dc.relation | Abduljabbar, D. A., Hashim, S. Z. M., & Sallehuddin, R. (2020). Nature-inspired optimization algorithms for community detection in complex networks: A review and future trends. Telecommunication Systems. Scopus. https://doi.org/10.1007/s11235-019-00636-x
Acevedo Villalobos, M. C., & Ramírez Vallejo, J. (2005). Diferencias regionales en la eficiencia técnica del sector confecciones en Colombia: Un análisis de fronteras estocásticas. Innovar, 15(26), 90–105.
Acosta Dreika, L. L., Jaimes Ochoa, D. A., Vargas Valero, B. J., & Velásquez Ramírez, M. T. (2015). Comparativa de competitividad del sector de la moda entre Cúcuta y el resto del país. Revista Convicciones, 2(4), 47–56.
Ahmadi, A., & Akbari Jokar, M. R. (2016). An efficient multiple-stage mathematical programming method for advanced single and multi-floor facility layout problems. Applied Mathematical Modelling, 40(9–10), 5605–5620. Scopus. https://doi.org/10.1016/j.apm.2016.01.014
Aiello, G., Enea, M., & Galante, G. (2006). A multi-objective approach to facility layout problem by genetic search algorithm and Electre method. Robotics and Computer-Integrated Manufacturing, 22(5–6), 447–455. Scopus. https://doi.org/10.1016/j.rcim.2005.11.002
Aiello, G., La Scalia, G., & Enea, M. (2012). A multi objective genetic algorithm for the facility layout problem based upon slicing structure encoding. Expert Systems with Applications, 39(12), 10352–10358. Scopus. https://doi.org/10.1016/j.eswa.2012.01.125
Aiello, G., La Scalia, G., & Mario, E. (2013). A non dominated ranking Multi Objective Genetic Algorithm and electre method for unequal area facility layout problems. Expert Systems with Applications, 40(12), 4812–4819. Scopus. https://doi.org/10.1016/j.eswa.2013.02.026
Alagoz, O., Norman, B. A., & Smith, A. E. (2008). Determining aisle structures for facility designs using a hierarchy of algorithms. IIE Transactions (Institute of Industrial Engineers), 40(11), 1019–1031. Scopus. https://doi.org/10.1080/07408170802167621
Allahverdi, A. (2015). The third comprehensive survey on scheduling problems with setup times/costs. European Journal of Operational Research, 246(2), 345–378. Scopus. https://doi.org/10.1016/j.ejor.2015.04.004
Allahverdi, A., Gupta, J. N. D., & Aldowaisan, T. (1999). A review of scheduling research involving setup considerations. Omega, 27(2), 219–239. Scopus. https://doi.org/10.1016/S0305-0483(98)00042-5
Allahverdi, A., Ng, C. T., Cheng, T. C. E., & Kovalyov, M. Y. (2008). A survey of scheduling problems with setup times or costs. European Journal of Operational Research, 187(3), 985–1032. Scopus. https://doi.org/10.1016/j.ejor.2006.06.060
Allahyari, M. Z., & Azab, A. (2018). Mathematical modeling and multi-start search simulated annealing for unequal-area facility layout problem. Expert Systems with Applications, 91, 46–62. Scopus. https://doi.org/10.1016/j.eswa.2017.07.049
Alvarado Gallardo, C. J. (2013). Propuesta para el diseño ergonómico de los puestos de trabajo en el área de confección de la empresa Textimoda SAS en la ciudad de San José de Cúcuta [Grado en Ingeniería Industrial, Universidad Francisco de Paula Santander]. http://alejandria.ufps.edu.co/descargas/tesis/1190148.pdf
Alves, F., Varela, M. L. R., Rocha, A. M. A. C., Pereira, A. I., & Leitão, P. (2019). A human centred hybrid MAS and meta-heuristics based system for simultaneously supporting scheduling and plant layout adjustment. FME Transactions, 47(4), 699–710. Scopus. https://doi.org/10.5937/fmet1904699A
Anjos, M. F., & Vannelli, A. (2002). An Attractor-Repeller approach to floorplanning. Mathematical Methods of Operations Research, 56(1), 3–27. Scopus. https://doi.org/10.1007/s001860200197
Anjos, M. F., & Vannelli, A. (2006). A new mathematical-programming framework for facility-layout design. INFORMS Journal on Computing, 18(1), 111–118. Scopus. https://doi.org/10.1287/ijoc.1040.0103
Anjos, M. F., & Vieira, M. V. C. (2016). An improved two-stage optimization-based framework for unequal-areas facility layout. Optimization Letters, 10(7), 1379–1392. Scopus. https://doi.org/10.1007/s11590-016-1008-6
Anjos, M. F., & Vieira, M. V. C. (2017). Mathematical optimization approaches for facility layout problems: The state-of-the-art and future research directions. European Journal of Operational Research, 261(1), 1–16. https://doi.org/10.1016/j.ejor.2017.01.049
Apple, J. M. (1977). Plant layout and material handling (Third edition). John Wiley & Sons.
Arapoglu, R. A., Norman, B. A., & Smith, A. E. (2001). Locating input and output points in facilities design—A comparison of constructive, evolutionary, and exact methods. IEEE Transactions on Evolutionary Computation, 5(3), 192–203. Scopus. https://doi.org/10.1109/4235.930310
Armour, G. C., & Buffa, E. S. (1963). A Heuristic Algorithm and Simulation Approach to Relative Location of Facilities. Management Science, 9(2), 294–309. https://doi.org/10.1287/mnsc.9.2.294
Askin, R. G., & Goldberg, J. B. (2002). Design and analysis of lean production systems. Wiley.
Asl, A. D., Wong, K. Y., & Tiwari, M. K. (2016). Unequal-area stochastic facility layout problems: Solutions using improved covariance matrix adaptation evolution strategy, particle swarm optimisation, and genetic algorithm. International Journal of Production Research, 54(3), 799–823. Scopus. https://doi.org/10.1080/00207543.2015.1070217
Bahramara, S., Mazza, A., Chicco, G., Shafie-khah, M., & Catalão, J. P. S. (2020). Comprehensive review on the decision-making frameworks referring to the distribution network operation problem in the presence of distributed energy resources and microgrids. International Journal of Electrical Power and Energy Systems, 115. Scopus. https://doi.org/10.1016/j.ijepes.2019.105466
Balamurugan, K., Selladurai, V., & Ilamathi, B. (2006). Solving unequal area facility layout problems using genetic algorithm. International Journal of Logistics Systems and Management, 2(3), 281–301. Scopus. https://doi.org/10.1504/IJLSM.2006.009777
Balamurugan, K., Selladurai, V., & Ilamathi, B. (2008). Manufacturing facilities layout design using genetic algorithm. International Journal of Manufacturing Technology and Management, 14(3–4), 461–474. Scopus. https://doi.org/10.1504/IJMTM.2008.017739
Bazaraa, M. S. (1975). Computerized layout design: A branch and bound approach. AIIE Transactions, 7(4), 432–438. Scopus. https://doi.org/10.1080/05695557508975028
Beasley, J. E. (1990). OR-Library: Distributing Test Problems by Electronic Mail. The Journal of the Operational Research Society, 41(11), 1069. https://doi.org/10.2307/2582903
Behjat, S., & Salmasi, N. (2017). Total completion time minimisation of no-wait flowshop group scheduling problem with sequence dependent setup times. European Journal of Industrial Engineering, 11(1), 22–48. Scopus. https://doi.org/10.1504/EJIE.2017.081418
Behnamian, J., Zandieh, M., & Fatemi Ghomi, S. M. T. (2010). Due windows group scheduling using an effective hybrid optimization approach. International Journal of Advanced Manufacturing Technology, 46(5–8), 721–735. Scopus. https://doi.org/10.1007/s00170-009-2147-z
Benjaafar, S. (2002). Modeling and analysis of congestion in the design of facility layouts. Management Science, 48(5), 679–704. Scopus. https://doi.org/10.1287/mnsc.48.5.679.7800
Błażewicz, J., Domschke, W., & Pesch, E. (1996). The job shop scheduling problem: Conventional and new solution techniques. European Journal of Operational Research, 93(1), 1–33. https://doi.org/10.1016/0377-2217(95)00362-2
Boschetti, M. A., Maniezzo, V., Roffilli, M., & Bolufé Röhler, A. (2009). Matheuristics: Optimization, Simulation and Control. En M. J. Blesa, C. Blum, L. Di Gaspero, A. Roli, M. Sampels, & A. Schaerf (Eds.), Hybrid Metaheuristics (Vol. 5818, pp. 171–177). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-04918-7_13
Bouabda, R., Jarboui, B., Eddaly, M., & Reba, A. (2011). A branch and bound enhanced genetic algorithm for scheduling a flowline manufacturing cell with sequence dependent family setup times. Computers and Operations Research, 38(1), 387–393. Scopus. https://doi.org/10.1016/j.cor.2010.06.006
Bozer, Y. A., & Meller, R. D. (1997). A reexamination of the distance-based facility layout problem. IIE Transactions (Institute of Industrial Engineers), 29(7), 549–560. Scopus. https://doi.org/10.1080/07408179708966365
Bozer, Y. A., Meller, R. D., & Erlebacher, S. J. (1994). Improvement-type layout algorithm for single and multiple-floor facilities. Management Science, 40(7), 918–932. Scopus. https://doi.org/10.1287/mnsc.40.7.918
Bozer, Y. A., & Wang, C.-T. (2012). A graph-pair representation and MIP-model-based heuristic for the unequal-area facility layout problem. European Journal of Operational Research, 218(2), 382–391. Scopus. https://doi.org/10.1016/j.ejor.2011.10.052
Burbidge, J. L. (1975). The introduction of group technology. Heinemann.
Cámara de Comercio de Cúcuta. (2014). Documento de Estrategia. Iniciativa el Norte de la Moda (p. 29). http://www.datacucuta.com/index.php/cluster/norte-de-la-moda/559-document
Carlson, J. A., Jaffe, A., Wiles, A., Clay Mathematics Institute, & American Mathematical Society (Eds.). (2006). The Millennium prize problems. American Mathematical Society ; For The Clay Mathematics Institute.
Carro Paz, R., & González Gómez, D. (2014). Administración de operaciones. Construcción de operaciones de clase mundial. Nueva Libreria.
Castillo, I., & Sim, T. (2004). A spring-embedding approach for the facility layout problem. Journal of the Operational Research Society, 55(1), 73–81. Scopus. https://doi.org/10.1057/palgrave.jors.2601647
Castillo, I., Westerlund, J., Emet, S., & Westerlund, T. (2005). Optimization of block layout design problems with unequal areas: A comparison of MILP and MINLP optimization methods. Computers and Chemical Engineering, 30(1), 54–69. Scopus. https://doi.org/10.1016/j.compchemeng.2005.07.012
Castillo, I., & Westerlund, T. (2005). An ε-accurate model for optimal unequal-area block layout design. Computers and Operations Research, 32(3), 429–447. Scopus. https://doi.org/10.1016/S0305-0548(03)00246-6
Celano, G., Costa, A., & Fichera, S. (2010). Constrained scheduling of the inspection activities on semiconductor wafers grouped in families with sequence-dependent set-up times. International Journal of Advanced Manufacturing Technology, 46(5–8), 695–705. Scopus. https://doi.org/10.1007/s00170-009-2112-x
Celano, G., Costa, A., & Fichera, S. (2011). Flow shop group scheduling with limited buffer capacity and different workforce. ICINCO - Proc. Int. Conf. Informatics Control, Autom. Rob., 2, 486–491. Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-80052591769&partnerID=40&md5=2b8ca204364fc94669731a2d79c932ac
Černý, V. (1985). Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm. Journal of Optimization Theory and Applications, 45(1), 41–51. https://doi.org/10.1007/BF00940812
Chae, J., & Peters, B. A. (2006). Layout design of multi-bay facilities with limited bay flexibility. Journal of Manufacturing Systems, 25(1), 1–11. Scopus. https://doi.org/10.1016/S0278-6125(07)00004-0
Chae, J., & Regan, A. C. (2016). Layout design problems with heterogeneous area constraints. Computers and Industrial Engineering, 102, 198–207. Scopus. https://doi.org/10.1016/j.cie.2016.10.016
Chang, M.-S., & Ku, T.-C. (2013). A slicing tree representation and QCP-model-based heuristic algorithm for the unequal-area block facility layout problem. Mathematical Problems in Engineering, 2013. Scopus. https://doi.org/10.1155/2013/853586
Chen, C.-F., Wu, M.-C., Li, Y.-H., Tai, P.-H., & Chiou, C.-W. (2013). A comparison of two chromosome representation schemes used in solving a family-based scheduling problem. Robotics and Computer-Integrated Manufacturing, 29(3), 21–30. Scopus. https://doi.org/10.1016/j.rcim.2012.04.009
Chen, Y.-C., & Lee, C.-E. (2001). A bottleneck-based group scheduling procedure for job-shop cells. Journal of the Chinese Institute of Industrial Engineers, 18(5), 1–12. Scopus. https://doi.org/10.1080/10170660109509499
Cheng, H.-M., & Ying, K.-C. (2011). Minimizing makespan in a flow-line manufacturing cell with sequence dependent family setup times. Expert Systems with Applications, 38(12), 15517–15522. Scopus. https://doi.org/10.1016/j.eswa.2011.06.008
Cheng, T. C. E., Gupta, J. N. D., & Wang, G. (2000). A review of flowshop scheduling research with setup times. Production and Operations Management, 9(3), 262–282. Scopus.
Cho, K.-K., & Ahn, B.-H. (2003). A hybrid genetic algorithm for group scheduling with sequence dependent group setup time. International Journal of Industrial Engineering : Theory Applications and Practice, 10(4), 442–448. Scopus.
Costa, A., Cappadonna, F. A., & Fichera, S. (2017). A hybrid genetic algorithm for minimizing makespan in a flow-shop sequence-dependent group scheduling problem. Journal of Intelligent Manufacturing, 28(6), 1269–1283. Scopus. https://doi.org/10.1007/s10845-015-1049-1
Costa, A., Cappadonna, F. V., & Fichera, S. (2020). Minimizing makespan in a Flow Shop Sequence Dependent Group Scheduling problem with blocking constraint. Engineering Applications of Artificial Intelligence, 89. Scopus. https://doi.org/10.1016/j.engappai.2019.103413
Cuatrecasas-Arbós, L. (2009). Diseño avanzado de procesos y plantas de producción flexible. Técnicas de diseño y herramientas gráficas con soporte informático. Profit.
Daş, G. S., Gzara, F., & Stützle, T. (2020). A review on airport gate assignment problems: Single versus multi objective approaches. Omega (United Kingdom), 92. Scopus. https://doi.org/10.1016/j.omega.2019.102146
Das, S. K. (1993). A facility layout method for flexible manufacturing systems. International Journal of Production Research, 31(2), 279–297. Scopus. https://doi.org/10.1080/00207549308956725
Das, S., & Patnaik, A. (2015). Production planning in the apparel industry. En Garment Manufacturing Technology (pp. 81–108). Elsevier. https://doi.org/10.1016/B978-1-78242-232-7.00004-7
Delgoshaei, A., Ariffin, M. K. A. M., Leman, Z., Baharudin, B. T. H. T. B., & Gomes, C. (2016). Review of evolution of cellular manufacturing system’s approaches: Material transferring models. International Journal of Precision Engineering and Manufacturing, 17(1), 131–149. Scopus. https://doi.org/10.1007/s12541-016-0017-9
Dennis, P. (2015). Lean production simplified: A plain-language guide to the world’s most powerful production system (Third edition). CRC Press, Taylor & Francis Group.
Dicken, P. (2003). Global shift: Reshaping the global economic map in the 21st century (4th ed). Sage Publications.
Donaghey, C. E., & Pire, V. F. (1991). Solving the facility layout problem with BLOCPLAN. Information Management: Proceedings of Limerick University Conference, 649–658.
Dorigo, M. (1992). Optimization, learning and natural algorithms [PhD Thesis]. Politecnico di Milano.
Drira, A., Pierreval, H., & Hajri-Gabouj, S. (2007). Facility layout problems: A survey. Annual Reviews in Control, 31(2), 255–267. https://doi.org/10.1016/j.arcontrol.2007.04.001
Dunker, T., Radons, G., & Westkämper, E. (2003). A coevolutionary algorithm for a facility layout problem. International Journal of Production Research, 41(15), 3479–3500. Scopus. https://doi.org/10.1080/0020754031000118125
Ebrahimi, A., Kia, R., & Komijan, A. R. (2016). Solving a mathematical model integrating unequal-area facilities layout and part scheduling in a cellular manufacturing system by a genetic algorithm. SpringerPlus, 5(1). Scopus. https://doi.org/10.1186/s40064-016-2773-5
Eddaly, M., Jarboui, B., Bouabda, R., Siarry, P., & Rebaï, A. (2013). An Estimation of Distribution Algorithm for Solving Flow Shop Scheduling Problems with Sequence-dependent Family Setup Times. En Metaheuristics for Prod. Sched. (pp. 1–17). wiley; Scopus. https://doi.org/10.1002/9781118731598.ch1
Fares, N., & Lebbar, M. (2019). Optimization of fast fashion retail supply chain processes: Overall literature review and future research challenges. International Journal of Engineering Research in Africa, 45, 205–220. Scopus. https://doi.org/10.4028/www.scientific.net/JERA.45.205
Fares, N., Lebbar, M., & Sbihi, N. (2019). A customer profiling’ machine learning approach, for in-store sales in fast fashion (Vol. 915). Springer Verlag; Scopus. https://doi.org/10.1007/978-3-030-11928-7_53
Fattahi, P., Saidi Mehrabad, M., & Jolai, F. (2007). Mathematical modeling and heuristic approaches to flexible job shop scheduling problems. Journal of Intelligent Manufacturing, 18(3), 331–342. https://doi.org/10.1007/s10845-007-0026-8
Fisher, R. D., & Thompson, G. L. (1963). Probabilistic Learning Combinations of Local Job-Shop Scheduling Rules. En J. F. Muth & G. L. Thompson (Eds.), Industrial Scheduling (pp. 225–251). Prentice-Hall.
Forza, C., & Vinelli, A. (2000). Time compression in production and distribution within the textile‐apparel chain. Integrated Manufacturing Systems, 11(2), 138–146. https://doi.org/10.1108/09576060010314134
França, P. M., Gupta, J. N. D., Mendes, A. S., Moscato, P., & Veltink, K. J. (2005). Evolutionary algorithms for scheduling a flowshop manufacturing cell with sequence dependent family setups. Computers and Industrial Engineering, 48(3), 491–506. Scopus. https://doi.org/10.1016/j.cie.2003.11.004
García Bautista, M. F., & Jauregui Mancipe, C. X. (2016). Caracterización de las empresas del sector textil confecciones en la ciudad de Cúcuta, Norte de Santander [Grado en Ingeniería Industrial, Universidad de Santander]. https://catalogo.udes.edu.co/cgi-bin/koha/opac-detail.pl?biblionumber=37685
García-Hernández, L., Palomo-Romero, J. M., Salas-Morera, L., Arauzo-Azofra, A., & Pierreval, H. (2015). A novel hybrid evolutionary approach for capturing decision maker knowledge into the unequal area facility layout problem. Expert Systems with Applications, 42(10), 4697–4708. Scopus. https://doi.org/10.1016/j.eswa.2015.01.037
García-Hernández, L., Pérez-Ortiz, M., Arauzo-Azofra, A., Salas-Morera, L., & Hervas-Martinez, C. (2014). An evolutionary neural system for incorporating expert knowledge into the UA-FLP. Neurocomputing, 135, 69–78. Scopus. https://doi.org/10.1016/j.neucom.2013.01.068
García-Hernández, L., Pierreval, H., Salas-Morera, L., & Arauzo-Azofra, A. (2013). Handling qualitative aspects in Unequal Area Facility Layout Problem: An Interactive Genetic Algorithm. Applied Soft Computing Journal, 13(4), 1718–1727. Scopus. https://doi.org/10.1016/j.asoc.2013.01.003
García-Hernández, L., Salas-Morera, L., Carmona-Muñoz, C., Abraham, A., & Salcedo-Sanz, S. (2020). A novel multi-objective Interactive Coral Reefs Optimization algorithm for the Unequal Area Facility Layout Problem. Swarm and Evolutionary Computation, 55. Scopus. https://doi.org/10.1016/j.swevo.2020.100688
García-Hernández, L., Salas-Morera, L., Carmona-Muñoz, C., García-Hernández, J. A., & Salcedo-Sanz, S. (2020). A novel Island Model based on Coral Reefs Optimization algorithm for solving the unequal area facility layout problem. Engineering Applications of Artificial Intelligence, 89. Scopus. https://doi.org/10.1016/j.engappai.2019.103445
García-Hernández, L., Salas-Morera, L., García-Hernández, J. A., Salcedo-Sanz, S., & Valente de Oliveira, J. (2019). Applying the coral reefs optimization algorithm for solving unequal area facility layout problems. Expert Systems with Applications, 138. Scopus. https://doi.org/10.1016/j.eswa.2019.07.036
Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: A guide to the theory of NP-completeness. W. H. Freeman.
Gau, K.-Y., & Meller, R. D. (1999). An iterative facility layout algorithm. International Journal of Production Research, 37(16), 3739–3758. Scopus. https://doi.org/10.1080/002075499190022
Gelogullari, C. A., & Logendran, R. (2010). Group-scheduling problems in electronics manufacturing. Journal of Scheduling, 13(2), 177–202. Scopus. https://doi.org/10.1007/s10951-009-0147-3
Gelvez Manrique, M. F. (2016). Redistribución del proceso de confección por celdas de manufactura para aumentar el volumen de producción de la empresa Sexy Jeans Ltda., en la ciudad de Cúcuta—Norte de Santander [Grado en Ingeniería Industrial, Universidad Libre Seccional Cúcuta]. https://repository.unilibre.edu.co/handle/10901/9289
Georgiadis, M. C., Rotstein, G. E., & Macchietto, S. (1997). Optimal Layout Design in Multipurpose Batch Plants. Industrial and Engineering Chemistry Research, 36(11), 4852–4863. Scopus. https://doi.org/10.1021/ie9702845
Ghassemi Tari, F., & Neghabi, H. (2015). A new linear adjacency approach for facility layout problem with unequal area departments. Journal of Manufacturing Systems, 37, 93–103. Scopus. https://doi.org/10.1016/j.jmsy.2015.09.003
Glover, F. (1986). Future paths for integer programming and links to artificial intelligence. Computers & Operations Research, 13(5), 533–549. https://doi.org/10.1016/0305-0548(86)90048-1
Glover, F. (1989). Tabu Search—Part I. ORSA Journal on Computing, 1(3), 190–206. https://doi.org/10.1287/ijoc.1.3.190
Gökalp, E., Gökalp, M. O., & Eren, P. E. (2018). Analyzing the Impact of a Decision Support System on a Medium Sized Apparel Company. En R. Valencia-García, M. A. Paredes-Valverde, M. del P. Salas-Zárate, & G. Alor-Hernández (Eds.), Exploring Intelligent Decision Support Systems (Vol. 764, pp. 73–87). Springer International Publishing. https://doi.org/10.1007/978-3-319-74002-7_4
Gómez Mora, J. M., & Pulido García, M. F. (2019). Propuesta para el diseño de mantenimiento preventivo para el área de confección en la Organización Bless SAS [Grado en Ingeniería Industrial, Universidad Francisco de Paula Santander]. http://alejandria.ufps.edu.co/descargas/tesis/1192287%20%201192288.pdf
Gonçalves, J. F., & Resende, M. G. C. (2015). A biased random-key genetic algorithm for the unequal area facility layout problem. European Journal of Operational Research, 246(1), 86–107. Scopus. https://doi.org/10.1016/j.ejor.2015.04.029
Gonzalez, R., & Realff, M. J. (1998). Operation of pipeless batch plants—I. MILP schedules. Computers and Chemical Engineering, 22(7–8), 841–855. Scopus. https://doi.org/10.1016/S0098-1354(98)00005-2
Graham, R. L., Lawler, E. L., Lenstra, J. K., & Kan, A. H. G. R. (1979). Optimization and Approximation in Deterministic Sequencing and Scheduling: A Survey. En Annals of Discrete Mathematics (Vol. 5, pp. 287–326). Elsevier. https://doi.org/10.1016/S0167-5060(08)70356-X
Gupta, J. N. D., & Darrow, W. P. (1986). The two-machine sequence dependent flowshop scheduling problem. European Journal of Operational Research, 24(3), 439–446. https://doi.org/10.1016/0377-2217(86)90037-8
Gupta, J. N. D., & Schaller, J. E. (2006). Minimizing flow time in a flow-line manufacturing cell with family setup times. Journal of the Operational Research Society, 57(2), 163–176. Scopus. https://doi.org/10.1057/palgrave.jors.2601971
Ham, I., Hitomi, K., & Yoshida, T. (1985). Group Technology: Applications to Production Management. Springer Netherlands. https://doi.org/10.1007/978-94-009-4976-8
Hamed Hendizadeh, S., ElMekkawy, T. Y., & Gary Wang, G. (2007). Bi-criteria scheduling of a flowshop manufacturing cell with sequence dependent setup times. European Journal of Industrial Engineering, 1(4), 391–413. Scopus.
Hamed Hendizadeh, S., Faramarzi, H., Mansouri, S. A., Gupta, J. N. D., & Y ElMekkawy, T. (2008). Meta-heuristics for scheduling a flowline manufacturing cell with sequence dependent family setup times. International Journal of Production Economics, 111(2), 593–605. Scopus. https://doi.org/10.1016/j.ijpe.2007.02.031
Hassler, M. (2003). The global clothing production system: Commodity chains and business networks. Global Networks, 3(4), 513–531. https://doi.org/10.1111/1471-0374.00075
Heizer, J., Render, B., & Munson, C. (2017). Operations management: Sustainability and supply chain management (Twelfth edition). Pearson.
Heragu, S. S. (2016). Facilities design (Fourth edition). CRC Press, Taylor & Francis Group.
Hernández Redondo, J. V. (2017). Sistema de producción aplicando lean manufacturing en el proceso de confección para la organización Bless ubicada en la ciudad de Cúcuta, Norte de Santander [Grado en Administración de Empresas, Universidad de Pamplona]. http://serviciosacademicos.unipamplona.edu.co/prestamo/
Hernández-Gress, E. S., Seck-Tuoh-Mora, J. C., Hernández-Romero, N., Medina-Marín, J., Lagos-Eulogio, P., & Ortíz-Perea, J. (2020). The solution of the concurrent layout scheduling problem in the job-shop environment through a local neighborhood search algorithm. Expert Systems with Applications, 144. Scopus. https://doi.org/10.1016/j.eswa.2019.113096
Holland, J. H. (1962). Outline for a Logical Theory of Adaptive Systems. Journal of the ACM (JACM), 9(3), 297–314. https://doi.org/10.1145/321127.321128
Holland, J. H. (1975). Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence. University of Michigan Press.
Hosseini-Nasab, H., Fereidouni, S., Fatemi Ghomi, S. M. T., & Fakhrzad, M. B. (2018). Classification of facility layout problems: A review study. International Journal of Advanced Manufacturing Technology, 94(1–4), 957–977. Scopus. https://doi.org/10.1007/s00170-017-0895-8
Hou, S., Wen, H., Feng, S., Wang, H., & Li, Z. (2019). Application of layered coding genetic algorithm in optimization of unequal area production facilities layout. Computational Intelligence and Neuroscience, 2019. Scopus. https://doi.org/10.1155/2019/3650923
Huang, X. (2019). Bicriterion scheduling with group technology and deterioration effect. Journal of Applied Mathematics and Computing, 60(1–2), 455–464. Scopus. https://doi.org/10.1007/s12190-018-01222-1
Ibero Casadiego, L., & Manzano Romero, L. S. (2017). Propuesta para la planeación y control de la producción de una pequeña empresa de confección de uniformes escolares en la ciudad de San José de Cúcuta [Grado en Ingeniería Industrial, Universidad Francisco de Paula Santander]. http://alejandria.ufps.edu.co/descargas/tesis/1190802.pdf
Ibrahem, A.-M., Elmekkawy, T., & Peng, Q. (2014). Robust metaheuristics for scheduling cellular flowshop with family sequence-dependent setup times. Procedia CIRP, 17, 428–433. Scopus. https://doi.org/10.1016/j.procir.2014.01.072
Imam, M. H., & Mir, M. (1993). Automated layout of facilities of unequal areas. Computers and Industrial Engineering, 24(3), 355–366. Scopus. https://doi.org/10.1016/0360-8352(93)90032-S
Imam, M. H., & Mir, M. (1998). Cluster boundary search algorithm for building-block layout optimization. Advances in Engineering Software, 29(2), 165–173. Scopus. https://doi.org/10.1016/S0965-9978(98)00056-8
Ingole, S., & Singh, D. (2017). Unequal-area, fixed-shape facility layout problems using the firefly algorithm. Engineering Optimization, 49(7), 1097–1115. Scopus. https://doi.org/10.1080/0305215X.2016.1235327
Irani, S. A. (Ed.). (1999). Handbook of cellular manufacturing systems. Wiley.
Islier, A. A. (1998). A genetic algorithm approach for multiple criteria facility layout design. International Journal of Production Research, 36(6), 1549–1569. Scopus. https://doi.org/10.1080/002075498193165
Jacobs, F. R., & Chase, R. B. (2018). Operations and supply chain management (Fifteenth edition). McGraw-Hill Education.
Jankovits, I., Luo, C., Anjos, M. F., & Vannelli, A. (2011). A convex optimisation framework for the unequal-areas facility layout problem. European Journal of Operational Research, 214(2), 199–215. Scopus. https://doi.org/10.1016/j.ejor.2011.04.013
Jayakumar, S., & Reklaitis, G. V. (1996). Chemical plant layout via graph partitioning—II. Multiple levels. Computers and Chemical Engineering, 20(5), 563–578. Scopus. https://doi.org/10.1016/0098-1354(95)00208-1
Johnson, S. M. (1954). Optimal two- and three-stage production schedules with setup times included. Naval Research Logistics Quarterly, 1(1), 61–68. https://doi.org/10.1002/nav.3800010110
Jones, R. M. (2006). The apparel industry (2nd ed). Blackwell Pub.
Kamoshida, R. (2018). Concurrent optimization of job shop scheduling and dynamic and flexible facility layout planning. Int. Conf. Ind. Eng. Appl., ICIEA, 289–293. Scopus. https://doi.org/10.1109/IEA.2018.8387112
Kamoun, M., & Yano, C. A. (1996). Facility layout to support just-in-time. Transportation Science, 30(4), 315–329. Scopus. https://doi.org/10.1287/trsc.30.4.315
Kang, S., & Chae, J. (2017). Harmony search for the layout design of an unequal area facility. Expert Systems with Applications, 79, 269–281. Scopus. https://doi.org/10.1016/j.eswa.2017.02.047
Kazemi, M., Poormoaied, S., & Eslami, G. (2012). Optimizing combination of job shop scheduling and quadratic assignment problem through multi-objective decision making approach. Management Science Letters, 2(6), 2011–2018. https://doi.org/10.5267/j.msl.2012.06.020
Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. Proceedings of ICNN’95 - International Conference on Neural Networks, 4, 1942–1948. https://doi.org/10.1109/ICNN.1995.488968
Keshavarz, T., Salmasi, N., & Varmazyar, M. (2014). Minimizing total completion time in the flexible flowshop sequence-dependent group scheduling problem. Annals of Operations Research, 226(1), 351–377. Scopus. https://doi.org/10.1007/s10479-014-1667-6
Keshavarz, T., Salmasi, N., & Varmazyar, M. (2019). Flowshop sequence-dependent group scheduling with minimisation of weighted earliness and tardiness. European Journal of Industrial Engineering, 13(1), 54–80. Scopus. https://doi.org/10.1504/EJIE.2019.097920
Khalid, Q. S., Arshad, M., Maqsood, S., Jahanzaib, M., Babar, A. R., Khan, I., Mumtaz, J., & Kim, S. (2019). Hybrid particle swarm algorithm for products’ scheduling problem in cellular manufacturing system. Symmetry, 11(6). Scopus. https://doi.org/10.3390/sym11060729
Khare, V. K., Khare, M. K., & Neema, M. L. (1988). Combined computer-aided approach for the facilities design problem and estimation of the distribution parameter in the case of multigoal optimization. Computers and Industrial Engineering, 14(4), 465–476. Scopus. https://doi.org/10.1016/0360-8352(88)90048-4
Kikolski, M., & Ko, C.-H. (2018). Facility layout design—Review of current research directions. Engineering Management in Production and Services, 10(3), 70–79. Scopus. https://doi.org/10.2478/emj-2018-0018
Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by Simulated Annealing. Science, 220(4598), 671–680. https://doi.org/10.1126/science.220.4598.671
Kitchenham, B. (2004). Procedures for Performing Systematic Reviews (Joint Technical Report Keele University Technical Report (TR/SE-0401) and National ICT Australia Ltd. (0400011T.1)).
Komarudin, & Wong, K. Y. (2010). Applying Ant System for solving Unequal Area Facility Layout Problems. European Journal of Operational Research, 202(3), 730–746. Scopus. https://doi.org/10.1016/j.ejor.2009.06.016
Komarudin, & Wong, K. Y. (2012). Parameter tuning of ant system using fuzzy logic controller. International Journal of Operational Research, 15(2), 125–135. Scopus. https://doi.org/10.1504/IJOR.2012.048863
Konak, A., Kulturel-Konak, S., Norman, B. A., & Smith, A. E. (2006). A new mixed integer programming formulation for facility layout design using flexible bays. Operations Research Letters, 34(6), 660–672. Scopus. https://doi.org/10.1016/j.orl.2005.09.009
Koopmans, T. C., & Beckmann, M. (1957). Assignment Problems and the Location of Economic Activities. Econometrica, 25(1), 53. https://doi.org/10.2307/1907742
Krajewski, L. J., Malhotra, M. K., & Ritzman, L. P. (2016). Operations management. Processes and supply chains (Eleventh edition). Pearson.
Kulturel-Konak, S. (2012). A linear programming embedded probabilistic tabu search for the unequal-area facility layout problem with flexible bays. European Journal of Operational Research, 223(3), 614–625. Scopus. https://doi.org/10.1016/j.ejor.2012.07.019
Kulturel-Konak, S., & Konak, A. (2011a). A new relaxed flexible bay structure representation and particle swarm optimization for the unequal area facility layout problem. Engineering Optimization, 43(12), 1263–1287. Scopus. https://doi.org/10.1080/0305215X.2010.548864
Kulturel-Konak, S., & Konak, A. (2011b). Unequal area flexible bay facility layout using ant colony optimisation. International Journal of Production Research, 49(7), 1877–1902. Scopus. https://doi.org/10.1080/00207541003614371
Kulturel-Konak, S., & Konak, A. (2013). Linear programming based genetic algorithm for the unequal area facility layout problem. International Journal of Production Research, 51(14), 4302–4324. Scopus. https://doi.org/10.1080/00207543.2013.774481
Kulturel-Konak, S., Smith, A. E., & Norman, B. A. (2004). Layout optimization considering production uncertainty and routing flexibility. International Journal of Production Research, 42(21), 4475–4493. Scopus. https://doi.org/10.1080/00207540412331325567
Kundu, A., & Dan, P. K. (2012). Metaheuristic in facility layout problems: Current trend and future direction. International Journal of Industrial and Systems Engineering, 10(2), 238. https://doi.org/10.1504/IJISE.2012.045182
Kusiak, A., & Heragu, S. S. (1987). The facility layout problem. European Journal of Operational Research, 29(3), 229–251. Scopus. https://doi.org/10.1016/0377-2217(87)90238-4
La Scalia, G., Micale, R., Giallanza, A., & Marannano, G. (2019). Firefly algorithm based upon slicing structure encoding for unequal facility layout problem. International Journal of Industrial Engineering Computations, 10(3), 349–360. Scopus. https://doi.org/10.5267/j.ijiec.2019.2.003
Lawler, E. L. (1973). Optimal Sequencing of a Single Machine Subject to Precedence Constraints. Management Science, 19(5), 544–546. JSTOR.
Lawrence, S. L. (1984). Supplement to Resource Constrained Project Scheduling: An Experimental Investigation of Heuristic Sc. Carnegie-Mellon University.
Leao, A. A. S., Toledo, F. M. B., Oliveira, J. F., Carravilla, M. A., & Alvarez-Valdés, R. (2020). Irregular packing problems: A review of mathematical models. European Journal of Operational Research, 282(3), 803–822. Scopus. https://doi.org/10.1016/j.ejor.2019.04.045
Lee, K.-Y., Han, S.-N., & Roh, M.-I. (2003). An improved genetic algorithm for facility layout problems having inner structure walls and passages. Computers and Operations Research, 30(1), 117–138. Scopus. https://doi.org/10.1016/S0305-0548(01)00085-5
Lee, Y. H., & Lee, M. H. (2002). A shape-based block layout approach to facility layout problems using hybrid genetic algorithm. Computers and Industrial Engineering, 42(2–4), 237–248. Scopus. https://doi.org/10.1016/S0360-8352(02)00018-9
Lin, S.-W., Gupta, J. N. D., Ying, K.-C., & Lee, Z.-J. (2009). Using simulated annealing to schedule a flowshop manufacturing cell with sequence-dependent family setup times. International Journal of Production Research, 47(12), 3205–3217. Scopus. https://doi.org/10.1080/00207540701813210
Lin, S.-W., & Ying, K.-C. (2012). Scheduling a bi-criteria flowshop manufacturing cell with sequence-dependent family setup times. European Journal of Industrial Engineering, 6(4), 474–496. Scopus. https://doi.org/10.1504/EJIE.2012.047666
Lin, S.-W., & Ying, K.-C. (2019). Makespan optimization in a no-wait flowline manufacturing cell with sequence-dependent family setup times. Computers and Industrial Engineering, 128, 1–7. Scopus. https://doi.org/10.1016/j.cie.2018.12.025
Lin, S.-W., Ying, K.-C., & Lee, Z.-J. (2009). Metaheuristics for scheduling a non-permutation flowline manufacturing cell with sequence dependent family setup times. Computers and Operations Research, 36(4), 1110–1121. Scopus. https://doi.org/10.1016/j.cor.2007.12.010
Lin, S.-W., Ying, K.-C., Lu, C.-C., & Gupta, J. N. D. (2011). Applying multi-start simulated annealing to schedule a flowline manufacturing cell with sequence dependent family setup times. International Journal of Production Economics, 130(2), 246–254. Scopus. https://doi.org/10.1016/j.ijpe.2011.01.004
Liou, C.-D., & Hsieh, Y.-C. (2015). A hybrid algorithm for the multi-stage flow shop group scheduling with sequence-dependent setup and transportation times. International Journal of Production Economics, 170, 258–267. Scopus. https://doi.org/10.1016/j.ijpe.2015.10.002
Liou, C.-D., Hsieh, Y.-C., & Chen, Y.-Y. (2013). A new encoding scheme-based hybrid algorithm for minimising two-machine flow-shop group scheduling problem. International Journal of Systems Science, 44(1), 77–93. Scopus. https://doi.org/10.1080/00207721.2011.581396
Liou, C.-D., & Liu, C.-H. (2010). A novel encoding scheme of PSO for two-machine group scheduling: Vol. 6145 LNCS (Peking University; Xi’an Jiaotong-Liverpool University, Trad.; Número PART 1). Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-77954654783&doi=10.1007%2f978-3-642-13495-1_16&partnerID=40&md5=0e674d343a46e28493891c85f274d416
Liu, J., & Liu, J. (2019). Applying multi-objective ant colony optimization algorithm for solving the unequal area facility layout problems. Applied Soft Computing Journal, 74, 167–189. Scopus. https://doi.org/10.1016/j.asoc.2018.10.012
Liu, J., Liu, J., Yan, X., & Peng, B. (2020). A heuristic algorithm combining Pareto optimization and niche technology for multi-objective unequal area facility layout problem. Engineering Applications of Artificial Intelligence, 89. Scopus. https://doi.org/10.1016/j.engappai.2019.103453
Liu, J., Liu, S., Liu, Z., & Li, B. (2020). Configuration space evolutionary algorithm for multi-objective unequal-area facility layout problems with flexible bays. Applied Soft Computing Journal, 89. Scopus. https://doi.org/10.1016/j.asoc.2019.106052
Liu, J., Zhang, H., He, K., & Jiang, S. (2018). Multi-objective particle swarm optimization algorithm based on objective space division for the unequal-area facility layout problem. Expert Systems with Applications, 102, 179–192. Scopus. https://doi.org/10.1016/j.eswa.2018.02.035
Liu, Q., & Meller, R. D. (2007). A sequence-pair representation and MIP-model-based heuristic for the facility layout problem with rectangular departments. IIE Transactions (Institute of Industrial Engineers), 39(4), 377–394. Scopus. https://doi.org/10.1080/07408170600844108
Logendran, R., Carson, S., & Hanson, E. (2005). Group scheduling in flexible flow shops. International Journal of Production Economics, 96(2), 143–155. Scopus. https://doi.org/10.1016/j.ijpe.2004.03.011
Logendran, R., Gelogullari, C. A., & Sriskandarajah, C. (2003). Minimizing the mean flow time in a two-machine group-scheduling problem with carryover sequence dependency. Robotics and Computer-Integrated Manufacturing, 19(1–2), 21–33. Scopus. https://doi.org/10.1016/S0736-5845(02)00059-5
Logendran, R., & Kriausakul, T. (2006). A methodology for solving the unequal area facility layout problem using distance and shape-based measures. International Journal of Production Research, 44(7), 1243–1272. Scopus. https://doi.org/10.1080/00207540500336314
Logendran, R., Salmasi, N., & Sriskandarajah, C. (2006). Two-machine group scheduling problems in discrete parts manufacturing with sequence-dependent setups. Computers and Operations Research, 33(1), 158–180. Scopus. https://doi.org/10.1016/j.cor.2004.07.004
Lu, D., & Logendran, R. (2013). Bi-criteria group scheduling with sequence-dependent setup time in a flow shop. Journal of the Operational Research Society, 64(4), 530–546. Scopus. https://doi.org/10.1057/jors.2012.61
Madariaga Neto, F. (2013). Lean manufacturing: Exposición adaptada a la fabricación repetitiva de familias de productos mediante procesos discretos (Primera edición). Bubok Publishing S.L.
Maggu, P. L., & Das, G. (1980). On 2×n sequencing problem with transportation times of jobs. Pure & Applied Mathematika Sciences, 12.
Mallikarjuna, K., & Babu, K. S. (2018). Population Based Stochastic Technique for Optimum Design of Open Field Layout with Integrated Scheduling. Int. Conf. Comput., Commun. Netw. Technol., ICCCNT. 9th International Conference on Computing, Communication and Networking Technologies, ICCCNT 2018. Scopus. https://doi.org/10.1109/ICCCNT.2018.8494049
McKendall Jr., A. R., & Hakobyan, A. (2010). Heuristics for the dynamic facility layout problem with unequal-area departments. European Journal of Operational Research, 201(1), 171–182. Scopus. https://doi.org/10.1016/j.ejor.2009.02.028
Meller, R. D. (1992). Layout algorithms for single and multiple floor facilities [Doctoral Thesis, The University of Michigan]. http://hdl.handle.net/2027.42/129018
Meller, R. D. (1997). The multi-bay manufacturing facility layout problem. International Journal of Production Research, 35(5), 1229–1237. Scopus. https://doi.org/10.1080/002075497195290
Meller, R. D., & Bozer, Y. A. (1996). A new simulated annealing algorithm for the facility layout problem. International Journal of Production Research, 34(6), 1675–1692. Scopus. https://doi.org/10.1080/00207549608904990
Meller, R. D., Chen, W., & Sherali, H. D. (2007). Applying the sequence-pair representation to optimal facility layout designs. Operations Research Letters, 35(5), 651–659. Scopus. https://doi.org/10.1016/j.orl.2006.10.007
Meller, R. D., & Gau, K.-Y. (1996). The facility layout problem: Recent and emerging trends and perspectives. Journal of Manufacturing Systems, 15(5), 351–366. https://doi.org/10.1016/0278-6125(96)84198-7
Meller, R. D., Narayanan, V., & Vance, P. H. (1998). Optimal facility layout design. Operations Research Letters, 23(3–5), 117–127. Scopus. https://doi.org/10.1016/S0167-6377(98)00024-8
Mendoza Mantilla, J. A., & Jaimes Delgado, M. S. (2017). Propuesta de mejora mediante un estudio de métodos y tiempos para el área de producción de la empresa Distribuciones y Representaciones UNO en la ciudad de Cúcuta [Grado en Tecnología en Procesos Industriales, Universidad Francisco de Paula Santander]. http://alejandria.ufps.edu.co/descargas/tesis/1980260.pdf
Meyers, R. A. (Ed.). (1986). Handbook of chemicals production processes. McGraw-Hill Book Co.
Mir, M., & Imam, M. H. (1996). Analytic annealing for macrocell placement optimization. Computers and Electrical Engineering, 22(2), 169–177. Scopus. https://doi.org/10.1016/0045-7906(95)00031-3
Mir, M., & Imam, M. H. (2001). Hybrid optimization approach for layout design of unequal-area facilities. Computers and Industrial Engineering, 39(1–2), 49–63. Scopus. https://doi.org/10.1016/S0360-8352(00)00065-6
Mitchell, S., O’Sullivan, M., & Dunning, I. (2011). PuLP: A Linear Programming Toolkit for Python (p. 12). http://www.optimization-online.org/DB_FILE/2011/09/3178.pdf
Mok, P. Y., Cheung, T. Y., Wong, W. K., Leung, S. Y. S., & Fan, J. T. (2013). Intelligent production planning for complex garment manufacturing. Journal of Intelligent Manufacturing, 24(1), 133–145. https://doi.org/10.1007/s10845-011-0548-y
Montreuil, B., Ouazzani, N., Brotherton, E., & Nourelfath, M. (2004). Coupling zone-based layout optimization, ant colony system and domain knowledge. Proceedings of the 8th International Material Handling Research Colloquium, 301–331.
Muther, R. (1973). Systematic layout planning (2d ed. [rev. and enl.]). Cahners Books.
Muther, R., & Hales, L. (2015). Systematic Layout Planning. A total system of layout planning (fourth edition). Management & Industrial Research Publications.
Naderi, B., & Salmasi, N. (2012). Permutation flowshops in group scheduling with sequence-dependent setup times. European Journal of Industrial Engineering, 6(2), 177–198. Scopus. https://doi.org/10.1504/EJIE.2012.045604
Nahmias, S., & Olsen, T. L. (2015). Production and operations analysis (7. ed). Waveland Pr.
Nayak, R., & Padhye, R. (2015). Garment Manufacturing Technology. Elsevier Science. http://www.totalboox.com/book/id-4668022919799682393
Neufeld, J. S., Gupta, J. N. D., & Buscher, U. (2015). Minimising makespan in flowshop group scheduling with sequence-dependent family set-up times using inserted idle times. International Journal of Production Research, 53(6), 1791–1806. Scopus. https://doi.org/10.1080/00207543.2014.961209
Neufeld, J. S., Gupta, J. N. D., & Buscher, U. (2016). A comprehensive review of flowshop group scheduling literature. Computers and Operations Research, 70, 56–74. Scopus. https://doi.org/10.1016/j.cor.2015.12.006
Nieto Galindo, V. M., & López, J. E. (2017). Cadena de Textil-Confecciones. Estructura, Comercio Internacional y Protección (Documento Núm. 460; Archivos de Economía, p. 58). Departamento Nacional de Planeación, DNP. https://colaboracion.dnp.gov.co/CDT/Estudios%20Econmicos/460.pdf
Nugent, C. E., Vollmann, T. E., & Ruml, J. (1968). An Experimental Comparison of Techniques for the Assignment of Facilities to Locations. Operations Research, 16(1), 150–173. https://doi.org/10.1287/opre.16.1.150
Ortiz Zambrano, Y. Y., & Osorio Jaimes, E. (2010). Propuesta de programación de la producción de la empresa Confecciones Y7 en la ciudad de Cúcuta por medio de la Teoría de Restricciones [Grado en Ingeniería Industrial, Universidad Francisco de Paula Santander]. http://alejandria.ufps.edu.co/descargas/tesis/0190922.pdf
Özyurt, D. B., & Realff, M. J. (1999). Geographic and process information for chemical plant layout problems. AIChE Journal, 45(10), 2161–2174. Scopus. https://doi.org/10.1002/aic.690451015
Paes, F. G., Pessoa, A. A., & Vidal, T. (2017). A hybrid genetic algorithm with decomposition phases for the Unequal Area Facility Layout Problem. European Journal of Operational Research, 256(3), 742–756. Scopus. https://doi.org/10.1016/j.ejor.2016.07.022
Palominos, P., Pertuzé, D., Quezada, L., & Sanchez, L. (2019). An Extension of the Systematic Layout Planning System Using QFD: Its Application to Service Oriented Physical Distribution. Engineering Management Journal, 31(4), 284–302. https://doi.org/10.1080/10429247.2019.1651444
Palomo-Romero, J. M., Salas-Morera, L., & García-Hernández, L. (2017). An island model genetic algorithm for unequal area facility layout problems. Expert Systems with Applications, 68, 151–162. Scopus. https://doi.org/10.1016/j.eswa.2016.10.004
Park, K. S., & Han, S. W. (2002). Performance obstacles in cellular manufacturing implementation-empirical investigation. Human Factors and Ergonomics In Manufacturing, 12(1), 17–29. Scopus. https://doi.org/10.1002/hfm.10000
Paul, R. C., Asokan, P., & Prabhakar, V. I. (2006). A solution to the facility layout problem having passages and inner structure walls using particle swarm optimization. International Journal of Advanced Manufacturing Technology, 29(7–8), 766–771. Scopus. https://doi.org/10.1007/s00170-005-2576-2
Pellerin, R., Perrier, N., & Berthaut, F. (2020). A survey of hybrid metaheuristics for the resource-constrained project scheduling problem. European Journal of Operational Research, 280(2), 395–416. Scopus. https://doi.org/10.1016/j.ejor.2019.01.063
Penteado, F. D., & Ciric, A. R. (1996). An MINLP Approach for Safe Process Plant Layout. Industrial and Engineering Chemistry Research, 35(4), 1354–1361. Scopus. https://doi.org/10.1021/ie9502547
Pinedo, M. (2016). Scheduling: Theory, algorithms, and systems (Fifth Edition). Springer.
Qin, H., Zhang, Z.-H., & Bai, D. (2016). Permutation flowshop group scheduling with position-based learning effect. Computers and Industrial Engineering, 92, 1–15. Scopus. https://doi.org/10.1016/j.cie.2015.12.001
Ramesh, A., & Bahinipati, B. K. (2011). The Indian apparel industry: A critical review of supply chains. 1101–1111.
Ramírez Zambrano, J. R., Zambrano Miranda, M. de J., Mogroviejo, J. M., & Carreño Montaño, J. L. (2016). Informalidad laboral en los departamentos de Norte de Santander, Nariño, La Guajira y Cesar. Apuntes del CENES, 35(62), 125–145.
Ranjbar, M., & Razavi, M. N. (2012). A hybrid metaheuristic for concurrent layout and scheduling problem in a job shop environment. The International Journal of Advanced Manufacturing Technology, 62(9–12), 1249–1260. https://doi.org/10.1007/s00170-011-3859-4
Reed, R. (1961). Plant Layout: Factors, Principles, and Techniques. R.D. Irwin. https://books.google.com.co/books?id=POdTAAAAMAAJ
Rincón Moreno, C. A., & Anaya Morales, Y. A. (2015). Propuesta para planeación y control de la producción en la empresa Confecciones Varmesí en la ciudad de Cúcuta [Grado en Ingeniería Industrial, Universidad Francisco de Paula Santander]. http://alejandria.ufps.edu.co/descargas/tesis/1191044.pdf
Ripon, K. S. N., Glette, K., Hovin, M., & Torresen, J. (2012). Job shop scheduling with transportation delays and layout planning in manufacturing systems: A multi-objective evolutionary approach: Vol. 7326 LNAI (Cent. P. Anal. Mach. Intell. (CPAMI); Univ. W. Association for Image and Machine Intelligence (AIMI); Fac. Eng. Univ. Porto (FEUP) Dep. Electr. Comput. Eng.; Instituto de Engenharia Biomedica (INEB); Univ. Waterloo Dep. Electr. Comput. Eng., Trad.). Scopus. https://doi.org/10.1007/978-3-642-31368-4_25
Ripon, K. S. N., Glette, K., Khan, K. N., Hovin, M., & Torresen, J. (2013). Adaptive variable neighborhood search for solving multi-objective facility layout problems with unequal area facilities. Swarm and Evolutionary Computation, 8, 1–12. Scopus. https://doi.org/10.1016/j.swevo.2012.07.003
Ripon, K. S. N., Glette, K., Mirmotahari, O., Hovin, M., & Torresen, J. (2009). Pareto Optimal Based Evolutionary Approach for Solving Multi-Objective Facility Layout Problem. En C. S. Leung, M. Lee, & J. H. Chan (Eds.), Neural Information Processing (Vol. 5864, pp. 159–168). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-10684-2_18
Ripon, K. S. N., Khan, K. N., Glette, K., Hovin, M., & Torresen, J. (2011). Using pareto-optimality for solving multi-objective unequal area facility layout problem. Genet. Evol. Comput. Conf., GECCO, 681–688. Scopus. https://doi.org/10.1145/2001576.2001670
Ripon, K. S. N., & Torresen, J. (2014). Integrated job shop scheduling and layout planning: A hybrid evolutionary method for optimizing multiple objectives. Evolving Systems, 5(2), 121–132. Scopus. https://doi.org/10.1007/s12530-013-9092-7
Ruiz, R., & Maroto, C. (2005). A comprehensive review and evaluation of permutation flowshop heuristics. European Journal of Operational Research, 165(2), 479–494. https://doi.org/10.1016/j.ejor.2004.04.017
Salas-Morera, L., García-Hernández, L., Antoli-Cabrera, A., & Carmona-Muñoz, C. (2020). Using eye-tracking into decision makers evaluation in evolutionary interactive UA-FLP algorithms. Neural Computing and Applications. Scopus. https://doi.org/10.1007/s00521-020-04781-2
Salmasi, N. (2005). Multi-stage Group Scheduling Problems with Sequence Dependent Setups [PhD Thesis]. Oregon State University.
Salmasi, N., Logendran, R., & Skandari, M. R. (2010). Total flow time minimization in a flowshop sequence-dependent group scheduling problem. Computers and Operations Research, 37(1), 199–212. Scopus. https://doi.org/10.1016/j.cor.2009.04.013
Salmasi, N., Logendran, R., & Skandari, M. R. (2011). Makespan minimization of a flowshop sequence-dependent group scheduling problem. International Journal of Advanced Manufacturing Technology, 56(5–8), 699–710. Scopus. https://doi.org/10.1007/s00170-011-3206-9
Sánchez, P. A., Ceballos, F., & Sánchez Torres, G. (2015). Análisis del proceso productivo de una empresa de confecciones: Modelación y simulación. Ciencia e Ingeniería Neogranadina, 25(2), 137–150. https://doi.org/10.18359/rcin.1436
Saraswat, A., Venkatadri, U., & Castillo, I. (2015). A framework for multi-objective facility layout design. Computers and Industrial Engineering, 90, 167–176. Scopus. https://doi.org/10.1016/j.cie.2015.09.006
Saravanan, M., & Noorul Haq, A. (2008). A scatter search method to minimise makespan of cell scheduling problem. International Journal of Agile Systems and Management, 3(1–2), 18–36. Scopus. https://doi.org/10.1504/IJASM.2008.019597
Schaller, J. E. (2000). A comparison of heuristics for family and job scheduling in a flow-line manufacturing cell. International Journal of Production Research, 38(2), 287–308. Scopus. https://doi.org/10.1080/002075400189419
Schaller, J. E. (2001). A new lower bound for the flow shop group scheduling problem. Computers and Industrial Engineering, 41(2), 151–161. Scopus. https://doi.org/10.1016/S0360-8352(01)00049-3
Schaller, J. E. (2005). An improved branch and bound procedure for scheduling a flow line manufacturing cell. International Journal of Production Research, 43(22), 4697–4720. Scopus. https://doi.org/10.1080/00207540500185216
Schaller, J. E., Gupta, J. N. D., & Vakharia, A. J. (2000). Scheduling a flowline manufacturing cell with sequence dependent family setup times. European Journal of Operational Research, 125(2), 324–339. Scopus. https://doi.org/10.1016/S0377-2217(99)00387-2
Scholz, D., Petrick, A., & Domschke, W. (2009). STaTS: A Slicing Tree and Tabu Search based heuristic for the unequal area facility layout problem. European Journal of Operational Research, 197(1), 166–178. Scopus. https://doi.org/10.1016/j.ejor.2008.06.028
SCImago. (s/f). SJR — SCImago Journal & Country Rank. Recuperado el 4 de enero de 2020, de https://www.scimagojr.com/aboutus.php
Scott, A. J. (2006). The Changing Global Geography of Low-Technology, Labor-Intensive Industry: Clothing, Footwear, and Furniture. World Development, 34(9), 1517–1536. https://doi.org/10.1016/j.worlddev.2006.01.003
Seo, M. J., Kim, M., & Lee, K.-H. (2016). Supply chain management strategies for small fast fashion firms: The case of the Dongdaemun Fashion District in South Korea. International Journal of Fashion Design, Technology and Education, 9(1), 51–61. Scopus. https://doi.org/10.1080/17543266.2015.1126650
Sherali, H. D., Fraticelli, B. M. P., & Meller, R. D. (2003). Enhanced Model Formulations for Optimal Facility Layout. Operations Research, 51(4), 629–644. https://doi.org/10.1287/opre.51.4.629.16096
Singh, S. P., & Sharma, R. R. K. (2006). A review of different approaches to the facility layout problems. International Journal of Advanced Manufacturing Technology, 30(5–6), 425–433. Scopus. https://doi.org/10.1007/s00170-005-0087-9
Singh, S. P., & Singh, V. K. (2010). An improved heuristic approach for multi-objective facility layout problem. International Journal of Production Research, 48(4), 1171–1194. Scopus. https://doi.org/10.1080/00207540802534731
Sivanandam, S. N., & Deepa, S. N. (2007). Introduction to genetic algorithms. Springer.
Socconini, L. (2009). “Lean manufacturing” paso a paso. Grupo Editorial Norma.
Solimanpur, M., & Elmi, A. (2011). A tabu search approach for group scheduling in buffer-constrained flow shop cells. International Journal of Computer Integrated Manufacturing, 24(3), 257–268. Scopus. https://doi.org/10.1080/0951192X.2011.552527
Stephens, M. P., & Meyers, F. E. (2013). Manufacturing facilities design and material handling (Fifth edition). Purdue University Press.
Sule, D. R. (2008). Manufacturing facilities: Location, planning, and design (Third edition). CRC Press, Taylor & Francis Group. https://www.taylorfrancis.com/books/e/9781420044232
Talbi, E.-G. (2009). Metaheuristics: From design to implementation. John Wiley & Sons.
Tam, K. Y. (1992a). A simulated annealing algorithm for allocating space to manufacturing cells. International Journal of Production Research, 30(1), 63–87. Scopus. https://doi.org/10.1080/00207549208942878
Tam, K. Y. (1992b). Genetic algorithms, function optimization, and facility layout design. European Journal of Operational Research, 63(2), 322–346. Scopus. https://doi.org/10.1016/0377-2217(92)90034-7
Tam, K. Y., & Li, S. G. (1991). A hierarchical approach to the facility layout problem. International Journal of Production Research, 29(1), 165–184. Scopus. https://doi.org/10.1080/00207549108930055
Tang, J., Wang, X., Kaku, I., & Yung, K.-L. (2010). Optimization of parts scheduling in multiple cells considering intercell move using scatter search approach. Journal of Intelligent Manufacturing, 21(4), 525–537. Scopus. https://doi.org/10.1007/s10845-008-0236-8
Tate, D. M., & Smith, A. E. (1995). Unequal-area facility layout by genetic search. IIE Transactions (Institute of Industrial Engineers), 27(4), 465–472. Scopus. https://doi.org/10.1080/07408179508936763
Tavakkoli-Moghaddam, R., Javadian, N., Khorrami, A., & Gholipour-Kanani, Y. (2010). Design of a scatter search method for a novel multi-criteria group scheduling problem in a cellular manufacturing system. Expert Systems with Applications, 37(3), 2661–2669. Scopus. https://doi.org/10.1016/j.eswa.2009.08.012
Tejeda Argáez, R. A. (2016). Estudio de tiempos y movimientos en la empresa Uniformes UNO ubicada en la ciudad de Cúcuta [Grado en Ingeniería Industrial, Universidad de Pamplona]. http://serviciosacademicos.unipamplona.edu.co/prestamo/
Tompkins, J. A. (Ed.). (1996). Facilities planning (2nd ed). Wiley.
Tompkins, J. A., White, J. A., Bozer, Y. A., Solorio Gómez, P., Haaz Díaz, G., & Servantes González, S. R. (2011). Planeación de instalaciones. Cengage Learning.
Tong, X. (1991). SECOT: A Sequential Construction Technique for Facility Design.
Triana Beltrán, V., & Ayala Daza, Y. A. (2019). Sistema de información para la administración de la producción en la empresa Confecciones Axxu Jeans de la ciudad de Cúcuta [Grado en Ingeniería Industrial, Universidad Francisco de Paula Santander]. http://alejandria.ufps.edu.co/descargas/tesis/1191930.pdf
Turgay, S. (2018). Multi objective simulated annealing approach for facility layout design. International Journal of Mathematical, Engineering and Management Sciences, 3(4), 365–380. Scopus.
Ulutas, B. H. (2012). A modified flexible bay and slicing structure for unequal area facilities. IFAC Proc. Vol. (IFAC-PapersOnline), 14(PART 1), 1635–1640. Scopus. https://doi.org/10.3182/20120523-3-RO-2023.00362
Ulutas, B. H., & Kulturel-Konak, S. (2012). An artificial immune system based algorithm to solve unequal area facility layout problem. Expert Systems with Applications, 39(5), 5384–5395. Scopus. https://doi.org/10.1016/j.eswa.2011.11.046
Ulutas, B. H., & Kulturel-Konak, S. (2013). Assessing hypermutation operators of a clonal selection algorithm for the unequal area facility layout problem. Engineering Optimization, 45(3), 375–395. Scopus. https://doi.org/10.1080/0305215X.2012.678492
van Camp, D. J. (1989). A nonlinear optimization approach for solving Facility Layout Problem. University of Toronto.
van Camp, D. J., Carter, M. W., & Vannelli, A. (1992). A nonlinear optimization approach for solving facility layout problems. European Journal of Operational Research, 57(2), 174–189. Scopus. https://doi.org/10.1016/0377-2217(92)90041-7
Velásquez, J. D. (2015a). Una Guía Corta para Escribir Revisiones Sistemáticas de Literatura. Parte 3. DYNA, 82(189), 9–12. https://doi.org/10.15446/dyna.v82n189.48931
Velásquez, J. D. (2015b). Una Guía Corta para Escribir Revisiones Sistemáticas de Literatura. Parte 4. DYNA, 82(190), 9–12. https://doi.org/10.15446/dyna.v82n190.49511
Venkataramanaiah, S. (2008). Scheduling in cellular manufacturing systems: An heuristic approach. International Journal of Production Research, 46(2), 429–449. Scopus. https://doi.org/10.1080/00207540601138577
VIP-PLANOPT, Engineering Optimization Software. (2005). VIP-PLANOPT. http://www.planopt.com/
VOSviewer. (s/f). VOSviewer—Visualizing scientific landscapes. VOSviewer. Recuperado el 28 de abril de 2020, de https://www.vosviewer.com//
Wang, K.-J., & Chen, K.-H. (2008). An integrated facility-design model for the generator-manufacturing industry. Production Planning and Control, 19(5), 475–485. Scopus. https://doi.org/10.1080/09537280802088659
Wang, M.-J., Hu, M. H., & Ku, M.-Y. (2005). A solution to the unequal area facilities layout problem by genetic algorithm. Computers in Industry, 56(2), 207–220. Scopus. https://doi.org/10.1016/j.compind.2004.06.003
Wemmerlöv, U., & Hyer, N. L. (1989). Cellular manufacturing in the U.S. industry: A survey of users. International Journal of Production Research, 27(9), 1511–1530. https://doi.org/10.1080/00207548908942637
Womack, J. P., Jones, D. T., & Roos, D. (1990). The machine that changed the world: The story of lean production ; Toyota’s secret weapon in the global car wars that is revolutionizing world industry (1. pb. ed). Free Press.
Wong, K. Y. & Komarudin. (2010). Solving facility layout problems using Flexible Bay Structure representation and Ant System algorithm. Expert Systems with Applications, 37(7), 5523–5527. Scopus. https://doi.org/10.1016/j.eswa.2009.12.080
Wu, X., Chu, C.-H., Wang, Y., & Yan, W. (2007). A genetic algorithm for cellular manufacturing design and layout. European Journal of Operational Research, 181(1), 156–167. Scopus. https://doi.org/10.1016/j.ejor.2006.05.035
Xiao, Y. J., Zheng, Y., Zhang, L. M., & Kuo, Y. H. (2016). A combined zone-LP and simulated annealing algorithm for unequal-area facility layout problem. Advances in Production Engineering And Management, 11(4), 259–270. Scopus. https://doi.org/10.14743/apem2016.4.225
Xie, Y., Zhou, S., Xiao, Y., Kulturel-Konak, S., & Konak, A. (2018). A β-accurate linearization method of Euclidean distance for the facility layout problem with heterogeneous distance metrics. European Journal of Operational Research, 265(1), 26–38. Scopus. https://doi.org/10.1016/j.ejor.2017.07.052
Yang, D.-L., & Chern, M.-S. (2000). Two-machine flowshop group scheduling problem. Computers and Operations Research, 27(10), 975–985. Scopus. https://doi.org/10.1016/S0305-0548(99)00070-2
Yang, T., Su, C., & Hsu, Y. (2000). Systematic layout planning: A study on semiconductor wafer fabrication facilities. International Journal of Operations & Production Management, 20(11), 1359–1371. https://doi.org/10.1108/01443570010348299
Yang, W. H. (2002). Group scheduling in a two-stage flowshop. Journal of the Operational Research Society, 53(12), 1367–1373. Scopus. https://doi.org/10.1057/palgrave.jors.2601454
Yazdani Sabouni, M. T., & Logendran, R. (2013). Carryover sequence-dependent group scheduling with the integration of internal and external setup times. European Journal of Operational Research, 224(1), 8–22. Scopus. https://doi.org/10.1016/j.ejor.2012.07.013
Yazdani Sabouni, M. T., & Logendran, R. (2018). Lower bound development in a flow shop electronic assembly problem with carryover sequence-dependent setup time. Computers and Industrial Engineering, 122, 149–160. Scopus. https://doi.org/10.1016/j.cie.2018.05.033
Ying, K.-C., Gupta, J. N. D., Lin, S.-W., & Lee, Z.-J. (2010). Permutation and non-permutation schedules for the flowline manufacturing cell with sequence dependent family setups. International Journal of Production Research, 48(8), 2169–2184. Scopus. https://doi.org/10.1080/00207540802534707
Ying, K.-C., Lee, Z.-J., Lu, C.-C., & Lin, S.-W. (2012). Metaheuristics for scheduling a no-wait flowshop manufacturing cell with sequence-dependent family setups. International Journal of Advanced Manufacturing Technology, 58(5–8), 671–682. Scopus. https://doi.org/10.1007/s00170-011-3419-y
Yuan, S., Li, T., & Wang, B. (2020). A co-evolutionary genetic algorithm for the two-machine flow shop group scheduling problem with job-related blocking and transportation times. Expert Systems with Applications, 152. Scopus. https://doi.org/10.1016/j.eswa.2020.113360
Zhang, Y., Lu, C., Zhang, H., & Fang, Z.-F. (2013). Workshop layout optimization based on differential cellular multi-objective genetic algorithm. Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 19(4), 727–734. Scopus.
Zheng, F., & Song, Q. (2019). Lot-sizing and Scheduling with Machine-sharing in Clothing Industry. En Zheng F., Chu F., & Liu M. (Eds.), Proc. Int. Conf. Ind. Eng. Syst. Manag., IESM. Institute of Electrical and Electronics Engineers Inc.; Scopus. https://doi.org/10.1109/IESM45758.2019.8948154 | |