dc.contributor | Kopke Salinas, Roberto | |
dc.contributor | Espejo Benavides, Blanca Fabiola | |
dc.contributor | Metabolismo de Calcio y Mecanismos de competición entre microorganismos | |
dc.creator | Rodríguez Pineda, Mario Andrés | |
dc.date.accessioned | 2022-01-31T18:29:58Z | |
dc.date.available | 2022-01-31T18:29:58Z | |
dc.date.created | 2022-01-31T18:29:58Z | |
dc.date.issued | 2020 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/80816 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https:/repositorio.una.edu.co | |
dc.description.abstract | Los intercambiadores de sodio-calcio (Na+ /Ca2+ exchangers, NCX) componen una amplia familia de intercambiadores presentes en casi todos los organismos, estando involucrados en la homeostasis celular del Ca2+. Una de estas proteínas de intercambio iónico que ha presentado gran interés para los científicos es el intercambiador (CALX) de Drosophila melanogaster (mosca de la fruta), debido a que la presencia de Ca2+ intracelular inhibe el intercambio iónico en CALX, mientras que en mamíferos (especialmente en NCX1) el incremento de [Ca2+]i activa el intercambiador. A demás de la diferencia con NCX, CALX presenta dos isoformas gracias al empalme (splicing) alternativo llamadas CALX-1.1 y CALX-1.2. Estas isoformas se diferencian por la mutación de 5 aminoácidos en el loop-FG de CBD2 y, porque CALX-1.1 es altamente inhibida por la presencia de Ca2+ mientras que la inhibición en CALX-1.2 es mucho menor, al punto que algunos autores llegan a establecer que es insensible al Ca2+i. Para comprender estas diferencias entre las dos isoformas de CALX, en este trabajo se llevaron a cabo estudios de dinámica molecular tanto del dominio CBD2 como del conjunto de CBD1 y CBD2 (denominado CBD12), encontrando diferencias dinámicas en CBD2, principalmente en la región del loop-FG. Según lo observado la hélice 1 en el loop-FG en CBD2 puede interactuar con la R584 en el loop-CD del mismo dominio en la isoforma 1.2 de mejor manera que en la isoforma 1.1, especialmente en la forma coordinada a Ca2+, lo que permite que CBD12 posea una orientación más compacta lo que hace que la isoforma 1.2 sea menos sensible al Ca2+ que la isoforma 1.1 (Texto tomado de la fuente) | |
dc.description.abstract | Sodium-calcium exchangers (Na+ /Ca2+ exchangers, NCX) are a wide family of exchangers present in almost all organisms, being involved in Ca2+ cellular homeostasis. One of these ion exchange proteins that has been of great interest to scientists is the Drosophila melanogaster (fruit fly) exchanger (CALX), because the presence of intracellular Ca2+ inhibits ion exchange in CALX, whereas in mammals (especially in NCX1) the increase of [Ca2+]i activates the exchanger. In addition to the difference with NCX, CALX presents two isoforms thanks to the alternative splicing called CALX-1.1 and CALX-1.2. These isoforms are differentiated by the 5 amino acid mutation in the CBD2 loop-FG and, because CALX-1.1 is highly inhibited by the presence of Ca2+ while the inhibition in CALX-1.2 is much lower, to the point that some authors reach establish that it is insensitive to Ca2+i. To understand these differences between the two CALX isoforms, in this work molecular dynamics studies of both the CBD2 domain and the set of CBD1 and CBD2 (called CBD12) were carried out, finding dynamic differences in CBD2, mainly in the FG-loop region. As observed helix 1 in FG-loop in CBD2 can interact with R584 in CD-loop of the same domain in 1.2 isoform better than in 1.1 isoform, especially in the Ca2+ binding form, allowing CBD12 has a more compact orientation making the 1.2 isoform less sensitive to Ca2+i than the 1.1 isoform | |
dc.language | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Medellín - Ciencias - Doctorado en Biotecnología | |
dc.publisher | Facultad de Ciencias | |
dc.publisher | Medellín, Colombia | |
dc.publisher | Universidad Nacional de Colombia - Sede Medellín | |
dc.relation | Abiko, L. A. (2015). Estudo da dinâmica funcional dos domínios regulatórios do trocador de Na + /Ca 2+ de Drosophila melanogaster por Ressonância Magnética Nuclear em Solução. UNIVERSIDADE DE SÃO PAULO. | |
dc.relation | Abiko, L. A., Vitale, P. M., Favaro, D. C., Hauk, P., Li, D.-W., Yuan, J., … Brüschweiler, R. (2016). Model for the allosteric regulation of the Na + /Ca 2+ exchanger NCX. Proteins, 84(5), 580–590. https://doi.org/10.1002/prot.25003 | |
dc.relation | Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindah, E. (2015). Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001 | |
dc.relation | Allnér, O., Foloppe, N., & Nilsson, L. (2015). Motions and entropies in proteins as seen in NMR relaxation experiments and molecular dynamics simulations. Journal of Physical Chemistry B, 119(3), 1114–1128. https://doi.org/10.1021/jp506609g | |
dc.relation | Bagur, R., & Hajnóczky, G. (2017). Intracellular Ca2+ Sensing: Its Role in Calcium Homeostasis and Signaling. Molecular Cell, 66(6), 780–788. https://doi.org/10.1016/j.molcel.2017.05.028 | |
dc.relation | Baig, M. H., Sudhakar, D. R., Kalaiarasan, P., Subbarao, N., Wadhawa, G., Lohani, M., … Khan, A. U. (2014). Insight into the effect of inhibitor resistant S130G mutant on physicochemical properties of SHV type beta-lactamase: A molecular dynamics study. PLoS ONE, 9(12), 1–19. https://doi.org/10.1371/journal.pone.0112456 | |
dc.relation | Banci, L. (2003). Molecular dynamics simulations of metalloproteins. Current Opinion in
Chemical Biology, 7(1), 143–149. https://doi.org/10.1016/S1367-5931(02)00014-5 | |
dc.relation | Bax, A., & Grishaev, A. (2005). Weak alignment NMR: A hawk-eyed view of biomolecular
structure. Current Opinion in Structural Biology, 15(5), 563–570.
https://doi.org/10.1016/j.sbi.2005.08.006 | |
dc.relation | Berridge, M J, Bootman, M. D., & Lipp, P. (1998). Molecular biology: Calcium - a life and
death signal. Nature, 395(October), 645–648. Retrieved from
http://dx.doi.org/10.1038/27094 | |
dc.relation | Berridge, M J, Lipp, P., & Bootman, M. D. (2000). The versatility and universality of
calcium signalling. Nature Reviews. Molecular Cell Biology, 1(1), 11–21.
https://doi.org/10.1038/35036035 | |
dc.relation | Berridge, Michael J, Bootman, M. D., & Roderick, H. L. (2003). Calcium signalling:
dynamics, homeostasis and remodelling. Nature Reviews. Molecular Cell Biology, 4(7),
517–529. https://doi.org/10.1038/nrm1155 | |
dc.relation | Besserer, G. M., Ottolia, M., Nicoll, D. a, Chaptal, V., Cascio, D., Philipson, K. D., &
Abramson, J. (2007). The second Ca2+-binding domain of the Na+ Ca2+ exchanger is
essential for regulation: crystal structures and mutational analysis. Proceedings of the
National Academy of Sciences of the United States of America, 104(47), 18467–18472.
https://doi.org/10.1073/pnas.0707417104 | |
dc.relation | Blaustein, M. P., & Lederer, W. J. (1999). Sodium/calcium exchange: its physiological
implications. Physiological Reviews, 79(3), 763–854. | |
dc.relation | Boivin, S., Kozak, S., & Meijers, R. (2013). Optimization of protein purification and
characterization using Thermofluor screens. Protein Expression and Purification, 91(2),
192–206. https://doi.org/10.1016/j.pep.2013.08.002 | |
dc.relation | Boyman, L., Mikhasenko, H., Hiller, R., & Khananshvili, D. (2009). Kinetic and equilibrium
properties of regulatory calcium sensors of NCX1 protein. Journal of Biological Chemistry,
284(10), 6185–6191. https://doi.org/10.1074/jbc.M809012200 | |
dc.relation | Bronner, F. (2001). Extracellular and intracellular regulation of calcium homeostasis.
TheScientificWorldJournal, 1, 919–925. https://doi.org/10.1100/tsw.2001.489 | |
dc.relation | Carafoli, Ernest, Malmström, K., Sigel, E., & Crompton, M. (1976). THE REGULATION
OF INTRACELLULAR CALCIUM. Clinical Endocrinology, 5(s1), s49–s59.
https://doi.org/10.1111/j.1365-2265.1976.tb03815.x | |
dc.relation | Carafoli, Ernesto. (1984). Intracellular calcium. General Pharmacology: The Vascular
System, 15(5), 439. https://doi.org/10.1016/0306-3623(84)90065-X | |
dc.relation | Cavanagh, J., Fairbrother, W. J., Palmer III, A. G., Rance, M., & Skelton, N. J. (2007).
Protein NMR Spectroscopy: Principles and Practice. In Protein NMR Spectroscopy (Vol.
2nd). Retrieved from http://www.amazon.fr/Protein-NMR-Spectroscopy-PrinciplesPractice/dp/012164491X | |
dc.relation | Chaptal, V., Besserer, G. M., Ottolia, M., Nicoll, D. a., Cascio, D., Philipson, K. D., &
Abramson, J. (2007). How Does Regulatory Ca2+ Regulate the Na+-Ca2+ Exchanger?
Channels, 1(6), 397–399. https://doi.org/10.4161/chan.1.6.5640 | |
dc.relation | Chen, K., & Tjandra, N. (2011). The Use of Residual Dipolar Coupling in Studying
Proteins by NMR. In NMR of Proteins and Small Biomolecules (pp. 47–67).
https://doi.org/10.1007/128_2011_215 | |
dc.relation | De La Torre, J. G., Huertas, M. L., & Carrasco, B. (2000). HYDRONMR: Prediction of
NMR Relaxation of Globular Proteins from Atomic-Level Structures and Hydrodynamic
Calculations. Journal of Magnetic Resonance, 147(1), 138–146.
https://doi.org/10.1006/jmre.2000.2170 | |
dc.relation | Delaglio, F., Grzesiek, S., Vuister, G. W., Zhu, G., Pfeifer, J., & Bax, A. (1995). NMRPipe:
A multidimensional spectral processing system based on UNIX pipes. Journal of
Biomolecular NMR, 6(3), 277–293. https://doi.org/10.1007/BF00197809 | |
dc.relation | Dick, F. (1994). Acid cleavage/deprotection in Fmoc/tBu solid-phase peptide synthesis.
Methods in Molecular Biology (Clifton, N.J.), 35, 63–72. https://doi.org/10.1385/0-89603-
273-6:63 | |
dc.relation | Dosset, P., Hus, J. C., Blackledge, M., & Marion, D. (2000). Efficient analysis of
macromolecular rotational diffusion from heteronuclear relaxation data. Journal of
Biomolecular NMR, 16(1), 23–28. https://doi.org/10.1023/A:1008305808620 | |
dc.relation | Dyck, C., Maxwell, K., Buchko, J., Trac, M., Omelchenko, A., Hnatowich, M., & Hryshko,
L. V. (1998). Structure-Function Analysis of CALX1.1, a Na + -Ca 2+ Exchanger from
Drosophila. Journal of Biological Chemistry, 273(21), 12981–12987.
https://doi.org/10.1074/jbc.273.21.12981 | |
dc.relation | Dyck, C., Omelchenko, A., Elias, C. L., Quednau, B. D., Philipson, K. D., Hnatowich, M., &
Hryshko, L. V. (1999). Ionic Regulatory Properties of Brain and Kidney Splice Variants of
the Ncx1 Na+–Ca2+ Exchanger. The Journal of General Physiology, 114(5), 701–711.
https://doi.org/10.1085/jgp.114.5.701 | |
dc.relation | Favier, A., & Brutscher, B. (2019). NMRlib: user-friendly pulse sequence tools for Bruker
NMR spectrometers. Journal of Biomolecular NMR, 73(5), 199–211.
https://doi.org/10.1007/s10858-019-00249-1 | |
dc.relation | Gáspári, Z., & Perczel, A. (2010). Protein Dynamics as Reported by NMR. Annual
Reports on NMR Spectroscopy, 71(C), 35–75. https://doi.org/10.1016/B978-0-08-089054-
8.00002-2 | |
dc.relation | Giladi, M., Bohbot, H., Buki, T., Schulze, D. H., Hiller, R., & Khananshvili, D. (2012).
Dynamic features of allosteric Ca 2+ sensor in tissue-specific NCX variants. Cell Calcium,
51(6), 478–485. https://doi.org/10.1016/j.ceca.2012.04.007 | |
dc.relation | Giladi, M., Boyman, L., Mikhasenko, H., Hiller, R., & Khananshvili, D. (2010). Essential
role of the CBD1-CBD2 linker in slow dissociation of Ca 2+ from the regulatory twodomain tandem of NCX1. Journal of Biological Chemistry, 285(36), 28117–28125.
https://doi.org/10.1074/jbc.M110.127001 | |
dc.relation | Giladi, M., Sasson, Y., Fang, X., Hiller, R., Buki, T., Wang, Y. X., … Khananshvili, D.
(2012). A common CA2+-driven interdomain module governs eukaryotic NCX regulation.
PLoS ONE, 7(6). https://doi.org/10.1371/journal.pone.0039985 | |
dc.relation | Gill, M. L., & Palmer, A. G. (2014). Local isotropic diffusion approximation for coupled
internal and overall molecular motions in NMR spin relaxation. Journal of Physical
Chemistry B, 118(38), 11120–11128. https://doi.org/10.1021/jp506580c | |
dc.relation | Guvench, O., & MacKerell, A. D. (2008). Comparison of Protein Force Fields for
Molecular Dynamics Simulations. In Methods in Molecular Biology (Vol. 443, pp. 63–88).
https://doi.org/10.1007/978-1-59745-177-2_4 | |
dc.relation | Halty-deLeon, L., Hansson, B. S., & Wicher, D. (2018). The Drosophila melanogaster
Na+/Ca2+ Exchanger CALX Controls the Ca2+ Level in Olfactory Sensory Neurons at
Rest and After Odorant Receptor Activation. Frontiers in Cellular Neuroscience, 12(July),
1–9. https://doi.org/10.3389/fncel.2018.00186 | |
dc.relation | Hendus-Altenburger, R., Wang, X., Sjøgaard-Frich, L. M., Pedraz-Cuesta, E., Sheftic, S. R., Bendsøe, A. H., … Peti, W. (2019). Molecular basis for the binding and selective dephosphorylation of Na+/H+ exchanger 1 by calcineurin. Nature Communications, 10(1), 1–13. https://doi.org/10.1038/s41467-019-11391-7 | |
dc.relation | Hilge, M. (2012). Ca2+ Regulation of Ion Transport in the Na+/Ca2+ Exchanger. Journal
of Biological Chemistry, 287(38), 31641–31649. https://doi.org/10.1074/jbc.R112.353573 | |
dc.relation | Hilge, Mark. (2013). Ca2+ Regulation in the Na+/Ca2+ Exchanger Features a Dual
Electrostatic Switch Mechanism. In L. Annunziato (Ed.), Sodium Calcium Exchange: A
Growing Spectrum of Pathophysiological Implications SE - 3 (pp. 27–33).
https://doi.org/10.1007/978-1-4614-4756-6_3 | |
dc.relation | Hilge, Mark, Aelen, J., Foarce, A., Perrakis, A., & Vuister, G. W. (2009). Ca2+ regulation
in the Na+/Ca2+ exchanger features a dual electrostatic switch mechanism. Proceedings
of the …, 106(34), 14333. https://doi.org/10.1073/pnas.0902171106 | |
dc.relation | Hilge, Mark, Aelen, J., & Vuister, G. W. (2006). Ca2+ Regulation in the Na+/Ca2+
Exchanger Involves Two Markedly Different Ca2+ Sensors. Molecular Cell, 22(1), 15–25.
https://doi.org/10.1016/j.molcel.2006.03.008 | |
dc.relation | Hilgemann, D. W., Collins, A., & Matsuoka, S. (1992). Steady-state and dynamic
properties of cardiac sodium-calcium exchange: Secondary modulation by cytoplasmic
calcium and ATP. Journal of General Physiology, 100(6), 933–961.
https://doi.org/10.1085/jgp.100.6.933 | |
dc.relation | Hilgemann, D. W., Nicoll, D. A., & Philipson, K. D. (1991). Charge movement during Na+
translocation by native and cloned cardiac Na+/Ca2+ exchanger. Nature, Vol. 352, pp.
715–718. https://doi.org/10.1038/352715a0 | |
dc.relation | Hore, P. J. (1995). Nuclear Magnetic Resonance (First). New York, NY: Oxford University
Press Inc. | |
dc.relation | Hryshko, L. V., Matsuoka, S., Nicoll, D. A., Weiss, J. N., Schwarz, E. M., Benzer, S., &
Philipson, K. D. (1996). Anomalous regulation of the Drosophila Na(+)-Ca2+ exchanger
by Ca2+. The Journal of General Physiology, 108(1), 67–74.
https://doi.org/10.1085/jgp.108.1.67 | |
dc.relation | Hu, W., & Wang, L. (2006). Residual Dipolar Couplings: Measurements and Applications
to Biomolecular Studies. Annual Reports on NMR Spectroscopy, 58, 231–303.
https://doi.org/10.1016/S0066-4103(05)58005-0
Ishima, R., & Torchia, D. (2000). Protein dynamics from NMR. Nature Structural Biology,
7(9), 740–743. https://doi.org/10.1038/78963 | |
dc.relation | Johnson, E., Bruschweiler-Li, L., Showalter, S. a, Vuister, G. W., Zhang, F., &
Brüschweiler, R. (2008). Structure and dynamics of Ca2+-binding domain 1 of the
Na+/Ca2+ exchanger in the presence and in the absence of Ca2+. Journal of Molecular
Biology, 377, 945–955. https://doi.org/10.1016/j.jmb.2008.01.046 | |
dc.relation | Johnson, E., Brüschweiler, R., & Showalter, S. A. (2008). A multifaceted approach to the
interpretation of NMR order parameters: a case study of a dynamic alpha-helix. The
Journal of Physical Chemistry. B, 112(19), 6203–6210. https://doi.org/10.1021/jp711160t | |
dc.relation | Karplus, M., & Kuriyan, J. (2005). Molecular dynamics and protein function. Proceedings
of the National Academy of Sciences of the United States of America, 102(19), 6679–
6685. https://doi.org/10.1073/pnas.0408930102 | |
dc.relation | Kay, L. E. (1998). Protein dynamics from NMR. Nature Structural Biology, 5(7), 513–517.
https://doi.org/10.1038/755 | |
dc.relation | Keeler, J. (2011). Understanding NMR Spectroscopy. John Wiley & Sons.
. | |
dc.relation | Kempf, J. G., & Loria, J. P. (2002). Protein dynamics from solution NMR: Theory and
applications. Cell Biochemistry and Biophysics, 37(3), 187–211.
https://doi.org/10.1385/CBB:37:3:187 | |
dc.relation | Khananshvili, D. (2014). Sodium-calcium exchangers (NCX): Molecular hallmarks
underlying the tissue-specific and systemic functions. Pflugers Archiv European Journal of
Physiology, 466, 43–60. https://doi.org/10.1007/s00424-013-1405-y | |
dc.relation | Khananshvili, D. (2020). Basic and editing mechanisms underlying ion transport and
regulation in NCX variants. Cell Calcium, 85(November 2019), 102131.
https://doi.org/10.1016/j.ceca.2019.102131 | |
dc.relation | Kleckner, I. R., & Foster, M. P. (2011). An introduction to NMR-based approaches for
measuring protein dynamics. Biochimica et Biophysica Acta - Proteins and Proteomics,
1814(8), 942–968. https://doi.org/10.1016/j.bbapap.2010.10.012 | |
dc.relation | Kozak, S., Lercher, L., Karanth, M. N., Meijers, R., Carlomagno, T., & Boivin, S. (2016).
Optimization of protein samples for NMR using thermal shift assays. Journal of
Biomolecular NMR, 64(4), 281–289. https://doi.org/10.1007/s10858-016-0027-z | |
dc.relation | Kramer, F., Deshmukh, M. V., Kessler, H., & Glaser, S. J. (2004). Residual dipolar
coupling constants: An elementary derivation of key equations. Concepts in Magnetic
Resonance Part A: Bridging Education and Research, 21(1), 10–21.
https://doi.org/10.1002/cmr.a.20003 | |
dc.relation | Kummerlowe, G., Schmitt, S., & Luy, B. (2010). Cross-Fitting of Residual Dipolar
Couplings. The Open Spectroscopy Journal, 4(1), 16–27.
https://doi.org/10.2174/1874383801004010016 | |
dc.relation | Leach, A. R. (2001). Molecular modelling: Principles and applications-Prentice Hall (2nd
ed.). Pearson- Prentice Hall | |
dc.relation | Lemkul, J. (2018). From Proteins to Perturbed Hamiltonians: A Suite of Tutorials for the
GROMACS-2018 Molecular Simulation Package [Article v1.0]. Living Journal of
Computational Molecular Science, 1(1), 1–53. https://doi.org/10.33011/livecoms.1.1.5068
Li, D. W., & Brüschweiler, R. (2010). NMR-based protein potentials. Angewandte Chemie
- International Edition, 49(38), 6778–6780. https://doi.org/10.1002/anie.201001898 | |
dc.relation | Li, Z., Nicoll, D. A., Collins, A., Hilgemann, D. W., Filoteo, A. G., Penniston, J. T., …
Philipson, K. D. (1991). Identification of a peptide inhibitor of the cardiac sarcolemmal
Na+-Ca2+ exchanger. Journal of Biological Chemistry, 266(2), 1014–1020. | |
dc.relation | Liao, J., Li, H., Zeng, W., Sauer, D. B., Belmares, R., & Jiang, Y. (2012). Structural Insight
into the Ion-Exchange Mechanism of the Sodium/Calcium Exchanger. Science, 335(curve
1), 686–690. https://doi.org/10.1126/science.1215759 | |
dc.relation | Liao, Jun, Marinelli, F., Lee, C., Huang, Y., Faraldo-Gómez, J. D., & Jiang, Y. (2016).
Mechanism of extracellular ion exchange and binding-site occlusion in a sodium/calcium
exchanger. Nature Structural and Molecular Biology, 23(6), 590–599.
https://doi.org/10.1038/nsmb.3230 | |
dc.relation | Libreros, G. A. (2018). L , D-transpeptidases de Mycobacterium tuberculosis : Estudo das
interações com antibióticos β -lactâmicos e triagem de fragmentos. Universidade
Estadual Paulista, Julio de Mesquita Filho (UNESP). | |
dc.relation | Lipari, G., & Szabo, A. (1982a). Model-Free Approach to the Interpretation of Nuclear
Magnetic Resonance Relaxation in Macromolecules. 1. Theory and Range of Validity.
Journal of the American Chemical Society, 104(17), 4546–4559.
https://doi.org/10.1021/ja00381a009 | |
dc.relation | Lipari, G., & Szabo, A. (1982b). Model-Free Approach to the Interpretation of Nuclear
Magnetic Resonance Relaxation in Macromolecules. 2. Analysis of Experimental Results.
Journal of the American Chemical Society, 104(17), 4559–4570.
https://doi.org/10.1021/ja00381a010 | |
dc.relation | Losonczi, J. A., Andrec, M., Fischer, M. W. F., & Prestegard, J. H. (1999). Order Matrix
Analysis of Residual Dipolar Couplings Using Singular Value Decomposition. Journal of
Magnetic Resonance, 138(2), 334–342. https://doi.org/10.1006/jmre.1999.1754 | |
dc.relation | Lümmen, P. (2013). Calcium Channels as Molecular Target Sites of Novel Insecticides. In
Advances in Insect Physiology (Vol. 44, pp. 287–347). https://doi.org/10.1016/B978-0-12-
394389-7.00005-3 | |
dc.relation | Lytton, J. (2007). Na+/Ca2+ exchangers: Three mammalian gene families control Ca2+
transport. Biochemical Journal, 406(3), 365–382. https://doi.org/10.1042/BJ20070619
Martín-Santamaría, S. (Ed.). (2017). Computational Tools for Chemical Biology.
https://doi.org/10.1039/9781788010139 | |
dc.relation | Massi, F., Johnson, E., Wang, C., Rance, M., & Palmer, A. G. (2004). NMR R 1 ρ
Rotating-Frame Relaxation with Weak Radio Frequency Fields. Journal of the American
Chemical Society, 126(7), 2247–2256. https://doi.org/10.1021/ja038721w | |
dc.relation | Matsuoka, S., Nicoll, D. A., He, Z., & Philipson, K. D. (1997). Regulation of the Cardiac
Na+-Ca2+ exchanger by the endogenous XIP region. Journal of General Physiology,
109(2), 273–286. https://doi.org/10.1085/jgp.109.2.273 | |
dc.relation | McFadzean, I., & Gibson, A. (2002). The developing relationship between receptoroperated and store-operated calcium channels in smooth muscle. British Journal of
Pharmacology, 135(1), 1–13. https://doi.org/10.1038/sj.bjp.0704468 | |
dc.relation | Miroux, B., & Walker, J. E. (1996). Over-production of Proteins inEscherichia coli: Mutant
Hosts that Allow Synthesis of some Membrane Proteins and Globular Proteins at High
Levels. Journal of Molecular Biology, 260(3), 289–298.
https://doi.org/10.1006/jmbi.1996.0399 | |
dc.relation | Molinaro, P., Pannaccione, A., Sisalli, M. J., Secondo, A., Cuomo, O., Sirabella, R., …
Annunziato, L. (2015). A new cell-penetrating peptide that blocks the autoinhibitory XIP
domain of NCX1 and enhances antiporter activity. Molecular Therapy : The Journal of the
American Society of Gene Therapy, 23(3), 465–476. https://doi.org/10.1038/mt.2014.231 | |
dc.relation | Morgon, N. H., & Coutinho, K. R. (2007). Métodos de química teórica e modelagem
molecular. Editora Livraria da Física. | |
dc.relation | Morin, S. (2011). A practical guide to protein dynamics from 15N spin relaxation in
solution. Progress in Nuclear Magnetic Resonance Spectroscopy, 59(3), 245–262.
https://doi.org/10.1016/j.pnmrs.2010.12.003 | |
dc.relation | Nicoll, D. A., Ottolia, M., Goldhaber, J. I., & Philipson, K. D. (2013). 20 years from NCX
purification and cloning: milestones. Advances in Experimental Medicine and Biology,
961, 17–23. https://doi.org/10.1007/978-1-4614-4756-6_2 | |
dc.relation | Nicoll, D. A., Sawaya, M. R., Kwon, S., Cascio, D., Philipson, K. D., & Abramson, J.
(2006). The crystal structure of the primary Ca2+ sensor of the Na +/Ca2+ exchanger
reveals a novel Ca2+ binding motif. Journal of Biological Chemistry, 281(31), 21577–
21581. https://doi.org/10.1074/jbc.C600117200 | |
dc.relation | Olsson, M. H. M., SØndergaard, C. R., Rostkowski, M., & Jensen, J. H. (2011).
PROPKA3: Consistent treatment of internal and surface residues in empirical p K a
predictions. Journal of Chemical Theory and Computation, 7(2), 525–537.
https://doi.org/10.1021/ct100578z | |
dc.relation | Omelchenko, a, Dyck, C., Hnatowich, M., Buchko, J., Nicoll, D. a, Philipson, K. D., &
Hryshko, L. V. (1998). Functional differences in ionic regulation between alternatively spliced isoforms of the Na+-Ca2+ exchanger from Drosophila melanogaster. The Journal
of General Physiology, 111(May), 691–702. https://doi.org/10.1085/jgp.111.5.691 | |
dc.relation | On, C., Marshall, C. R., Chen, N., Moyes, C. D., & Tibbits, G. F. (2008). Gene Structure
Evolution of the Na+-Ca2+ Exchanger (NCX) Family. BMC Evolutionary Biology, 8(1),
127. https://doi.org/10.1186/1471-2148-8-127 | |
dc.relation | Ottolia, M., Nicoll, D. A., & Philipson, K. D. (2009). Roles of two Ca2+-binding domains in
regulation of the cardiac Na+-Ca2+ exchanger. Journal of Biological Chemistry, 284(47),
32735–32741. https://doi.org/10.1074/jbc.M109.055434 | |
dc.relation | Palmer, A. G. (1997). Probing molecular motion by NMR. Current Opinion in Structural
Biology, 7(5), 732–737. https://doi.org/10.1016/S0959-440X(97)80085-1 | |
dc.relation | Palmer, A. G. (2004). NMR characterization of the dynamics of biomacromolecules.
Chemical Reviews, 104(8), 3623–3640. https://doi.org/10.1021/cr030413t | |
dc.relation | Palmer, A. G., Williams, J., & McDermott, A. (1996). Nuclear magnetic resonance studies
of biopolymer dynamics. Journal of Physical Chemistry, 100(31), 13293–13310.
https://doi.org/10.1021/jp9606117 | |
dc.relation | Parekh, A. B., & Putney, J. W. (2005). Store-Operated Calcium Channels. Physiological
Reviews, 85(2), 757–810. https://doi.org/10.1152/physrev.00057.2003 | |
dc.relation | Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E.
C., & Ferrin, T. E. (2004). UCSF Chimera - A visualization system for exploratory
research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612.
https://doi.org/10.1002/jcc.20084 | |
dc.relation | Philipson, Keneth D., Nicoll, D. A., Ottolia, M., Quednau, B. D., Reuter, H., John, S., &
Qiu, Z. (2006). The Na+/Ca2+ Exchange Molecule. Annals of the New York Academy of
Sciences, 976(1), 1–10. https://doi.org/10.1111/j.1749-6632.2002.tb04708.x | |
dc.relation | Philipson, Kenneth D., & Nicoll, D. A. (2000). Sodium-Calcium Exchange: A Molecular
Perspective. Annual Review of Physiology, 62(1), 111–133.
https://doi.org/10.1146/annurev.physiol.62.1.111 | |
dc.relation | Reeves, J. P. (1998). Na+/Ca2+ exchange and cellular Ca2+ homeostasis. Journal of
Bioenergetics and Biomembranes, 30(2), 151–160.
https://doi.org/10.1023/A:1020569224915 | |
dc.relation | Reeves, J. P., & Condrescu, M. (2008). Ionic regulation of the cardiac sodium-calcium
exchanger. Channels, 2(5), 322–328. https://doi.org/10.4161/chan.2.5.6897 | |
dc.relation | Ren, X., & Philipson, K. D. (2013). The topology of the cardiac Na+/Ca2+ exchanger,
NCX1. Journal of Molecular and Cellular Cardiology, 57(1), 68–71.
https://doi.org/10.1016/j.yjmcc.2013.01.010 | |
dc.relation | Rule, G. S., & Hitchens, T. K. (2006). Fundamentals of Protein NMR Spectroscopy. In
Focus on Structural Biology: Vol. 5. https://doi.org/10.1007/1-4020-3500-4 | |
dc.relation | Salinas, R. K., Bruschweiler-Li, L., Johnson, E., & Brus̈chweiler, R. (2011). Ca 2+ binding
alters the interdomain flexibility between the two cytoplasmic calcium-binding domains in
the Na +/Ca 2+ exchanger. Journal of Biological Chemistry, 286(37), 32123–32131.
https://doi.org/10.1074/jbc.M111.249268 | |
dc.relation | Sass, J., Cordier, F., Hoffmann, A., Rogowski, M., Cousin, A., Omichinski, J. G., …
Grzesiek, S. (1999). Purple membrane induced alignment of biological macromolecules in
the magnetic field. Journal of the American Chemical Society, 121(10), 2047–2055.
https://doi.org/10.1021/ja983887w | |
dc.relation | Schwarz, E. M., & Benzer, S. (1997). Calx, a Na-Ca exchanger gene of Drosophila
melanogaster. Proceedings of the National Academy of Sciences of the United States of
America, 94(19), 10249–10254. https://doi.org/10.1073/pnas.94.19.10249 | |
dc.relation | Scopes, R. K. (1974). Measurement of protein by spectrophotometry at 205 nm.
Analytical Biochemistry, 59(1), 277–282. https://doi.org/10.1016/0003-2697(74)90034-7 | |
dc.relation | Sebastián Yagüe, Á., Pascua García, A., Sebastían, F., Aguirre, J., León, E., Bajic, D., &
Baú, D. (2014). Bioinformática con Ñ (1st ed.; A. Sebastián & A. Pascual-García, Eds.).
https://doi.org/10.5281/zenodo.1065032 | |
dc.relation | Sharma, V., & O’Halloran, D. M. (2014). Recent structural and functional insights into the
family of sodium calcium exchangers. Genesis, 52(2), 93–109.
https://doi.org/10.1002/dvg.22735 | |
dc.relation | Shen, Y., & Bax, A. (2013). Protein backbone and sidechain torsion angles predicted from
NMR chemical shifts using artificial neural networks. Journal of Biomolecular NMR, 56(3),
227–241. https://doi.org/10.1007/s10858-013-9741-y | |
dc.relation | Singh, R. K., Blossom, B. M., Russo, D. A., Van Oort, B., Croce, R., Jensen, P. E., …
Bjerrum, M. J. (2019). Thermal unfolding and refolding of a lytic polysaccharide
monooxygenase from: Thermoascus aurantiacus. RSC Advances, 9(51), 29734–29742.
https://doi.org/10.1039/c9ra05920b | |
dc.relation | Skora, L., Mestan, J., Fabbro, D., Jahnke, W., & Grzesiek, S. (2013). NMR reveals the
allosteric opening and closing of Abelson tyrosine kinase by ATP-site and myristoyl
pocket inhibitors. Proceedings of the National Academy of Sciences of the United States
of America, 110(47). https://doi.org/10.1073/pnas.1314712110 | |
dc.relation | Song, Y., Dimaio, F., Wang, R. Y. R., Kim, D., Miles, C., Brunette, T., … Baker, D. (2013).
High-resolution comparative modeling with RosettaCM. Structure, 21(10), 1735–1742.
https://doi.org/10.1016/j.str.2013.08.005 | |
dc.relation | Stabelini, T. C. (2018). Estudos estruturais de fragmentos do trocador de Na+/Ca2+ por
RMN em solução (Biblioteca Digital de Teses e Dissertações da Universidade de São
Paulo). https://doi.org/10.11606/D.46.2018.tde-11122018-091550 | |
dc.relation | Strickland, M., & Tjandra, N. (2018). Residual dipolar coupling for conformational and
dynamic studies. Modern Magnetic Resonance, 419–434. https://doi.org/10.1007/978-3-
319-28388-3_86 | |
dc.relation | Terpe, K. (2006). Overview of bacterial expression systems for heterologous protein
production: From molecular and biochemical fundamentals to commercial systems.
Applied Microbiology and Biotechnology, 72(2), 211–222. https://doi.org/10.1007/s00253-
006-0465-8 | |
dc.relation | Tolman, J. R., & Ruan, K. (2006). NMR residual dipolar couplings as probes of
biomolecular dynamics. Chemical Reviews, 106(5), 1720–1736.
https://doi.org/10.1021/cr040429z | |
dc.relation | Verkhratsky, A., Trebak, M., Perocchi, F., Khananshvili, D., & Sekler, I. (2018). Crosslink
between calcium and sodium signalling. Experimental Physiology, 103(2), 157–169.
https://doi.org/10.1113/EP086534 | |
dc.relation | Vranken, W. F., Boucher, W., Stevens, T. J., Fogh, R. H., Pajon, A., Llinas, M., … Laue,
E. D. (2005). The CCPN data model for NMR spectroscopy: development of a software
pipeline. Proteins, 59(4), 687–696. https://doi.org/10.1002/prot.20449 | |
dc.relation | Wang, T., Xu, H., Oberwinkler, J., Gu, Y., Hardie, R. C., & Montell, C. (2005). Light
activation, adaptation, and cell survival functions of the Na + /Ca 2+ exchanger CalX.
Neuron, 45(3), 367–378. https://doi.org/10.1016/j.neuron.2004.12.046 | |
dc.relation | William Studier, F., Rosenberg, A. H., Dunn, J. J., & Dubendorff, J. W. (1990). Use of T7
RNA polymerase to direct expression of cloned genes. Methods in Enzymology, 185(C),
60–89. https://doi.org/10.1016/0076-6879(90)85008-C | |
dc.relation | Wu, M., Le, H. D., Wang, M., Yurkov, V., Omelchenko, A., Hnatowich, M., … Zheng, L.
(2010). Crystal structures of progressive Ca2+ binding states of the Ca2+ sensor Ca2+
binding domain 1 (CBD1) from the CALX Na+/Ca2+ exchanger reveal incremental
conformational transitions. Journal of Biological Chemistry, 285(4), 2554–2561.
https://doi.org/10.1074/jbc.M109.059162 | |
dc.relation | Wu, M., Tong, S., Gonzalez, J., Jayaraman, V., Spudich, J. L., & Zheng, L. (2011).
Structural Basis of the Ca 2+ Inhibitory Mechanism of Drosophila Na +/Ca 2+ Exchanger
CALX and Its Modification by Alternative Splicing. Structure, 19(10), 1509–1517.
https://doi.org/10.1016/j.str.2011.07.008 | |
dc.relation | Wu, M., Wang, M., Nix, J., Hryshko, L. V., & Zheng, L. (2009). Crystal Structure of CBD2
from the Drosophila Na+/Ca2+ Exchanger: Diversity of Ca2+ Regulation and Its Alternative Splicing Modification. Journal of Molecular Biology, 387(1), 104–112.
https://doi.org/10.1016/j.jmb.2009.01.045 | |
dc.relation | Wüthrich, K. (1986). NMR of Proteins and Nucleic Acids. In A Wiley-Interscience
Publication. Retrieved from https://books.google.com.br/books?id=zfBqAAAAMAAJ | |
dc.relation | Yuan, J., Yuan, C., Xie, M., Yu, L., Bruschweiler-Li, L., & Bruschweiler, R. (2018). The
Intracellular Loop of the Na+/Ca2+ Exchanger Contains an “awareness Ribbon” Shaped
Two-helix Bundle Domain. Biochemistry, 1. https://doi.org/10.1021/acs.biochem.8b00300 | |
dc.relation | Zheng, L., Wu, M., & Tong, S. (2013). Structural Studies of the Ca2+ Regulatory Domain
of Drosophila Na+/Ca2+ Exchanger CALX. In L. Annunziato (Ed.), Sodium Calcium
Exchange: A Growing Spectrum of Pathophysiological Implications (pp. 55–63).
https://doi.org/10.1007/978-1-4614-4756-6_6 | |
dc.relation | Abiko, L. A. (2015). Estudo da dinâmica funcional dos domínios regulatórios do trocador
de Na + /Ca 2+ de Drosophila melanogaster por Ressonância Magnética Nuclear em
Solução. Universidade de São Paulo. | |
dc.relation | Abiko, L. A., Vitale, P. M., Favaro, D. C., Hauk, P., Li, D.-W., Yuan, J., … Brüschweiler, R.
(2016). Model for the allosteric regulation of the Na + /Ca 2+ exchanger NCX. Proteins:
Structure, Function, and Bioinformatics, 84(5), 580–590.
https://doi.org/10.1002/prot.25003 | |
dc.relation | Boivin, S., Kozak, S., & Meijers, R. (2013). Optimization of protein purification and
characterization using Thermofluor screens. Protein Expression and Purification, 91(2),
192–206. https://doi.org/10.1016/j.pep.2013.08.002. | |
dc.relation | Delaglio, F., Grzesiek, S., Vuister, G. W., Zhu, G., Pfeifer, J., & Bax, A. (1995). NMRPipe:
A multidimensional spectral processing system based on UNIX pipes. Journal of
Biomolecular NMR, 6(3), 277–293. https://doi.org/10.1007/BF00197809. | |
dc.relation | Hendus-Altenburger, R., Wang, X., Sjøgaard-Frich, L. M., Pedraz-Cuesta, E., Sheftic, S.
R., Bendsøe, A. H., … Peti, W. (2019). Molecular basis for the binding and selective
dephosphorylation of Na+/H+ exchanger 1 by calcineurin. Nature Communications, 10(1),
1–13. https://doi.org/10.1038/s41467-019-11391-7. | |
dc.relation | Kozak, S., Lercher, L., Karanth, M. N., Meijers, R., Carlomagno, T., & Boivin, S. (2016).
Optimization of protein samples for NMR using thermal shift assays. Journal of
Biomolecular NMR, 64(4), 281–289. https://doi.org/10.1007/s10858-016-0027-z. | |
dc.relation | Libreros, G. A. (2018). L , D-transpeptidases de Mycobacterium tuberculosis : Estudo das
interações com antibióticos β -lactâmicos e triagem de fragmentos. Universidade
Estadual Paulista, Julio de Mesquita Filho (UNESP). | |
dc.relation | Miroux, B., & Walker, J. E. (1996). Over-production of Proteins inEscherichia coli: Mutant
Hosts that Allow Synthesis of some Membrane Proteins and Globular Proteins at High
Levels. Journal of Molecular Biology, 260(3), 289–298.
https://doi.org/10.1006/jmbi.1996.0399. | |
dc.relation | Scopes, R. K. (1974). Measurement of protein by spectrophotometry at 205 nm.
Analytical Biochemistry, 59(1), 277–282. https://doi.org/10.1016/0003-2697(74)90034-7. | |
dc.relation | Singh, R. K., Blossom, B. M., Russo, D. A., Van Oort, B., Croce, R., Jensen, P. E., …
Bjerrum, M. J. (2019). Thermal unfolding and refolding of a lytic polysaccharide
monooxygenase from: Thermoascus aurantiacus. RSC Advances, 9(51), 29734–29742.
https://doi.org/10.1039/c9ra05920b. | |
dc.relation | Terpe, K. (2006). Overview of bacterial expression systems for heterologous protein
production: From molecular and biochemical fundamentals to commercial systems.
Applied Microbiology and Biotechnology, 72(2), 211–222. https://doi.org/10.1007/s00253-
006-0465-8. | |
dc.relation | Vranken, W. F., Boucher, W., Stevens, T. J., Fogh, R. H., Pajon, A., Llinas, M., … Laue,
E. D. (2005). The CCPN data model for NMR spectroscopy: development of a software
pipeline. Proteins, 59(4), 687–696. https://doi.org/10.1002/prot.20449. | |
dc.relation | William Studier, F., Rosenberg, A. H., Dunn, J. J., & Dubendorff, J. W. (1990). Use of T7
RNA polymerase to direct expression of cloned genes. Methods in Enzymology, 185(C),
60–89. https://doi.org/10.1016/0076-6879(90)85008-C. | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | Estudios de RMN del dominio sensor de calcio del intercambiador de Na+ /Ca2+ de Drosophila melanogaster | |
dc.type | Trabajo de grado - Doctorado | |