, 89(1-2):143– 151.
dc.relationHoltbruegge, J., Kuhlmann, H., y Lutze, P. (2015). Process analysis and economic opti- mization of intensified process alternatives for simultaneous industrial scale production of dimethyl carbonate and propylene glycol. Chemical Engineering Research and Design, 93:411–431.
dc.relationHauser, J., Reinhardt, G., Stumm, F., y Heintz, A. (1989). Experimental study of solubilities of water containing organic mixtures in polyvinylalcohol using gaschromatographic and infrared spectroscopic analysis. Fluid phase equilibria, 49:195–210.
dc.relationHaaz, E. y Toth, A. J. (2018). Methanol dehydration with pervaporation: Experiments and modelling. Separation and Purification Technology, 205:121–129.
dc.relationHaáz, E., Valentinyi, N., Tarjani, A. J., Fozer, D., André, A., Mohamed, S. A. K., Rahim- li, F., Nagy, T., Mizsey, P., Deák, C., et al. (2019). Platform molecule removal from aqueous mixture with organophilic pervaporation: Experiments and modelling. Periodica Polytechnica Chemical Engineering, 63(1):138–146.
dc.relationInoue, T., Nagase, T., Hasegawa, Y., Kiyozumi, Y., Sato, K., Nishioka, M., Hamakawa, S., y Mizukami, F. (2007). Stoichiometric ester condensation reaction processes by pervaporati- ve water removal via acid-tolerant zeolite membranes. Industrial & engineering chemistry research, 46(11):3743–3750.
dc.relationIson, M., Sitt, J., y Trevisan, M. (2005). Algoritmos genéticos: aplicación en matlab. Guía de la materia Sistemas Complejos, 7:2020.
dc.relationJi, L., Shi, B., y Wang, L. (2015). Pervaporation separation of ethanol/water mixture using modified zeolite filled pdms membranes. Journal of Applied Polymer Science, 132(17).
dc.relationJyoti, G., Keshav, A., y Anandkumar, J. (2015). Review on pervaporation: theory, mem- brane performance, and application to intensification of esterification reaction. Journal of Engineering, 2015.
dc.relationJonquières, A., Clément, R., Lochon, P., Néel, J., Dresch, M., y Chrétien, B. (2002). In- dustrial state-of-the-art of pervaporation and vapour permeation in the western countries. Journal of Membrane Science, 206(1-2):87–117.
dc.relationLi, G. y Bai, P. (2012). New operation strategy for separation of ethanol–water by extractive distillation. Industrial & engineering chemistry research, 51(6):2723–2729.
dc.relationLópez-Murillo, L. H., Grisales-Díaz, V. H., Pinelo, M., y Prado-Rubio, O. A. (2021). Ultra- filtration intensification by dynamic operation: Insights from hybrid modelling. Chemical Engineering and Processing-Process Intensification, page 108618.
dc.relationLópez-Zamora, S. M., Fontalvo, J., y Gómez-García, M. Á. (2013). Pervaporation membrane reactor design guidelines for the production of methyl acetate. Desalination and Water Treatment, 51(10-12):2387–2393.
dc.relationLutze, P., Babi, D. K., Woodley, J. M., y Gani, R. (2013). Phenomena based methodo- logy for process synthesis incorporating process intensification. Industrial & Engineering Chemistry Research, 52(22):7127–7144.
dc.relationLutze, P. y Gorak, A. (2013). Reactive and membrane-assisted distillation: Recent develop- ments and perspective. Chemical engineering research and design, 91(10):1978–1997.
dc.relationLindvig, T., Michelsen, M. L., y Kontogeorgis, G. M. (2002). A flory–huggins model based on the hansen solubility parameters. Fluid Phase Equilibria, 203(1-2):247–260.
dc.relationLiu, C.-G., Xiao, Y., Xia, X.-X., Zhao, X.-Q., Peng, L., Srinophakun, P., y Bai, F.-W. (2019). Cellulosic ethanol production: progress, challenges and strategies for solutions. Biotechnology advances, 37(3):491–504.
dc.relationLi, L., Xiao, Z., Tan, S., Pu, L., y Zhang, Z. (2004). Composite pdms membrane with high flux for the separation of organics from water by pervaporation. Journal of Membrane Science, 243(1-2):177–187.
dc.relationMarriott, J. y Sørensen, E. (2003). A general approach to modelling membrane modules. Chemical engineering science, 58(22):4975–4990.
dc.relationMarriott, J., Sørensen, E., y Bogle, I. (2001). Detailed mathematical modelling of membrane modules. Computers & Chemical Engineering, 25(4-6):693–700.
dc.relationMoriyama, N., Nagasawa, H., Kanezashi, M., y Tsuru, T. (2018). Pervaporation dehydration of aqueous solutions of various types of molecules via organosilica membranes: Effect of membrane pore sizes and molecular sizes. Separation and Purification Technology, 207:108– 115.
dc.relationMoulijn, J. A., Stankiewicz, A., Grievink, J., y Górak, A. (2008). Process intensification and process systems engineering: a friendly symbiosis. Computers & Chemical Engineering, 32(1-2):3–11.
dc.relationMaiti, A., Wescott, J., y Kung, P. (2005). Nanotube–polymer composites: insights from flory–huggins theory and mesoscale simulations. Molecular Simulation, 31(2-3):143–149.
dc.relationMyers, R. H., Montgomery, D. C., Vining, G. G., y Robinson, T. J. (2012). Generalized linear models: with applications in engineering and the sciences, volume 791. John Wiley & Sons
dc.relationMcCabe, W. L. S. et al. (2007). Operaciones unitarias en Ingeniería Química/Warren L. McCabe, Julian C. Smith, Peter Harriot; TR. Alejandro Carlos Piombo Herrera. Number 660.2842 M333O.
dc.relationNaciones Unidas, N. (2019). La agenda 2030 y los objetivos de desarrollo sostenible: una oportunidad para américa latina y el caribe. objetivos, metas e indicadores mundiales.
dc.relationNguyen, Q., Bowyer, J., Howe, J., Bratkovich, S., Groot, H., Pepke, E., y Fernholz, K. (2017). Global production of second generation biofuels: Trends and influences.
dc.relationNigam, P. S. y Singh, A. (2011). Production of liquid biofuels from renewable resources. Progress in energy and combustion science, 37(1):52–68.
dc.relationNunes, S. P. y Peinemann, K.-V. (2007). Membrane technology in the chemical industry second. Environmental Engineering and Management Journal, 6(1):75–76.
dc.relationNoriega Valencia, M. A. (2010). Remoción de etanol en sistemas de fermentación alcohó- lica mediante pervaporación. Master’s thesis, Universidad Nacional de Colombia-Sede Manizales.
dc.relationOng, Y. K., Shi, G. M., Le, N. L., Tang, Y. P., Zuo, J., Nunes, S. P., y Chung, T.-S. (2016). Recent membrane development for pervaporation processes. Progress in Polymer Science, 57:1–31.
dc.relationOng, Y. K., Wang, H., y Chung, T.-S. (2012). A prospective study on the application of thermally rearranged acetate-containing polyimide membranes in dehydration of biofuels via pervaporation. Chemical engineering science, 79:41–53.
dc.relationObeso, V. y Velasquez, J. (2015). Análisis numérico. Notas de clase. Universidad del Norte.
dc.relationOjapah, M. M., Zhao, H., y Zhang, Y. (2016). Effects of ethanol on combustion and emissions of a gasoline engine operating with different combustion modes. International Journal of Engine Research, 17(9):998–1011.
dc.relationPaterson, P. (2017). Calentamiento global y cambio climático en sudamérica. Revista Política y Estrategia, (130):153–188.
dc.relationPérez, A. D., Rodríguez-Barona, S., y Fontalvo, J. (2019). Integration of a liquid membrane in taylor flow regime with a fermentation by lactobacillus casei atcc 393 for in-situ lactic acid removal. Chemical Engineering and Processing-Process Intensification, 140:85–90.
dc.relationPrado-Rubio, O., Jørgensen, S. B., y Jonsson, G. (2011). Reverse electro-enhanced dialysis for lactate recovery from a fermentation broth. Journal of membrane science, 374(1-2):20– 32.
dc.relationPrado-Rubio, O. A. (2010). Integration of Bioreactor and Membrane Separation Proces- ses: A Model Based Approach: Reverse Electro-Enhanced Dialysis process for lactic acid fermentation. PhD thesis.
dc.relationPrado-Rubio, O. A. (2015). Operación dinámica de sistemas para alcanzar intensificación de procesos. Libros Editorial UNIMAR.
dc.relationPelletier, G. J., Chapra, S. C., y Tao, H. (2006). Qual2kw–a framework for modeling water quality in streams and rivers using a genetic algorithm for calibration. Environmental Modelling & Software, 21(3):419–425.
dc.relationPeng, F., Pan, F., Li, D., y Jiang, Z. (2005). Pervaporation properties of pdms membranes for removal of benzene from aqueous solution: Experimental and modeling. Chemical Engineering Journal, 114(1-3):123–129.
dc.relationPrado-Rubio, O. A., Fontalvo, J., y Woodley, J. M. (2019). 8. conception, design, and development of intensified hybrid-bioprocesses. In Process Intensification, pages 211–241. De Gruyter.
dc.relationQiu, B., Wang, Y., Fan, S., Liu, J., Jian, S., Qin, Y., Xiao, Z., Tang, X., y Wang, W. (2019). Ethanol mass transfer during pervaporation with pdms membrane based on solution- diffusion model considering concentration polarization. Separation and Purification Tech- nology, 220:276–282.
dc.relationReay, D., Ramshaw, C., y Harvey, A. (2013). Process Intensification: Engineering for effi- ciency, sustainability and flexibility. Butterworth-Heinemann.
dc.relationREN21 (2016). Global status report, avaliable: https://www.ren21.net/wp- content/uploads/2019/05/ren21_gsr2016_fullreport_en_11.pdf.
dc.relationReid, R. C., Prausnitz, J. M., y Poling, B. E. (1987). The properties of gases and liquids.
dc.relationSaini, J. K., Saini, R., y Tewari, L. (2015). Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. 3 Biotech, 5(4):337–353.
dc.relationSarmiento, Á. Z. et al. (2015). Ciencia y tecnología en el plan nacional de desarrollo 2014- 2018:“todos por un nuevo país”. Technical report, UN-RCE-CID.
dc.relationSepúlveda, J. A. M., Junco, L. M. P., y Casallas, M. R. (2017). Producción de biocombustibles en colombia a partir de fuentes no convencionales. Puente, 9(2):79–85.
dc.relationShin, Y., Taufique, M. F. N., Devanathan, R., Cutsforth, E. C., Lee, J., Liu, W., Fifield, L. S., y Gotthold, D. W. (2019). Highly selective supported graphene oxide membranes for water-ethanol separation. Scientific reports, 9(1):1–11.
dc.relationSlater, C. S., Hickey, P., y Juricic, F. (1990). Pervaporation of aqueous ethanol mixtures through poly (dimethyl siloxane) membranes. Separation Science and Technology, 25(9- 10):1063–1077.
dc.relationSmuleac, V., Wu, J., Nemser, S., Majumdar, S., y Bhattacharyya, D. (2010). Novel per- fluorinated polymer-based pervaporation membranes for the separation of solvent/water mixtures. Journal of membrane science, 352(1-2):41–49.
dc.relationSowa, S. W., Baldea, M., y Contreras, L. M. (2014). Optimizing metabolite production using periodic oscillations. PLoS computational biology, 10(6):e1003658.
dc.relationStafford, W., Lotter, A., Brent, A., y von Maltitz, G. (2017). Biofuels technology: A look forward. Technical report, WIDER Working Paper.
dc.relationStankiewicz, A. y Moulijn, J. A. (2002). Process intensification. Industrial & Engineering Chemistry Research, 41(8):1920–1924.
dc.relationStephen, J. L. y Periyasamy, B. (2018). Innovative developments in biofuels production from organic waste materials: A review. Fuel, 214:623–633.
dc.relationSterman, L. E. y Ydstie, B. E. (1990). The steady-state process with periodic perturbations. Chemical Engineering Science, 45(3):721–736.
dc.relationSanchez Rendón, J. C. (2020). Metodología para estimación de parámetros y validación de modelos matemáticos de procesos biotecnológicos. Master’s thesis, Universidad Nacional de Colombia-Sede Manizales
dc.relationShokouhi, A., Raisi, A., Pazuki, G., y Aroujalian, A. (2016). Evaluation of thermodynamic models for prediction of sorption behavior into the polydimethylsiloxane membrane in pervaporation process. Chemical Engineering Communications, 203(1):8–17.
dc.relationSchaetzel, P., Vauclair, C., Nguyen, Q. T., y Bouzerar, R. (2004). A simplified solution– diffusion theory in pervaporation: the total solvent volume fraction model. Journal of Membrane Science, 244(1-2):117–127.
dc.relationSchiffmann, P. y Repke, J.-U. (2011). Design of pervaporation modules based on compu- tational process modelling. In Computer Aided Chemical Engineering, volume 29, pages 397–401. Elsevier.
dc.relationSelim, A., Tóth, A. J., Haáz, E., Fózer, D., y Mizsey, P. (2020). Comparison of single and double-network pva pervaporation performance: Effect of operating temperature. Periodica Polytechnica Chemical Engineering, 64(3):377–383.
dc.relationSmitha, B., Suhanya, D., Sridhar, S., y Ramakrishna, M. (2004). Separation of organic– organic mixtures by pervaporation—a review. Journal of membrane science, 241(1):1–21.
dc.relationSzilagyi, B. y Toth, A. J. (2020). Improvement of component flux estimating model for pervaporation processes. Membranes, 10(12):418.
dc.relationTamayo Arias, J. A., Higuita, J. C., López, M., y Ospina Martínez, V. (2016). Plan estra- tégico de ciencia, tecnología e innovación para el departamento de caldas.
dc.relationTaylor, R. y Krishna, R. (1993). Multicomponent mass transfer, volume 2. John Wiley & Sons.
dc.relationTusel, G. y Ballweg, A. (1983). Method and apparatus for dehydrating mixtures of organic liquids and water. US Patent 4,405,409.
dc.relationTang, J., Sirkar, K. K., y Majumdar, S. (2013). Permeation and sorption of organic solvents and separation of their mixtures through an amorphous perfluoropolymer membrane in pervaporation. Journal of membrane science, 447:345–354.
dc.relationUNCTAD (2016). United nations conference on trade and development: Second-generation biofuel markets: State of play, trade and developing country perspectives, avalia- ble: https://unctad.org/webflyer/second-generation-biofuel-markets-state-play-trade-and- developing-country-perspectives.
dc.relationUyazán, A., Gil, I., Aguilar, J., Rodríguez, G., y Caicedo, L. (2002). Producción de alcohol carburante por destilación azeotrópica homogénea con glicerina. Universidad Nacional de Colombia, Departamento de Ingeniería Química.
dc.relationVaghari, H., Eskandari, M., Sobhani, V., Berenjian, A., Song, Y., y Jafarizadeh-Malmiri, H. (2015). Process intensification for production and recovery of biological products. American Journal of Biochemistry & Biotechnology, 11(1):37.
dc.relationVan Baelen, D., Van der Bruggen, B., Van den Dungen, K., Degrève, J., y Vandecasteele, C. (2005). Pervaporation of water–alcohol mixtures and acetic acid–water mixtures. Chemical Engineering Science, 60(6):1583–1590.
dc.relationValentínyi, N. y Mizsey, P. (2014). Comparison of pervaporation models with simulation of hybrid separation processes. Periodica Polytechnica Chemical Engineering, 58(1):7–14.
dc.relationWang, Q., Li, N., Bolto, B., Hoang, M., y Xie, Z. (2016). Desalination by pervaporation: A review. Desalination, 387:46–60.
dc.relationWijmans, J. G. y Baker, R. W. (1995). The solution-diffusion model: a review. Journal of membrane science, 107(1-2):1–21.
dc.relationXu, D., Loo, L. S., y Wang, K. (2010). Pervaporation performance of novel chitosan-poss hybrid membranes: Effects of poss and operating conditions. Journal of Polymer Science Part B: Polymer Physics, 48(21):2185–2192.
dc.relationXue, C., Zhao, X.-Q., Liu, C.-G., Chen, L.-J., y Bai, F.-W. (2013). Prospective and deve- lopment of butanol as an advanced biofuel. Biotechnology advances, 31(8):1575–1584.
dc.relationYan, L., Edgar, T. F., y Baldea, M. (2018). Dynamic process intensification of binary distillation via periodic operation. Industrial & Engineering Chemistry Research.
dc.relationYen, H.-W., Lin, S.-F., y Yang, I.-K. (2012). Use of poly (ether-block-amide) in pervaporation coupling with a fermentor to enhance butanol production in the cultivation of clostridium acetobutylicum. Journal of bioscience and bioengineering, 113(3):372–377.
dc.relationZhao, C., Wu, H., Li, X., Pan, F., Li, Y., Zhao, J., Jiang, Z., Zhang, P., Cao, X., y Wang, B. (2013). High performance composite membranes with a polycarbophil calcium transition layer for pervaporation dehydration of ethanol. Journal of membrane science, 429:409–417.
dc.relationZhang, W., Gomez, E. D., y Milner, S. T. (2017). Predicting flory-huggins χ from simulations. Physical review letters, 119(1):017801.
dc.relationZhao, Y., Inbar, P., Chokshi, H. P., Malick, A. W., y Choi, D. S. (2011). Prediction of the thermal phase diagram of amorphous solid dispe
dc.relationZhao, Y., Inbar, P., Chokshi, H. P., Malick, A. W., y Choi, D. S. (2011). Prediction of the thermal phase diagram of amorphous solid dispersions by flory–huggins theory. Journal of pharmaceutical sciences, 100(8):3196–3207.
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleDiseño y análisis de pervaporación dinámica para separación de etanol-agua
dc.typeTesis


Este ítem pertenece a la siguiente institución