dc.contributorKopke Salinas, Roberto
dc.contributorEspejo Benavides, Blanca Fabiola
dc.contributorMetabolismo de Calcio y Mecanismos de competición entre microorganismos
dc.creatorRodríguez Pineda, Mario Andrés
dc.date.accessioned2022-01-31T18:29:58Z
dc.date.available2022-01-31T18:29:58Z
dc.date.created2022-01-31T18:29:58Z
dc.date.issued2020
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/80816
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps:/repositorio.una.edu.co
dc.description.abstractLos intercambiadores de sodio-calcio (Na+ /Ca2+ exchangers, NCX) componen una amplia familia de intercambiadores presentes en casi todos los organismos, estando involucrados en la homeostasis celular del Ca2+. Una de estas proteínas de intercambio iónico que ha presentado gran interés para los científicos es el intercambiador (CALX) de Drosophila melanogaster (mosca de la fruta), debido a que la presencia de Ca2+ intracelular inhibe el intercambio iónico en CALX, mientras que en mamíferos (especialmente en NCX1) el incremento de [Ca2+]i activa el intercambiador. A demás de la diferencia con NCX, CALX presenta dos isoformas gracias al empalme (splicing) alternativo llamadas CALX-1.1 y CALX-1.2. Estas isoformas se diferencian por la mutación de 5 aminoácidos en el loop-FG de CBD2 y, porque CALX-1.1 es altamente inhibida por la presencia de Ca2+ mientras que la inhibición en CALX-1.2 es mucho menor, al punto que algunos autores llegan a establecer que es insensible al Ca2+i. Para comprender estas diferencias entre las dos isoformas de CALX, en este trabajo se llevaron a cabo estudios de dinámica molecular tanto del dominio CBD2 como del conjunto de CBD1 y CBD2 (denominado CBD12), encontrando diferencias dinámicas en CBD2, principalmente en la región del loop-FG. Según lo observado la hélice 1 en el loop-FG en CBD2 puede interactuar con la R584 en el loop-CD del mismo dominio en la isoforma 1.2 de mejor manera que en la isoforma 1.1, especialmente en la forma coordinada a Ca2+, lo que permite que CBD12 posea una orientación más compacta lo que hace que la isoforma 1.2 sea menos sensible al Ca2+ que la isoforma 1.1 (Texto tomado de la fuente)
dc.description.abstractSodium-calcium exchangers (Na+ /Ca2+ exchangers, NCX) are a wide family of exchangers present in almost all organisms, being involved in Ca2+ cellular homeostasis. One of these ion exchange proteins that has been of great interest to scientists is the Drosophila melanogaster (fruit fly) exchanger (CALX), because the presence of intracellular Ca2+ inhibits ion exchange in CALX, whereas in mammals (especially in NCX1) the increase of [Ca2+]i activates the exchanger. In addition to the difference with NCX, CALX presents two isoforms thanks to the alternative splicing called CALX-1.1 and CALX-1.2. These isoforms are differentiated by the 5 amino acid mutation in the CBD2 loop-FG and, because CALX-1.1 is highly inhibited by the presence of Ca2+ while the inhibition in CALX-1.2 is much lower, to the point that some authors reach establish that it is insensitive to Ca2+i. To understand these differences between the two CALX isoforms, in this work molecular dynamics studies of both the CBD2 domain and the set of CBD1 and CBD2 (called CBD12) were carried out, finding dynamic differences in CBD2, mainly in the FG-loop region. As observed helix 1 in FG-loop in CBD2 can interact with R584 in CD-loop of the same domain in 1.2 isoform better than in 1.1 isoform, especially in the Ca2+ binding form, allowing CBD12 has a more compact orientation making the 1.2 isoform less sensitive to Ca2+i than the 1.1 isoform
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherMedellín - Ciencias - Doctorado en Biotecnología
dc.publisherFacultad de Ciencias
dc.publisherMedellín, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Medellín
dc.relationAbiko, L. A. (2015). Estudo da dinâmica funcional dos domínios regulatórios do trocador de Na + /Ca 2+ de Drosophila melanogaster por Ressonância Magnética Nuclear em Solução. UNIVERSIDADE DE SÃO PAULO.
dc.relationAbiko, L. A., Vitale, P. M., Favaro, D. C., Hauk, P., Li, D.-W., Yuan, J., … Brüschweiler, R. (2016). Model for the allosteric regulation of the Na + /Ca 2+ exchanger NCX. Proteins, 84(5), 580–590. https://doi.org/10.1002/prot.25003
dc.relationAbraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindah, E. (2015). Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
dc.relationAllnér, O., Foloppe, N., & Nilsson, L. (2015). Motions and entropies in proteins as seen in NMR relaxation experiments and molecular dynamics simulations. Journal of Physical Chemistry B, 119(3), 1114–1128. https://doi.org/10.1021/jp506609g
dc.relationBagur, R., & Hajnóczky, G. (2017). Intracellular Ca2+ Sensing: Its Role in Calcium Homeostasis and Signaling. Molecular Cell, 66(6), 780–788. https://doi.org/10.1016/j.molcel.2017.05.028
dc.relationBaig, M. H., Sudhakar, D. R., Kalaiarasan, P., Subbarao, N., Wadhawa, G., Lohani, M., … Khan, A. U. (2014). Insight into the effect of inhibitor resistant S130G mutant on physicochemical properties of SHV type beta-lactamase: A molecular dynamics study. PLoS ONE, 9(12), 1–19. https://doi.org/10.1371/journal.pone.0112456
dc.relationBanci, L. (2003). Molecular dynamics simulations of metalloproteins. Current Opinion in Chemical Biology, 7(1), 143–149. https://doi.org/10.1016/S1367-5931(02)00014-5
dc.relationBax, A., & Grishaev, A. (2005). Weak alignment NMR: A hawk-eyed view of biomolecular structure. Current Opinion in Structural Biology, 15(5), 563–570. https://doi.org/10.1016/j.sbi.2005.08.006
dc.relationBerridge, M J, Bootman, M. D., & Lipp, P. (1998). Molecular biology: Calcium - a life and death signal. Nature, 395(October), 645–648. Retrieved from http://dx.doi.org/10.1038/27094
dc.relationBerridge, M J, Lipp, P., & Bootman, M. D. (2000). The versatility and universality of calcium signalling. Nature Reviews. Molecular Cell Biology, 1(1), 11–21. https://doi.org/10.1038/35036035
dc.relationBerridge, Michael J, Bootman, M. D., & Roderick, H. L. (2003). Calcium signalling: dynamics, homeostasis and remodelling. Nature Reviews. Molecular Cell Biology, 4(7), 517–529. https://doi.org/10.1038/nrm1155
dc.relationBesserer, G. M., Ottolia, M., Nicoll, D. a, Chaptal, V., Cascio, D., Philipson, K. D., & Abramson, J. (2007). The second Ca2+-binding domain of the Na+ Ca2+ exchanger is essential for regulation: crystal structures and mutational analysis. Proceedings of the National Academy of Sciences of the United States of America, 104(47), 18467–18472. https://doi.org/10.1073/pnas.0707417104
dc.relationBlaustein, M. P., & Lederer, W. J. (1999). Sodium/calcium exchange: its physiological implications. Physiological Reviews, 79(3), 763–854.
dc.relationBoivin, S., Kozak, S., & Meijers, R. (2013). Optimization of protein purification and characterization using Thermofluor screens. Protein Expression and Purification, 91(2), 192–206. https://doi.org/10.1016/j.pep.2013.08.002
dc.relationBoyman, L., Mikhasenko, H., Hiller, R., & Khananshvili, D. (2009). Kinetic and equilibrium properties of regulatory calcium sensors of NCX1 protein. Journal of Biological Chemistry, 284(10), 6185–6191. https://doi.org/10.1074/jbc.M809012200
dc.relationBronner, F. (2001). Extracellular and intracellular regulation of calcium homeostasis. TheScientificWorldJournal, 1, 919–925. https://doi.org/10.1100/tsw.2001.489
dc.relationCarafoli, Ernest, Malmström, K., Sigel, E., & Crompton, M. (1976). THE REGULATION OF INTRACELLULAR CALCIUM. Clinical Endocrinology, 5(s1), s49–s59. https://doi.org/10.1111/j.1365-2265.1976.tb03815.x
dc.relationCarafoli, Ernesto. (1984). Intracellular calcium. General Pharmacology: The Vascular System, 15(5), 439. https://doi.org/10.1016/0306-3623(84)90065-X
dc.relationCavanagh, J., Fairbrother, W. J., Palmer III, A. G., Rance, M., & Skelton, N. J. (2007). Protein NMR Spectroscopy: Principles and Practice. In Protein NMR Spectroscopy (Vol. 2nd). Retrieved from http://www.amazon.fr/Protein-NMR-Spectroscopy-PrinciplesPractice/dp/012164491X
dc.relationChaptal, V., Besserer, G. M., Ottolia, M., Nicoll, D. a., Cascio, D., Philipson, K. D., & Abramson, J. (2007). How Does Regulatory Ca2+ Regulate the Na+-Ca2+ Exchanger? Channels, 1(6), 397–399. https://doi.org/10.4161/chan.1.6.5640
dc.relationChen, K., & Tjandra, N. (2011). The Use of Residual Dipolar Coupling in Studying Proteins by NMR. In NMR of Proteins and Small Biomolecules (pp. 47–67). https://doi.org/10.1007/128_2011_215
dc.relationDe La Torre, J. G., Huertas, M. L., & Carrasco, B. (2000). HYDRONMR: Prediction of NMR Relaxation of Globular Proteins from Atomic-Level Structures and Hydrodynamic Calculations. Journal of Magnetic Resonance, 147(1), 138–146. https://doi.org/10.1006/jmre.2000.2170
dc.relationDelaglio, F., Grzesiek, S., Vuister, G. W., Zhu, G., Pfeifer, J., & Bax, A. (1995). NMRPipe: A multidimensional spectral processing system based on UNIX pipes. Journal of Biomolecular NMR, 6(3), 277–293. https://doi.org/10.1007/BF00197809
dc.relationDick, F. (1994). Acid cleavage/deprotection in Fmoc/tBu solid-phase peptide synthesis. Methods in Molecular Biology (Clifton, N.J.), 35, 63–72. https://doi.org/10.1385/0-89603- 273-6:63
dc.relationDosset, P., Hus, J. C., Blackledge, M., & Marion, D. (2000). Efficient analysis of macromolecular rotational diffusion from heteronuclear relaxation data. Journal of Biomolecular NMR, 16(1), 23–28. https://doi.org/10.1023/A:1008305808620
dc.relationDyck, C., Maxwell, K., Buchko, J., Trac, M., Omelchenko, A., Hnatowich, M., & Hryshko, L. V. (1998). Structure-Function Analysis of CALX1.1, a Na + -Ca 2+ Exchanger from Drosophila. Journal of Biological Chemistry, 273(21), 12981–12987. https://doi.org/10.1074/jbc.273.21.12981
dc.relationDyck, C., Omelchenko, A., Elias, C. L., Quednau, B. D., Philipson, K. D., Hnatowich, M., & Hryshko, L. V. (1999). Ionic Regulatory Properties of Brain and Kidney Splice Variants of the Ncx1 Na+–Ca2+ Exchanger. The Journal of General Physiology, 114(5), 701–711. https://doi.org/10.1085/jgp.114.5.701
dc.relationFavier, A., & Brutscher, B. (2019). NMRlib: user-friendly pulse sequence tools for Bruker NMR spectrometers. Journal of Biomolecular NMR, 73(5), 199–211. https://doi.org/10.1007/s10858-019-00249-1
dc.relationGáspári, Z., & Perczel, A. (2010). Protein Dynamics as Reported by NMR. Annual Reports on NMR Spectroscopy, 71(C), 35–75. https://doi.org/10.1016/B978-0-08-089054- 8.00002-2
dc.relationGiladi, M., Bohbot, H., Buki, T., Schulze, D. H., Hiller, R., & Khananshvili, D. (2012). Dynamic features of allosteric Ca 2+ sensor in tissue-specific NCX variants. Cell Calcium, 51(6), 478–485. https://doi.org/10.1016/j.ceca.2012.04.007
dc.relationGiladi, M., Boyman, L., Mikhasenko, H., Hiller, R., & Khananshvili, D. (2010). Essential role of the CBD1-CBD2 linker in slow dissociation of Ca 2+ from the regulatory twodomain tandem of NCX1. Journal of Biological Chemistry, 285(36), 28117–28125. https://doi.org/10.1074/jbc.M110.127001
dc.relationGiladi, M., Sasson, Y., Fang, X., Hiller, R., Buki, T., Wang, Y. X., … Khananshvili, D. (2012). A common CA2+-driven interdomain module governs eukaryotic NCX regulation. PLoS ONE, 7(6). https://doi.org/10.1371/journal.pone.0039985
dc.relationGill, M. L., & Palmer, A. G. (2014). Local isotropic diffusion approximation for coupled internal and overall molecular motions in NMR spin relaxation. Journal of Physical Chemistry B, 118(38), 11120–11128. https://doi.org/10.1021/jp506580c
dc.relationGuvench, O., & MacKerell, A. D. (2008). Comparison of Protein Force Fields for Molecular Dynamics Simulations. In Methods in Molecular Biology (Vol. 443, pp. 63–88). https://doi.org/10.1007/978-1-59745-177-2_4
dc.relationHalty-deLeon, L., Hansson, B. S., & Wicher, D. (2018). The Drosophila melanogaster Na+/Ca2+ Exchanger CALX Controls the Ca2+ Level in Olfactory Sensory Neurons at Rest and After Odorant Receptor Activation. Frontiers in Cellular Neuroscience, 12(July), 1–9. https://doi.org/10.3389/fncel.2018.00186
dc.relationHendus-Altenburger, R., Wang, X., Sjøgaard-Frich, L. M., Pedraz-Cuesta, E., Sheftic, S. R., Bendsøe, A. H., … Peti, W. (2019). Molecular basis for the binding and selective dephosphorylation of Na+/H+ exchanger 1 by calcineurin. Nature Communications, 10(1), 1–13. https://doi.org/10.1038/s41467-019-11391-7
dc.relationHilge, M. (2012). Ca2+ Regulation of Ion Transport in the Na+/Ca2+ Exchanger. Journal of Biological Chemistry, 287(38), 31641–31649. https://doi.org/10.1074/jbc.R112.353573
dc.relationHilge, Mark. (2013). Ca2+ Regulation in the Na+/Ca2+ Exchanger Features a Dual Electrostatic Switch Mechanism. In L. Annunziato (Ed.), Sodium Calcium Exchange: A Growing Spectrum of Pathophysiological Implications SE - 3 (pp. 27–33). https://doi.org/10.1007/978-1-4614-4756-6_3
dc.relationHilge, Mark, Aelen, J., Foarce, A., Perrakis, A., & Vuister, G. W. (2009). Ca2+ regulation in the Na+/Ca2+ exchanger features a dual electrostatic switch mechanism. Proceedings of the …, 106(34), 14333. https://doi.org/10.1073/pnas.0902171106
dc.relationHilge, Mark, Aelen, J., & Vuister, G. W. (2006). Ca2+ Regulation in the Na+/Ca2+ Exchanger Involves Two Markedly Different Ca2+ Sensors. Molecular Cell, 22(1), 15–25. https://doi.org/10.1016/j.molcel.2006.03.008
dc.relationHilgemann, D. W., Collins, A., & Matsuoka, S. (1992). Steady-state and dynamic properties of cardiac sodium-calcium exchange: Secondary modulation by cytoplasmic calcium and ATP. Journal of General Physiology, 100(6), 933–961. https://doi.org/10.1085/jgp.100.6.933
dc.relationHilgemann, D. W., Nicoll, D. A., & Philipson, K. D. (1991). Charge movement during Na+ translocation by native and cloned cardiac Na+/Ca2+ exchanger. Nature, Vol. 352, pp. 715–718. https://doi.org/10.1038/352715a0
dc.relationHore, P. J. (1995). Nuclear Magnetic Resonance (First). New York, NY: Oxford University Press Inc.
dc.relationHryshko, L. V., Matsuoka, S., Nicoll, D. A., Weiss, J. N., Schwarz, E. M., Benzer, S., & Philipson, K. D. (1996). Anomalous regulation of the Drosophila Na(+)-Ca2+ exchanger by Ca2+. The Journal of General Physiology, 108(1), 67–74. https://doi.org/10.1085/jgp.108.1.67
dc.relationHu, W., & Wang, L. (2006). Residual Dipolar Couplings: Measurements and Applications to Biomolecular Studies. Annual Reports on NMR Spectroscopy, 58, 231–303. https://doi.org/10.1016/S0066-4103(05)58005-0 Ishima, R., & Torchia, D. (2000). Protein dynamics from NMR. Nature Structural Biology, 7(9), 740–743. https://doi.org/10.1038/78963
dc.relationJohnson, E., Bruschweiler-Li, L., Showalter, S. a, Vuister, G. W., Zhang, F., & Brüschweiler, R. (2008). Structure and dynamics of Ca2+-binding domain 1 of the Na+/Ca2+ exchanger in the presence and in the absence of Ca2+. Journal of Molecular Biology, 377, 945–955. https://doi.org/10.1016/j.jmb.2008.01.046
dc.relationJohnson, E., Brüschweiler, R., & Showalter, S. A. (2008). A multifaceted approach to the interpretation of NMR order parameters: a case study of a dynamic alpha-helix. The Journal of Physical Chemistry. B, 112(19), 6203–6210. https://doi.org/10.1021/jp711160t
dc.relationKarplus, M., & Kuriyan, J. (2005). Molecular dynamics and protein function. Proceedings of the National Academy of Sciences of the United States of America, 102(19), 6679– 6685. https://doi.org/10.1073/pnas.0408930102
dc.relationKay, L. E. (1998). Protein dynamics from NMR. Nature Structural Biology, 5(7), 513–517. https://doi.org/10.1038/755
dc.relationKeeler, J. (2011). Understanding NMR Spectroscopy. John Wiley & Sons. .
dc.relationKempf, J. G., & Loria, J. P. (2002). Protein dynamics from solution NMR: Theory and applications. Cell Biochemistry and Biophysics, 37(3), 187–211. https://doi.org/10.1385/CBB:37:3:187
dc.relationKhananshvili, D. (2014). Sodium-calcium exchangers (NCX): Molecular hallmarks underlying the tissue-specific and systemic functions. Pflugers Archiv European Journal of Physiology, 466, 43–60. https://doi.org/10.1007/s00424-013-1405-y
dc.relationKhananshvili, D. (2020). Basic and editing mechanisms underlying ion transport and regulation in NCX variants. Cell Calcium, 85(November 2019), 102131. https://doi.org/10.1016/j.ceca.2019.102131
dc.relationKleckner, I. R., & Foster, M. P. (2011). An introduction to NMR-based approaches for measuring protein dynamics. Biochimica et Biophysica Acta - Proteins and Proteomics, 1814(8), 942–968. https://doi.org/10.1016/j.bbapap.2010.10.012
dc.relationKozak, S., Lercher, L., Karanth, M. N., Meijers, R., Carlomagno, T., & Boivin, S. (2016). Optimization of protein samples for NMR using thermal shift assays. Journal of Biomolecular NMR, 64(4), 281–289. https://doi.org/10.1007/s10858-016-0027-z
dc.relationKramer, F., Deshmukh, M. V., Kessler, H., & Glaser, S. J. (2004). Residual dipolar coupling constants: An elementary derivation of key equations. Concepts in Magnetic Resonance Part A: Bridging Education and Research, 21(1), 10–21. https://doi.org/10.1002/cmr.a.20003
dc.relationKummerlowe, G., Schmitt, S., & Luy, B. (2010). Cross-Fitting of Residual Dipolar Couplings. The Open Spectroscopy Journal, 4(1), 16–27. https://doi.org/10.2174/1874383801004010016
dc.relationLeach, A. R. (2001). Molecular modelling: Principles and applications-Prentice Hall (2nd ed.). Pearson- Prentice Hall
dc.relationLemkul, J. (2018). From Proteins to Perturbed Hamiltonians: A Suite of Tutorials for the GROMACS-2018 Molecular Simulation Package [Article v1.0]. Living Journal of Computational Molecular Science, 1(1), 1–53. https://doi.org/10.33011/livecoms.1.1.5068 Li, D. W., & Brüschweiler, R. (2010). NMR-based protein potentials. Angewandte Chemie - International Edition, 49(38), 6778–6780. https://doi.org/10.1002/anie.201001898
dc.relationLi, Z., Nicoll, D. A., Collins, A., Hilgemann, D. W., Filoteo, A. G., Penniston, J. T., … Philipson, K. D. (1991). Identification of a peptide inhibitor of the cardiac sarcolemmal Na+-Ca2+ exchanger. Journal of Biological Chemistry, 266(2), 1014–1020.
dc.relationLiao, J., Li, H., Zeng, W., Sauer, D. B., Belmares, R., & Jiang, Y. (2012). Structural Insight into the Ion-Exchange Mechanism of the Sodium/Calcium Exchanger. Science, 335(curve 1), 686–690. https://doi.org/10.1126/science.1215759
dc.relationLiao, Jun, Marinelli, F., Lee, C., Huang, Y., Faraldo-Gómez, J. D., & Jiang, Y. (2016). Mechanism of extracellular ion exchange and binding-site occlusion in a sodium/calcium exchanger. Nature Structural and Molecular Biology, 23(6), 590–599. https://doi.org/10.1038/nsmb.3230
dc.relationLibreros, G. A. (2018). L , D-transpeptidases de Mycobacterium tuberculosis : Estudo das interações com antibióticos β -lactâmicos e triagem de fragmentos. Universidade Estadual Paulista, Julio de Mesquita Filho (UNESP).
dc.relationLipari, G., & Szabo, A. (1982a). Model-Free Approach to the Interpretation of Nuclear Magnetic Resonance Relaxation in Macromolecules. 1. Theory and Range of Validity. Journal of the American Chemical Society, 104(17), 4546–4559. https://doi.org/10.1021/ja00381a009
dc.relationLipari, G., & Szabo, A. (1982b). Model-Free Approach to the Interpretation of Nuclear Magnetic Resonance Relaxation in Macromolecules. 2. Analysis of Experimental Results. Journal of the American Chemical Society, 104(17), 4559–4570. https://doi.org/10.1021/ja00381a010
dc.relationLosonczi, J. A., Andrec, M., Fischer, M. W. F., & Prestegard, J. H. (1999). Order Matrix Analysis of Residual Dipolar Couplings Using Singular Value Decomposition. Journal of Magnetic Resonance, 138(2), 334–342. https://doi.org/10.1006/jmre.1999.1754
dc.relationLümmen, P. (2013). Calcium Channels as Molecular Target Sites of Novel Insecticides. In Advances in Insect Physiology (Vol. 44, pp. 287–347). https://doi.org/10.1016/B978-0-12- 394389-7.00005-3
dc.relationLytton, J. (2007). Na+/Ca2+ exchangers: Three mammalian gene families control Ca2+ transport. Biochemical Journal, 406(3), 365–382. https://doi.org/10.1042/BJ20070619 Martín-Santamaría, S. (Ed.). (2017). Computational Tools for Chemical Biology. https://doi.org/10.1039/9781788010139
dc.relationMassi, F., Johnson, E., Wang, C., Rance, M., & Palmer, A. G. (2004). NMR R 1 ρ Rotating-Frame Relaxation with Weak Radio Frequency Fields. Journal of the American Chemical Society, 126(7), 2247–2256. https://doi.org/10.1021/ja038721w
dc.relationMatsuoka, S., Nicoll, D. A., He, Z., & Philipson, K. D. (1997). Regulation of the Cardiac Na+-Ca2+ exchanger by the endogenous XIP region. Journal of General Physiology, 109(2), 273–286. https://doi.org/10.1085/jgp.109.2.273
dc.relationMcFadzean, I., & Gibson, A. (2002). The developing relationship between receptoroperated and store-operated calcium channels in smooth muscle. British Journal of Pharmacology, 135(1), 1–13. https://doi.org/10.1038/sj.bjp.0704468
dc.relationMiroux, B., & Walker, J. E. (1996). Over-production of Proteins inEscherichia coli: Mutant Hosts that Allow Synthesis of some Membrane Proteins and Globular Proteins at High Levels. Journal of Molecular Biology, 260(3), 289–298. https://doi.org/10.1006/jmbi.1996.0399
dc.relationMolinaro, P., Pannaccione, A., Sisalli, M. J., Secondo, A., Cuomo, O., Sirabella, R., … Annunziato, L. (2015). A new cell-penetrating peptide that blocks the autoinhibitory XIP domain of NCX1 and enhances antiporter activity. Molecular Therapy : The Journal of the American Society of Gene Therapy, 23(3), 465–476. https://doi.org/10.1038/mt.2014.231
dc.relationMorgon, N. H., & Coutinho, K. R. (2007). Métodos de química teórica e modelagem molecular. Editora Livraria da Física.
dc.relationMorin, S. (2011). A practical guide to protein dynamics from 15N spin relaxation in solution. Progress in Nuclear Magnetic Resonance Spectroscopy, 59(3), 245–262. https://doi.org/10.1016/j.pnmrs.2010.12.003
dc.relationNicoll, D. A., Ottolia, M., Goldhaber, J. I., & Philipson, K. D. (2013). 20 years from NCX purification and cloning: milestones. Advances in Experimental Medicine and Biology, 961, 17–23. https://doi.org/10.1007/978-1-4614-4756-6_2
dc.relationNicoll, D. A., Sawaya, M. R., Kwon, S., Cascio, D., Philipson, K. D., & Abramson, J. (2006). The crystal structure of the primary Ca2+ sensor of the Na +/Ca2+ exchanger reveals a novel Ca2+ binding motif. Journal of Biological Chemistry, 281(31), 21577– 21581. https://doi.org/10.1074/jbc.C600117200
dc.relationOlsson, M. H. M., SØndergaard, C. R., Rostkowski, M., & Jensen, J. H. (2011). PROPKA3: Consistent treatment of internal and surface residues in empirical p K a predictions. Journal of Chemical Theory and Computation, 7(2), 525–537. https://doi.org/10.1021/ct100578z
dc.relationOmelchenko, a, Dyck, C., Hnatowich, M., Buchko, J., Nicoll, D. a, Philipson, K. D., & Hryshko, L. V. (1998). Functional differences in ionic regulation between alternatively spliced isoforms of the Na+-Ca2+ exchanger from Drosophila melanogaster. The Journal of General Physiology, 111(May), 691–702. https://doi.org/10.1085/jgp.111.5.691
dc.relationOn, C., Marshall, C. R., Chen, N., Moyes, C. D., & Tibbits, G. F. (2008). Gene Structure Evolution of the Na+-Ca2+ Exchanger (NCX) Family. BMC Evolutionary Biology, 8(1), 127. https://doi.org/10.1186/1471-2148-8-127
dc.relationOttolia, M., Nicoll, D. A., & Philipson, K. D. (2009). Roles of two Ca2+-binding domains in regulation of the cardiac Na+-Ca2+ exchanger. Journal of Biological Chemistry, 284(47), 32735–32741. https://doi.org/10.1074/jbc.M109.055434
dc.relationPalmer, A. G. (1997). Probing molecular motion by NMR. Current Opinion in Structural Biology, 7(5), 732–737. https://doi.org/10.1016/S0959-440X(97)80085-1
dc.relationPalmer, A. G. (2004). NMR characterization of the dynamics of biomacromolecules. Chemical Reviews, 104(8), 3623–3640. https://doi.org/10.1021/cr030413t
dc.relationPalmer, A. G., Williams, J., & McDermott, A. (1996). Nuclear magnetic resonance studies of biopolymer dynamics. Journal of Physical Chemistry, 100(31), 13293–13310. https://doi.org/10.1021/jp9606117
dc.relationParekh, A. B., & Putney, J. W. (2005). Store-Operated Calcium Channels. Physiological Reviews, 85(2), 757–810. https://doi.org/10.1152/physrev.00057.2003
dc.relationPettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera - A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
dc.relationPhilipson, Keneth D., Nicoll, D. A., Ottolia, M., Quednau, B. D., Reuter, H., John, S., & Qiu, Z. (2006). The Na+/Ca2+ Exchange Molecule. Annals of the New York Academy of Sciences, 976(1), 1–10. https://doi.org/10.1111/j.1749-6632.2002.tb04708.x
dc.relationPhilipson, Kenneth D., & Nicoll, D. A. (2000). Sodium-Calcium Exchange: A Molecular Perspective. Annual Review of Physiology, 62(1), 111–133. https://doi.org/10.1146/annurev.physiol.62.1.111
dc.relationReeves, J. P. (1998). Na+/Ca2+ exchange and cellular Ca2+ homeostasis. Journal of Bioenergetics and Biomembranes, 30(2), 151–160. https://doi.org/10.1023/A:1020569224915
dc.relationReeves, J. P., & Condrescu, M. (2008). Ionic regulation of the cardiac sodium-calcium exchanger. Channels, 2(5), 322–328. https://doi.org/10.4161/chan.2.5.6897
dc.relationRen, X., & Philipson, K. D. (2013). The topology of the cardiac Na+/Ca2+ exchanger, NCX1. Journal of Molecular and Cellular Cardiology, 57(1), 68–71. https://doi.org/10.1016/j.yjmcc.2013.01.010
dc.relationRule, G. S., & Hitchens, T. K. (2006). Fundamentals of Protein NMR Spectroscopy. In Focus on Structural Biology: Vol. 5. https://doi.org/10.1007/1-4020-3500-4
dc.relationSalinas, R. K., Bruschweiler-Li, L., Johnson, E., & Brus̈chweiler, R. (2011). Ca 2+ binding alters the interdomain flexibility between the two cytoplasmic calcium-binding domains in the Na +/Ca 2+ exchanger. Journal of Biological Chemistry, 286(37), 32123–32131. https://doi.org/10.1074/jbc.M111.249268
dc.relationSass, J., Cordier, F., Hoffmann, A., Rogowski, M., Cousin, A., Omichinski, J. G., … Grzesiek, S. (1999). Purple membrane induced alignment of biological macromolecules in the magnetic field. Journal of the American Chemical Society, 121(10), 2047–2055. https://doi.org/10.1021/ja983887w
dc.relationSchwarz, E. M., & Benzer, S. (1997). Calx, a Na-Ca exchanger gene of Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America, 94(19), 10249–10254. https://doi.org/10.1073/pnas.94.19.10249
dc.relationScopes, R. K. (1974). Measurement of protein by spectrophotometry at 205 nm. Analytical Biochemistry, 59(1), 277–282. https://doi.org/10.1016/0003-2697(74)90034-7
dc.relationSebastián Yagüe, Á., Pascua García, A., Sebastían, F., Aguirre, J., León, E., Bajic, D., & Baú, D. (2014). Bioinformática con Ñ (1st ed.; A. Sebastián & A. Pascual-García, Eds.). https://doi.org/10.5281/zenodo.1065032
dc.relationSharma, V., & O’Halloran, D. M. (2014). Recent structural and functional insights into the family of sodium calcium exchangers. Genesis, 52(2), 93–109. https://doi.org/10.1002/dvg.22735
dc.relationShen, Y., & Bax, A. (2013). Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks. Journal of Biomolecular NMR, 56(3), 227–241. https://doi.org/10.1007/s10858-013-9741-y
dc.relationSingh, R. K., Blossom, B. M., Russo, D. A., Van Oort, B., Croce, R., Jensen, P. E., … Bjerrum, M. J. (2019). Thermal unfolding and refolding of a lytic polysaccharide monooxygenase from: Thermoascus aurantiacus. RSC Advances, 9(51), 29734–29742. https://doi.org/10.1039/c9ra05920b
dc.relationSkora, L., Mestan, J., Fabbro, D., Jahnke, W., & Grzesiek, S. (2013). NMR reveals the allosteric opening and closing of Abelson tyrosine kinase by ATP-site and myristoyl pocket inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 110(47). https://doi.org/10.1073/pnas.1314712110
dc.relationSong, Y., Dimaio, F., Wang, R. Y. R., Kim, D., Miles, C., Brunette, T., … Baker, D. (2013). High-resolution comparative modeling with RosettaCM. Structure, 21(10), 1735–1742. https://doi.org/10.1016/j.str.2013.08.005
dc.relationStabelini, T. C. (2018). Estudos estruturais de fragmentos do trocador de Na+/Ca2+ por RMN em solução (Biblioteca Digital de Teses e Dissertações da Universidade de São Paulo). https://doi.org/10.11606/D.46.2018.tde-11122018-091550
dc.relationStrickland, M., & Tjandra, N. (2018). Residual dipolar coupling for conformational and dynamic studies. Modern Magnetic Resonance, 419–434. https://doi.org/10.1007/978-3- 319-28388-3_86
dc.relationTerpe, K. (2006). Overview of bacterial expression systems for heterologous protein production: From molecular and biochemical fundamentals to commercial systems. Applied Microbiology and Biotechnology, 72(2), 211–222. https://doi.org/10.1007/s00253- 006-0465-8
dc.relationTolman, J. R., & Ruan, K. (2006). NMR residual dipolar couplings as probes of biomolecular dynamics. Chemical Reviews, 106(5), 1720–1736. https://doi.org/10.1021/cr040429z
dc.relationVerkhratsky, A., Trebak, M., Perocchi, F., Khananshvili, D., & Sekler, I. (2018). Crosslink between calcium and sodium signalling. Experimental Physiology, 103(2), 157–169. https://doi.org/10.1113/EP086534
dc.relationVranken, W. F., Boucher, W., Stevens, T. J., Fogh, R. H., Pajon, A., Llinas, M., … Laue, E. D. (2005). The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins, 59(4), 687–696. https://doi.org/10.1002/prot.20449
dc.relationWang, T., Xu, H., Oberwinkler, J., Gu, Y., Hardie, R. C., & Montell, C. (2005). Light activation, adaptation, and cell survival functions of the Na + /Ca 2+ exchanger CalX. Neuron, 45(3), 367–378. https://doi.org/10.1016/j.neuron.2004.12.046
dc.relationWilliam Studier, F., Rosenberg, A. H., Dunn, J. J., & Dubendorff, J. W. (1990). Use of T7 RNA polymerase to direct expression of cloned genes. Methods in Enzymology, 185(C), 60–89. https://doi.org/10.1016/0076-6879(90)85008-C
dc.relationWu, M., Le, H. D., Wang, M., Yurkov, V., Omelchenko, A., Hnatowich, M., … Zheng, L. (2010). Crystal structures of progressive Ca2+ binding states of the Ca2+ sensor Ca2+ binding domain 1 (CBD1) from the CALX Na+/Ca2+ exchanger reveal incremental conformational transitions. Journal of Biological Chemistry, 285(4), 2554–2561. https://doi.org/10.1074/jbc.M109.059162
dc.relationWu, M., Tong, S., Gonzalez, J., Jayaraman, V., Spudich, J. L., & Zheng, L. (2011). Structural Basis of the Ca 2+ Inhibitory Mechanism of Drosophila Na +/Ca 2+ Exchanger CALX and Its Modification by Alternative Splicing. Structure, 19(10), 1509–1517. https://doi.org/10.1016/j.str.2011.07.008
dc.relationWu, M., Wang, M., Nix, J., Hryshko, L. V., & Zheng, L. (2009). Crystal Structure of CBD2 from the Drosophila Na+/Ca2+ Exchanger: Diversity of Ca2+ Regulation and Its Alternative Splicing Modification. Journal of Molecular Biology, 387(1), 104–112. https://doi.org/10.1016/j.jmb.2009.01.045
dc.relationWüthrich, K. (1986). NMR of Proteins and Nucleic Acids. In A Wiley-Interscience Publication. Retrieved from https://books.google.com.br/books?id=zfBqAAAAMAAJ
dc.relationYuan, J., Yuan, C., Xie, M., Yu, L., Bruschweiler-Li, L., & Bruschweiler, R. (2018). The Intracellular Loop of the Na+/Ca2+ Exchanger Contains an “awareness Ribbon” Shaped Two-helix Bundle Domain. Biochemistry, 1. https://doi.org/10.1021/acs.biochem.8b00300
dc.relationZheng, L., Wu, M., & Tong, S. (2013). Structural Studies of the Ca2+ Regulatory Domain of Drosophila Na+/Ca2+ Exchanger CALX. In L. Annunziato (Ed.), Sodium Calcium Exchange: A Growing Spectrum of Pathophysiological Implications (pp. 55–63). https://doi.org/10.1007/978-1-4614-4756-6_6
dc.relationAbiko, L. A. (2015). Estudo da dinâmica funcional dos domínios regulatórios do trocador de Na + /Ca 2+ de Drosophila melanogaster por Ressonância Magnética Nuclear em Solução. Universidade de São Paulo.
dc.relationAbiko, L. A., Vitale, P. M., Favaro, D. C., Hauk, P., Li, D.-W., Yuan, J., … Brüschweiler, R. (2016). Model for the allosteric regulation of the Na + /Ca 2+ exchanger NCX. Proteins: Structure, Function, and Bioinformatics, 84(5), 580–590. https://doi.org/10.1002/prot.25003
dc.relationBoivin, S., Kozak, S., & Meijers, R. (2013). Optimization of protein purification and characterization using Thermofluor screens. Protein Expression and Purification, 91(2), 192–206. https://doi.org/10.1016/j.pep.2013.08.002.
dc.relationDelaglio, F., Grzesiek, S., Vuister, G. W., Zhu, G., Pfeifer, J., & Bax, A. (1995). NMRPipe: A multidimensional spectral processing system based on UNIX pipes. Journal of Biomolecular NMR, 6(3), 277–293. https://doi.org/10.1007/BF00197809.
dc.relationHendus-Altenburger, R., Wang, X., Sjøgaard-Frich, L. M., Pedraz-Cuesta, E., Sheftic, S. R., Bendsøe, A. H., … Peti, W. (2019). Molecular basis for the binding and selective dephosphorylation of Na+/H+ exchanger 1 by calcineurin. Nature Communications, 10(1), 1–13. https://doi.org/10.1038/s41467-019-11391-7.
dc.relationKozak, S., Lercher, L., Karanth, M. N., Meijers, R., Carlomagno, T., & Boivin, S. (2016). Optimization of protein samples for NMR using thermal shift assays. Journal of Biomolecular NMR, 64(4), 281–289. https://doi.org/10.1007/s10858-016-0027-z.
dc.relationLibreros, G. A. (2018). L , D-transpeptidases de Mycobacterium tuberculosis : Estudo das interações com antibióticos β -lactâmicos e triagem de fragmentos. Universidade Estadual Paulista, Julio de Mesquita Filho (UNESP).
dc.relationMiroux, B., & Walker, J. E. (1996). Over-production of Proteins inEscherichia coli: Mutant Hosts that Allow Synthesis of some Membrane Proteins and Globular Proteins at High Levels. Journal of Molecular Biology, 260(3), 289–298. https://doi.org/10.1006/jmbi.1996.0399.
dc.relationScopes, R. K. (1974). Measurement of protein by spectrophotometry at 205 nm. Analytical Biochemistry, 59(1), 277–282. https://doi.org/10.1016/0003-2697(74)90034-7.
dc.relationSingh, R. K., Blossom, B. M., Russo, D. A., Van Oort, B., Croce, R., Jensen, P. E., … Bjerrum, M. J. (2019). Thermal unfolding and refolding of a lytic polysaccharide monooxygenase from: Thermoascus aurantiacus. RSC Advances, 9(51), 29734–29742. https://doi.org/10.1039/c9ra05920b.
dc.relationTerpe, K. (2006). Overview of bacterial expression systems for heterologous protein production: From molecular and biochemical fundamentals to commercial systems. Applied Microbiology and Biotechnology, 72(2), 211–222. https://doi.org/10.1007/s00253- 006-0465-8.
dc.relationVranken, W. F., Boucher, W., Stevens, T. J., Fogh, R. H., Pajon, A., Llinas, M., … Laue, E. D. (2005). The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins, 59(4), 687–696. https://doi.org/10.1002/prot.20449.
dc.relationWilliam Studier, F., Rosenberg, A. H., Dunn, J. J., & Dubendorff, J. W. (1990). Use of T7 RNA polymerase to direct expression of cloned genes. Methods in Enzymology, 185(C), 60–89. https://doi.org/10.1016/0076-6879(90)85008-C.
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleEstudios de RMN del dominio sensor de calcio del intercambiador de Na+ /Ca2+ de Drosophila melanogaster
dc.typeTrabajo de grado - Doctorado


Este ítem pertenece a la siguiente institución