| dc.contributor | Lopez-Kleine, Liliana | |
| dc.contributor | METODOS EN BIOESTADISTICA | |
| dc.creator | Salas Cárdenas, Yesica Alejandra | |
| dc.date.accessioned | 2021-11-02T18:07:04Z | |
| dc.date.available | 2021-11-02T18:07:04Z | |
| dc.date.created | 2021-11-02T18:07:04Z | |
| dc.date.issued | 2020-12-01 | |
| dc.identifier | https://repositorio.unal.edu.co/handle/unal/80644 | |
| dc.identifier | Universidad Nacional de Colombia | |
| dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
| dc.identifier | https://repositorio.unal.edu.co/ | |
| dc.description.abstract | La teoría de redes ha permitido caracterizar el comportamiento de un sistema en diferentes ámbitos, como es el caso del estudio de los sistemas complejos a través de la representación de redes de una capa (monoplex), las cuales estudian las relaciones subyacentes entre los nodos de un sistema. Recientemente, la teoría de redes ha evolucionado desarrollando el estudio de redes multicapa con el objetivo de incluir múltiples relaciones y representar las relaciones intra y entre capa, donde las intra son consideradas como en el caso monoplex. En el campo de genómica, aunque se han abordado algunas metodologías de redes multicapa, no se ha enfatizado en el caso de RCG, ni se han hecho comparaciones con la metodología tradicional de redes monoplex que ha sido utilizada hasta la fecha. El presente trabajo adoptó una metodología de redes multiplex, considerando nodos réplica (genes) en las capas y cuyas interacciones inter-capa es vacío. Las capas son RCG que corresponden a múltiples condiciones experimentales de la E. coli y cuya colección forman la estructura multiplex. El enfoque de RCG multiplex permitió hacer un aplanamiento de la estructura multiplex, en una sóla red agregada. Se buscó caracterizar y evaluar la representación de la red de co-expresión génica de la E. coli, comparando la representación monoplex frente a la multiplex, utilizando la red agregada, a través de sus medidas topológicas, propiedades globales y locales, medidas de centralidad, matriz de distancia, anovas, pruebas pareadas-t y algoritmos de alineamiento de redes, que permitieron evaluar las diferencias, y similitudes de la información obtenida de cada representación monoplex y multiplex con respecto a la red de referencia. Se sugieren avances y mejoras en el estudio de las RCG, ya que la red agregada proveniente de la estructura multiplex, estructuralmente se asemeja más a la red de referencia de la E. coli, mientras que la red monoplex precisa mayor pérdida de información que la red agregada, al compararlas con la red de referencia. (Texto tomado de la fuente). | |
| dc.description.abstract | Network theory has allowed us to characterize the behavior of a system in different areas, such as the study of complex systems through the representation of single-layer networks (monoplex), which study the relationships between the nodes of a system. Recently, network theory has evolved developing the study of multi-layer networks with the aim of including multiple relationships and representing the intra and inter-layer relationships, like single-layer networks case. In the genomics fi eld, although some multilayer network methodologies have been addressed, but not all of them have been developed on the RCG, besides no comparisons have been made with the traditional monoplex network methodology that has been used to date. This study is based on a multiplex network methodology, considering nodes (genes) replicated in the layers and whose set of interactions between layers is empty. The layers are RCG that correspond to multiple experimental conditions of E. coli and whose collection forms the multiplex structure. The multiplex RCG approach allowed to do a attening in a single aggregated network. The aim was to characterize and evaluate the representation of the E. coli gene coexpression network, comparing the monoplex representation against the multiplex representation, using the aggregate network, its topological measures, global and local properties, centrality measures, matrix of distance, anova, paired t-tests and network alignment algorithms, which allowed evaluating the differences and similarities of the information obtained from each monoplex and multiplex representation with respect to the reference network. This project suggested advances and improvements in the study of RCG, because the aggregated network coming from the multiplex structure, is more similar structurally to the reference network of the 'E. coli', while the monoplex network shows a greater loss of information than the aggregated network, when those are compared with the reference network | |
| dc.language | spa | |
| dc.publisher | Universidad Nacional de Colombia | |
| dc.publisher | Bogotá - Ciencias - Maestría en Ciencias - Estadística | |
| dc.publisher | Departamento de Estadística | |
| dc.publisher | Facultad de Ciencias | |
| dc.publisher | Bogotá, Colombia | |
| dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
| dc.relation | Aldana, M. (2011). Redes complejas: Estructura, dinámica y evolución (1.a ed.). | |
| dc.relation | Aleta, A., y Moreno, Y. (2018). Multilayer networks in a nutshell. CoRR. | |
| dc.relation | Alonso, J., y Carabalí, J. (2019, 04). Breve tutorial para visualizar y calcular
métricas de redes (grafos) en r (para economistas). , 7. | |
| dc.relation | Battiston, F., Nicosia, V., y Latora, V. (2016, 06). The new challenges of multiplex networks: Measures and models. The European Physical Journal Special Topics, 226 . doi: 10.1140/epjst/e2016-60274-8. | |
| dc.relation | Berlingerio, M., Coscia, M., y Giannotti, F. (2011). Finding and characterizing
communities in multidimensional networks. 2011 International Conference on Advances in Social
Networks Analysis and Mining, 490-494. | |
| dc.relation | Bianconi, G. (2018). Multilayer networks : structure and function (1.a ed.). Oxford
University Press. | |
| dc.relation | Boccaletti, S., Bianconi, G., Criado, R., del Genio, C., Gómez-Gardeñes, J.,
Romance, M., Zanin, M. (2014). The structure and dynamics of multilayer
networks. Physics Reports, 544 , 1 - 122. Descargado de http://www
.sciencedirect.com/science/article/pii/S0370157314002105 doi:
https://doi.org/10.1016/j.physrep.2014.07.001. | |
| dc.relation | Cai, D., Shao, Z., He, X., Yan, X., y Han, J. (2005). Mining hidden community
in heterogeneous social networks. En Proceedings of the 3rd international
workshop on link discovery (p. 58-65). New York, NY, USA: Association for
Computing Machinery.
Descargado de https://doi.org/10.1145/1134271.1134280 doi: 10.1145/1134271.1134280. | |
| dc.relation | Cardillo, A., Zanin, M., Gómez-Garde~nes, J., Romance, M., Garc a del Amo, A.,
y Boccaletti, S. (2013, 01). Modeling the multi-layer nature of the european
air transport network: Resilience and passengers re-scheduling under random
failures. The European Physical Journal Special Topics, 215 , 23-33. doi:
10.1140/epjst/e2013-01712-8. | |
| dc.relation | Covert, M., Knight, E., Reed, J., Herrgard, M., y Palsson, B. (2004, 06). Integrating
high-throughput and computational data elucidates bacterial networks.
Nature, 429 , 92-6. doi: 10.1038/nature02456. | |
| dc.relation | Csardi, G., y Nepusz, T. (2005, 11). The igraph software package for complex
network research. InterJournal, Complex Systems, 1695. | |
| dc.relation | Dalgaard, P. (2008). Introductory statistics with r (2.a ed.). | |
| dc.relation | Dam, S., Vosa, U., Graaf, A., Franke, L., y de Magalhaes, J. P. (2017, 01).
Gene co-expression analysis for functional classification and gene-disease
predictions. Briefings in bioinformatics, 19 . doi: 10.1093/bib/bbw139. | |
| dc.relation | De Domenico, M. (2017). Multilayer modeling and analysis of human brain
networks. GigaScience, 6 (5), gix004. Descargado de http://dx.doi.org/
10.1093/gigascience/gix004 doi: 10.1093/gigascience/gix004. | |
| dc.relation | De Domenico, M., Porter, M. A., y Arenas, A. (2014, 10). MuxViz: a tool for multilayer
analysis and visualization of networks. Journal of Complex Networks,
3 (2), 159-176. Descargado de https://doi.org/10.1093/comnet/cnu038
doi: 10.1093/comnet/cnu038. | |
| dc.relation | D'haeseleer, P., Liang, S., y Somogyi, R. (2000, 09). Genetic network inference:
From co-expression clustering to reverse engineering. Bioinformatics (Oxford,
England), 16 , 707-26. doi: 10.1093/bioinformatics/16.8.707. | |
| dc.relation | Dickison, M., Havlin, S., y Stanley, H. E. (2012, Jun). Epidemics on interconnected
networks. Phys. Rev. E, 85 , 066109. Descargado de https://link.aps.org/
doi/10.1103/PhysRevE.85.066109 doi: 10.1103/PhysRevE.85.066109. | |
| dc.relation | Didier, G., Brun, C., y Baudot, A. (2015). Identifying communities from multiplex
biological networks. PeerJ , 3 , e1525. Descargado de https://doi.org/10.7717/peerj.1525 doi: 10.7717/peerj.1525. | |
| dc.relation | Domenico, M. D. (2018). Multilayer network modeling of integrated biological
systems: Comment on \network science of biological systems at different
scales: A review" by gosak et al. Physics of Life Reviews, 24 , 149 -
152. Descargado de http://www.sciencedirect./science/article/pii/
S1571064517301926 doi: https://doi.org/10.1016/j.plrev.2017.12.006. | |
| dc.relation | Elena, P. Q. M. (2018). Evaluación de métodos de comparación de redes biológicas
y su capacidad para detectar estructuras similares.
Universidad Nacional de Colombia, Sede-Bogotá. | |
| dc.relation | Elo, L. L., Järvenpää, H., Oresic, M., Lahesmaa, R., y Aittokallio, T. (2007, 06).
Systematic construction of gene coexpression networks with applications to
human T helper cell differentiation process. Bioinformatics, 23 (16), 2096-
2103. Descargado de https://doi.org/10.1093/bioinformatics/btm309
doi: 10.1093/bioinformatics/btm309. | |
| dc.relation | Fong, S., Burgard, A., Herring, C., Knight, E. M., Blattner, F., Maranas, C., y
Palsson, B. (2005). In silico design and adaptive evolution of escherichia coli
for production of lactic acid. Biotechnology and bioengineering, 91 5 , 643-8. | |
| dc.relation | Fong, S., Joyce, A., y Palsson, B. (2005). Parallel adaptive evolution cultures of
escherichia coli lead to convergent growth phenotypes with di erent gene
expression states. Genome research, 15 10 , 1365-72. | |
| dc.relation | Fong, S., Nanchen, A., Palsson, B., y Sauer, U. (2006, 04). Latent pathway
activation and increased pathway capacity enable escherichia coli adaptation
to loss of key metabolic enzymes. The Journal of biological chemistry, 281,
8024-33. doi: 10.1074/jbc.M510016200. | |
| dc.relation | Gentleman, R., Carey, V., Bates, D., Bolstad, B., Dettling, M., Dudoit, S.,
Zhang, J. (2004, 02). Bioconductor: Open software development for
computational biology and bioinformatics. Genome biology, 5 , R80. doi:
10.1186/gb-2004-5-10-r80. | |
| dc.relation | González Prieto, C. A. (2018). Construcción de redes de regulación génica usando
datos de secuenciaci on de arn.
Universidad Nacional de Colombia, Sede-Bogotá. | |
| dc.relation | Gosak, M., Markovic, R., Dolensek, J., Rupnik, M. S., Marhl, M., Stozer, A., y
Perc, M. (2018). Network science of biological systems at different scales: A
review. Physics of Life Reviews, 24 , 118 - 135. Descargado de http://www
.sciencedirect.com/science/article/pii/S1571064517301501 doi:
https://doi.org/10.1016/j.plrev.2017.11.003. | |
| dc.relation | Herrgard, M. J., Fong, S., y Palsson, B. (2006). Identification of genome-scale
metabolic network models using experimentally measured flux profiles.
PLoS Computational Biology, 2. | |
| dc.relation | Holme, P., y Saram aki, J. (2012). Temporal networks. Physics Reports, 519 (3), 97
- 125. Descargado de http://www.sciencedirect.com/science/article/
pii/S0370157312000841 (Temporal Networks) doi: https://doi.org/10
.1016/j.physrep.2012.03.001. | |
| dc.relation | Hua, Q., Joyce, A. R., Fong, S. S., y Palsson, B. (2006). Metabolic analysis
of adaptive evolution for in silico-designed lactate-producing strains. Bio-
technology and Bioengineering, 95 (5), 992-1002. Descargado de https://
onlinelibrary.wiley.com/doi/abs/10.1002/bit.21073 doi: https://
doi.org/10.1002/bit.21073. | |
| dc.relation | Huber, W., von Heydebreck, A., Sültmann, H., Poustka, A., y Vingron, M. (2002,
07). Variance stabilization applied to microarray data calibration and to
the quantification of di erential expression. Bioinformatics, 18 , S96-S104.
Descargado de https://doi.org/10.1093/bioinformatics/18.suppl/_1.S96
doi: 10.1093/bioinformatics/18.suppl_1.S96. | |
| dc.relation | Irizarry, R., Hobbs, B., Collin, F., Beazer-Barclay, Y., Antonellis, K. J., Scherf,
U., y Speed, T. (2003). Exploration, normalization, and summaries of high
density oligonucleotide array probe level data. Biostatistics, 4 2 , 249-64. | |
| dc.relation | Jalili, M., Salehzadeh-Yazdi, A., Asgari, Y., Arab, S. S., Yaghmaie, M., Ardeshir,
G., y Alimoghaddam, K. (2015, 11). Centiserver: A comprehensive resource,
web-based application and r package for centrality analysis. PloS one, 10 ,
e0143111. doi: 10.1371/journal.pone.0143111. | |
| dc.relation | Kaluza, P., Kölzsch, A., Gastner, M. T., y Blasius, B. (2010). The complex network
of global cargo ship movements. Journal of the Royal Society, Interface,
1093-103. | |
| dc.relation | Kanawati, R. (2015). Multiplex network mining: A brief survey. IEEE Intell.
Informatics Bull., 16 , 24-27. | |
| dc.relation | Kim, H., Shim, J. E., Shin, J., y Lee, I. (2015, 02). EcoliNet: a database of
cofunctional gene network for Escherichia coli. Database, 2015 . Descargado
de https://doi.org/10.1093/database/bav001 (bav001) doi: 10.1093/
database/bav001. | |
| dc.relation | Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J. P., Moreno, Y., y Porter,
M. A. (2014). Multilayer networks. J. Complex Networks, 2 , 203-271. | |
| dc.relation | Kuchaiev, O., y Przulj, N. (2011, May). Integrative network alignment reveals
large regions of global network similarity in yeast and human. Bioinformatics
(Oxford, England), 27 (10), 1390-1396. Descargado de https://doi.org/
10.1093/bioinformatics/btr127 doi: 10.1093/bioinformatics/btr127. | |
| dc.relation | Leal Alaya, L. G. (2013). Desarrollo de una metodología estadística aplicada a la
construcción y comparación de redes de coexpresión génica.
Universidad Nacional de Colombia, Sede-Bogotá. | |
| dc.relation | Leandro, G. T. (2018). Medidas de centralidad en redesurbanas con datos . Universidad de Alicante, España. | |
| dc.relation | Lewis, N. E., Cho, B.-K., Knight, E. M., y Palsson, B. O. (2009). Gene expression
profiling and the use of genome-scale in silico models of escherichia coli for
analysis: Providing context for content. Journal of Bacteriology, 191 (11),
3437-3444. Descargado de https://jb.asm.org/content/191/11/3437
doi: 10.1128/JB.00034-09. | |
| dc.relation | Leybovich, I., Puzis, R., Stern, R., y Reuben, M. (2018). Focused sana: Speeding
up network alignment. En Socs. | |
| dc.relation | Li, W., Dai, C., Zhou, X. J., Tseng, G., Ghosh, D., y Zhou, X. J. (2015). Integrative
analysis of many biological networks to study gene regulation. , 68-87. doi:
10.1017/CBO9781107706484.004. | |
| dc.relation | Li, W., Liu, C.-C., Zhang, T., Li, H., Waterman, M. S., y Zhou, X. J. (2011).
Integrative analysis of many weighted co-expression networks using tensor
computation. | |
| dc.relation | Lotero-Vélez, L., y Hurtado, R. (2014). Vulnerabilidad de redes complejas y
aplicaciones al transporte urbano: Una revisi on de la literatura. Revista EIA,
11 , 67. | |
| dc.relation | Louzada, V., Ara ujo, N., Andrade, J. S., y Herrmann, H. (2013). Breathing
synchronization in interconnected networks. Scientific Reports, 3. | |
| dc.relation | Mamano, N., y Hayes, W. B. (2017, 02). SANA: simulated annealing far outperforms
many other search algorithms for biological network alignment. Bioinformatics, 33 (14), 2156-2164.
Descargado de https://doi.org/10.1093/bioinformatics/btx090
doi: 10.1093/bioinformatics/btx090. | |
| dc.relation | Michael, C. (2018). Implementación del método de alineamiento de redesgedevo
en R. Universidad Nacional de Colombia,
Sede-Bogotá. | |
| dc.relation | Michoel, T., y Nachtergaele, B. (2012). Alignment and integration of complex networks
by hypergraph-based spectral clustering. Physical review. E, Statistical,
nonlinear, and soft matter physics, 056111. | |
| dc.relation | Mutwil, M., Klie, S., Tohge, T., Giorgi, F., Wilkins, O., Campbell, M., Persson,
S. (2011, 03). Planet: Combined sequence and expression comparisons across plant networks
derived from seven species. The Plant cell , 23 , 895-910. doi:10.1105/tpc.111.083667
Newman, E. J. (2010). Networks: An introduction (1.a ed.). Oxford University
Press. | |
| dc.relation | Newman, M. (2002, 12). Assortative mixing in networks. Physical review letters,
89 , 208701. doi: 10.1103/PhysRevLett.89.208701. | |
| dc.relation | Otte, E., y Rousseau, R. (2002, 12). Social network analysis: A powerful strategy,
also for the information sciences. Journal of Information Science, 28 , 441-453.
doi: 10.1177/016555150202800601. | |
| dc.relation | Perkins, A., y Langston, M. (2009, 10). Threshold selection in gene co-expression
networks using spectral graph theory techniques. BMC bioinformatics, 10
Suppl 11 , S4. doi: 10.1186/1471-2105-10-S11-S4. | |
| dc.relation | Porter, M. (2018). What is a multilayer network. Notices of the American
Mathematical Society, 65 , 1419-1423. | |
| dc.relation | Reed, J., Famili, I., Thiele, I., y Palsson, B. (2006). Towards multidimensional
genome annotation. Nature Reviews Genetics, 7 , 130-141. | |
| dc.relation | Singh, V., Rana, R., y Singhal, R. (2013, 04). Analysis of repeated measurement
data in the clinical trials. Journal of Ayurveda and integrative medicine, 4 ,
77-81. doi: 10.4103/0975-9476.113872. | |
| dc.relation | Soranzo, N., Bianconi, G., y Altafini, C. (2007a, 05). Comparing association
network algorithms for reverse engineering of large-scale gene regulatory
networks: synthetic versus real data. Bioinformatics, 23 (13), 1640-1647.
Descargado de https://doi.org/10.1093/bioinformatics/btm163
doi: 10.1093/bioinformatics/btm163. | |
| dc.relation | Soranzo, N., Bianconi, G., y Altafini, C. (2007b, 05). Comparing association
network algorithms for reverse engineering of large-scale gene regulatory
networks: synthetic versus real data. Bioinformatics, 23 (13), 1640-1647.
Descargado de https://doi.org/10.1093/bioinformatics/btm163 doi:
10.1093/bioinformatics/btm163. | |
| dc.relation | Welsh, E., Eschrich, S., Berglund, A., y Fenstermacher, D. (2013, 05). Iterative rankorder
normalization of gene expression microarray data. BMC bioinformatics,
14 , 153. doi: 10.1186/1471-2105-14-153. | |
| dc.relation | YANG, S. (2013). Networks: An introduction by m. e. j. newman. The Journal of
Mathematical Sociology, 37 (4), 250-251. Descargado de https://doi.org/
10.1080/0022250X.2012.744247 doi: 10.1080/0022250X.2012.744247. | |
| dc.relation | Zanin, M., y Lillo, F. (2013). Modelling the air transport with complex networks:
A short review. The European Physical Journal Special Topics, 215 , 5-21. | |
| dc.rights | Atribución-NoComercial 4.0 Internacional | |
| dc.rights | http://creativecommons.org/licenses/by-nc/4.0/ | |
| dc.rights | info:eu-repo/semantics/openAccess | |
| dc.title | Comparación de la representación multiplex y monoplex de redes de co-expresión génica | |
| dc.type | Trabajo de grado - Maestría | |