dc.contributor | Dimaté Castellanos, María Cristina | |
dc.creator | Fandiño Bohórquez, Jonnathan Hadier | |
dc.date.accessioned | 2020-08-16T06:07:52Z | |
dc.date.available | 2020-08-16T06:07:52Z | |
dc.date.created | 2020-08-16T06:07:52Z | |
dc.date.issued | 2020 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/78055 | |
dc.description.abstract | The subduction geometry of the Nazca plate beneath the northern termination of the Andes is complex, particularly under the Choco basin. Based on the spatial distribution of hypocenters and the interpretation of focal mechanisms, we sought to refine the geometry and kinematic model of the subducting lithosphere. For this purpose, we relocated nearly 480 seismic events reported by Colombian National Seismic Network from 1996 to 2016 at depths of 0 - 180 km with local magnitudes between 3.0 and 6.5 using absolute and relative location techniques. Our results showed an apparently continuous Nazca plate along the Colombia-Ecuador trench, which subducts under the South American plate with a slight increase in the subduction dip angle in a north-south direction, and rate seismicity variations. These variations may be explained by the presence of the extinct spreading center CNS-2 and a heterogeneous bathymetric morphology, which would modify the hydration and dehydration volume of the oceanic crust of the eastern Panama basin. | |
dc.description.abstract | La configuración de subducción de la placa de Nazca bajo la terminación de los Andes del Norte es bastante compleja, en particular bajo la cuenca del Chocó. Basados en la distribución espacial de hipocentros y la interpretación de mecanismos focales buscamos definir un modelo geométrico y cinemático más detallado de la litosfera que subduce. Para ello, relocalizamos alrededor de cuatrocientos ochenta eventos registrados por la Red Sismológica Nacional de Colombia entre los años de 1996 – 2016 con profundidades de cero y ciento ochenta kilómetros y magnitudes locales de 3.0 – 6.5 utilizando técnicas de localización absolutas y relativas. Nuestros resultados muestran una aparente continuidad de la placa de Nazca a lo largo de la fosa Colombo - Ecuatoriana, la cual subduce bajo la placa Sudamericana con ligeros incrementos en el ángulo de buzamiento, 30° al norte y 40° al sur de ~5.2°N, y una variación en la tasa de sismicidad. Estas variaciones podrían ser explicadas por la presencia del centro de expansión extinto CNS-2 y una morfología batimétrica heterogénea que modificaría el volumen de hidratación y deshidratación de la corteza de la cuenca oriental de Panamá. | |
dc.language | spa | |
dc.publisher | Bogotá - Ciencias - Maestría en Ciencias - Geofísica | |
dc.publisher | Departamento de Geociencias | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | Abers, G. A., Nakajima, J., Van Keken, P. E., Kita, S., & Hacker, B. R. (2013). Thermal–petrological controls on the location of earthquakes within subducting plates. Earth and Planetary Science Letters, Volumes 369–370, 178-187. | |
dc.relation | Aki, K., & Lee, W. (1976). Determination of three‐dimensional velocity anomalies under a seismic array using first P arrival times from local earthquakes: 1. A homogeneous initial model. Journal of Geophysical Research, Volume 81, Issue 23, 4381-4399. | |
dc.relation | Andreani, M., Mével, C., Boullier, A. M., & Escartin, J. (2007). Dynamic control on serpentine crystallization in veins: Constraints on hydration processes in oceanic peridotites. Geochemistry, Geophysics, Geosystems, Volume 8, Issue 2. | |
dc.relation | Arcila, M., & Dimaté, C. (2005). Caracterización de fuentes sísmicas de subducción. Bogotá: Instituto Colombiano de Geología y Minería - INGEOMINAS. | |
dc.relation | Arroyo, I. G., Husen, S., Flueh, E. R., Gossler, J., Kissling, E., & Alvarado, G. E. (2009). Three‐dimensional P‐wave velocity structure on the shallow part of the Central Costa Rican Pacific margin from local earthquake tomography using off‐ and onshore networks. Geophysical Journal International, Volume 179, Issue 2., 827–849. | |
dc.relation | Beyreuther, M., Barsh, R., Krischer, L., Megies, T., Behr, Y., & Wassrmann, J. (2010). ObsPy: A Python Toolbox for Seismology. Seismological Research Letters, 81, 530-533. | |
dc.relation | Boneh, Y., Schottenfels, E., Kwong, K., Zelst, I., Tong, X., Eimer, M., . . . Zhan, Z. (2019). Intermediate‐Depth Earthquakes Controlled by Incoming Plate Hydration Along Bending‐Related Faults. Geophysical Research Letters, Volume 46, Issue 7, 3688-3697. | |
dc.relation | Brocher, T. (2008). Compressional and shear-wave velocity versus depth relations for common rock types in northern California. Bulletin of the Seismological Society of America, Vol. 98, Issue 2, 950-968. | |
dc.relation | Cediel, F., & Shaw, R. (2019). Geology and Tectonics of Northwestern South America. Switzerland: Springer. | |
dc.relation | Chang, Y., Warren, L. M., & Prieto, G. A. (2017). Precise Locations for Intermediate‐Depth Earthquakes in the Cauca Cluster, Colombia. Bulletin of the Seismological Society of America, vol.107, 2649-2663. | |
dc.relation | Chiarabba, C., De Gori, P., Faccenna, C., Speranza, F., Seccia, D., Dionicio, V., & Prieto, G. (2015). Subduction system and flat slab beneath the Eastern cordillera of Colombia. Geochemistry, Geophysics, Geosystems, Volume 17, Issue 1, 16-27. | |
dc.relation | Cortes, M., & Angelier, J. (2005). Current states of stress in the northern Andes as indicated by focal mechanisms of earthquakes. Tectonophysics, Volume 403, Issues 1–4, 29-58. | |
dc.relation | DeLONG, S., Schwarz, W. M., & Anderson, R. N. (1979). Thermal effects of ridge subduction. Earth and Planetary Science Letters, Volume 44, Issue 2, 239-246. | |
dc.relation | DeShon, H. (2004). Seismogenic zone structure along the Middle America subduction zone, Costa Rica. Ph.D. Thesis. University of California-Santa Cruz, 359. | |
dc.relation | Diehl, T. (2008). 3-D seismic velocity models of the Alpine crust from local earthquake tomography. Zürich: Eidgenössische Technische Hochschule ETH. | |
dc.relation | Diehl, T., & Kissling, E. (2008). Users Guide for Consistent Phase Picking at Local to Regional Scales. Zürich: Eidgenössische Technische Hochschule ETH. | |
dc.relation | Dineva, S., Eaton, D., & Mereu, R. (2004). Seismicity of the Southern Great Lakes: Revised Earthquake Hypocenters and Possible Tectonic Controls. Bulletin of the Seismological Society of America, Vol. 94, 1902-1918. | |
dc.relation | Dziewonski, A. M.-A. (1981). Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. Geophys. Res., 86, 2825-2852. | |
dc.relation | Ekström, G., Nettles, M., & Dziewonski, A. M. (2012). The global CMT project 2004-2010: Centroid-moment tensors for 13,017 earthquakes. Phys. Earth Planet, 200-201. | |
dc.relation | Faccenda, M., Gerya, T. V., & Burlini, L. (2009). Deep slab hydration induced by bending-related variations in tectonic pressure. Nature Geoscience, 2, 790–793. | |
dc.relation | Franco, E., Rengifo, F., Llanos, D., Perez, J., Bedoya, N., Bermudez, M., . . . Ojeda, A. (2002). Sismicidad registrada por la red sismológica nacional de Colombia durante el tiempo de operación: Junio de 1993 hasta Agosto de 2002. Simposio Colombiano de Sismología. | |
dc.relation | Fréchet, J. (1985). Sismogenése et doublets sismiques, Thése d'Etat,. University of Sciencce and Technology, 10223-10236. | |
dc.relation | Frisch, W., Meschede, M., & Blakey, R. (2011). Plate Tectonics, Continental Drift and Mountain Building. Springer. | |
dc.relation | GEM, & SGC. (2018). Modelo Nacional de Amenaza sísmica de Colombia. Servicio Geológico Colombiano (SGC) – Grupo de Amenaza Sísmica. Fundación Global Earthquake Model (GEM)., 1-196. | |
dc.relation | Got, J., Fréchet, J., & Klein, F. (1994). Deep fault plane geometry inferred from multiplet relative relocation beneath the south flank of Kilauea. Journal of Geophysical Research: Solid Earth, Volume 99, Issue B8, 15375-15386. | |
dc.relation | Govers, R., & Wortel, M. (2005). Lithosphere tearing at STEP faults: response to edges of subduction zones. Earth and Planetary Science Letters, Volume 236, Issues 1–2, 505-523. | |
dc.relation | Grevemeyer, I., Ranero, C. R., Flueh, E. R., Kläschen, D., & Bialas, J. (2007). Passive and active seismological study of bending-related faulting and mantle serpentinization at the Middle America trench. Earth and Planetary Science Letters, Volume 258, Issues 3–4, 528–542. | |
dc.relation | Grim, P. (1970). Connection of the Panama fracture zone with the Galapagos rift zone, eastern tropical Pacific. Marine Geophysical Researches, volume 1, 85-90. | |
dc.relation | Hardy, N. C. (1991). Tectonic evolution of the easternmost Panama basin: Some new data and inferences. Journal of South American Earth Sciences, Volume 4, Issue 3, 261-269. | |
dc.relation | Haslinger, F. (1998). Velocity structure, seismicity and seismotectonics of northwestern Greece between the Gulf of Arta and Zakynthos. Ph.D. thesis. Swiss Federal Institute of Technology of Zürich, 1–158. | |
dc.relation | Havskov, J., & Ottemöller, L. (1999). SeisAn Earthquake Analysis Software. Seismological Research Letters 70, 532-534. | |
dc.relation | Havskov, J., & Ottemöller, L. (2010). Routine Data Processing in Earthquake Seismology. Netherlands: Springer. | |
dc.relation | Havskov, J., Bormann, P., & Schweitzer, J. (2011). Seismic Source Location. Postdam. | |
dc.relation | Helffrich, G., Wookey, J., & Bastow, I. (2013). The Seismic Analysis Code: A Primer and User’s Guide. New York: Cambridge University Press. | |
dc.relation | Herron, E., & Heirtzler, J. (1967). Sea-Floor Spreading near the Galapagos. Science Vol.158, 775-779. | |
dc.relation | Hewitt, E., & Hewitt, R. (1979). The Gibbs-Wilbraham phenomenon: An episode in fourier analysis. Archive for History of Exact Sciences, volume 21, 129-160. | |
dc.relation | Hey, R. (1977). Tectonic evolution of the Cocos-Nazca spreading center. Geological Society of American Bulletin, volume 88, 1404-1420. | |
dc.relation | Husen, S. (1999). Local Earthquake Tomography of a Convergent Margin, North Chile - a Combined On- and Offshore Study. Ph.D. thesis. University of Kiel, 1–148. | |
dc.relation | Husen, S., Kissling, E., Flueh, E., & Asch, G. (1999). Accurate hypocentre determination in the seismogenic zone of the subducting Nazca Plate in northern Chile using a combined on-/offshore network. Geophysical Journal International, Volume 138, Issue 3, 687–701. | |
dc.relation | Isacks, B., Oliver, J., & Sykes, L. (1968). Seismology and the new global tectonics. Journal of Geophysical Research, Volume 73, Issue 18, 5855-5899. | |
dc.relation | Jerry, A. (1998). The Gibbs Phenomenon in Fourier Analysis, Splines and Wavelet Approximations. Boston: Kluwer Academic Publishers. | |
dc.relation | Kanamori, H. (1986). Rupture Process of Subduction-Zone Earthquakes. Annual Review of Earth and Planetary Sciences, Volume 14, 293-322. | |
dc.relation | Kennett, B., & Engdahl, E. (1991). Traveltimes for global earthquake location and phase identification. Geophysical Journal International, Volume 105, Issue 2, 429-465. | |
dc.relation | Key, K., Constable, S., Matsuno, T., Evans, R. L., & & Myer, D. (2012). Electromagnetic detection of plate hydration due to bending faults at the Middle America Trench. Earth and Planetary Science Letters, Volumes 351–352, 45-53. | |
dc.relation | Kirby, S. H., Stein, S., Okal, E. A., & Rubie, D. C. (1996). Metastable mantle phase transformations and deep earthquakes in subducting oceanic lithosphere. Reviews of Geophysics, Volume 34, Issue 2, 261-306. | |
dc.relation | Kissling, E. (1988). Geotomography with local earthquake data. Reviews of Geophysics, Volume 26, Issue 4, 659-698. | |
dc.relation | Kissling, E., Ellsworth, W., Eberhart-Phillips, D., & Kradolfer, U. (1994). Initial reference models in local earthquake tomography. Journal of Geophysical Research: Solid Earth, Volume 99, Issue B10, 635-646. | |
dc.relation | Klein, F. (1978). Hypocenter location program HYPOINVERSE: Part I. Users guide to Versions 1, 2, 3, and 4. Part II. Source listings and notes. U.S. Geological Survey, 78-694. | |
dc.relation | Lee, W., & Lahr, J. (1975). HYPO71 (revised): a computer program for determining hypocenter, magnitude, and first motion pattern of local earthquakes. California: U.S. Dept. of the Interior, Geological Survey, National Center for Earthquake Research. | |
dc.relation | Levenberg, K. (1944). A Method for the solution of certain nonlinear problems in Least Squares. The Quarterly of Applied Mathematics, Vol. 2, No. 2, 164-168. | |
dc.relation | Lienert, B. (1991). Monte Carlo simulation of errors in the anisotropy of magnetic susceptibility: A second‐rank symmetric tensor. Journal of Geophysical Research: Solid Earth, Volume 96, Issue B12, 539-544. | |
dc.relation | Lienert, B., & Havskov, J. (1995). A Computer Program for Locating Earthquakes Both Locally and Globally. Seismological Research Letters, Volume 66, 26-36. | |
dc.relation | Lienert, B., Berg, E., & Frazer, L. (1986). HYPOCENTER: An earthquake location method using centered, scaled, and adaptively damped least squares. Bulletin of the Seismological Society of America, volume 76, 771-783. | |
dc.relation | Lonsdale, P. (2005). Creation of the Cocos and Nazca plates by fission of the Farallon plate. Tectonophysics, Volume 404, Issues 3–4, 237-264. | |
dc.relation | Lonsdale, P., & Klitgord, G. (1978). Structure and tectonic history of the eastern Panama Basin. Geological Society of American Bulletin, 981-999. | |
dc.relation | Matrullo, E. (2012). Fault delineation and stress orientations from the analysis of background, low magnitude seismicity in Southern Apennines (Italy). Ph.D. thesis. Università Di Bologna, pp 1-177. | |
dc.relation | Matrullo, E., De Matteis, R., Satriano, C., Amoroso, O., & Zollo, A. (2013). An improved 1-D seismic velocity model for seismological studies in the Campania–Lucania region (Southern Italy). Geophysical Journal International, Volume 195, Issue 1, 460-473. | |
dc.relation | McCalpin, J. P., & Carver, G. (2009). Paleoseismology of compressional tectonic environments. International Geophysics, Volume 95, 315-419. | |
dc.relation | Meissnar, R., Flueh, E., Stibane, F., & Berg, E. (1976). Dynamics of the active plate boundary in southwest Colombia according to recent geophysical measurements. Tectonophysics, Volume 35, Issues 1–3, 115-136. | |
dc.relation | Meschede, M., & Barckhausen, U. (2000). The plate tectonic evolution of the Cocos-Nazca spreading center. Silver, E.A., Kimura, G., and Shipley, T.H. (Eds.). Proceedings of the Ocean Drilling Program, Scientific Results Volume 170, 1-10. | |
dc.relation | Meyer, R., Mooner, W., Hales, A., Helsey, C., Woollard, G., Hussong, D., & Ramirez, J. (1976). Refraction Observation Across a Leading Edge, Malpelo Island to the Colombian Cordillera Occidental. Project Nariño II, 105-132. | |
dc.relation | Molnar, P., & Sykes, L. R. (1969). Tectonics of the Caribbean and Middle America Regions from Focal Mechanisms and Seismicity. Geological Society of American Bulletin, Volume 80, 1639-1684. | |
dc.relation | Molnar, P., Freedman, D., & Shih, J. S. (1979). Lengths of intermediate and deep seismic zones and temperatures in downgoing slabs of lithosphere. Geophysical Journal International, Volume 56, Issue 1, 41-54. | |
dc.relation | Monsalve, M., & Arcila, M. (2009). Contexto tectónico de la zona volcánica del Puracé y provincia Alcalina del Valle superior del Magdalena. Ingeniería Investigación y Desarrollo, 8(1), 35-41. | |
dc.relation | Monsalve, M., Correa, T., Arcila, M., & Dixon, J. (2009). Firma adakítica en los productos recientes de los volcanes Nevado del Huila y Puracé, Colombia. Boletín Geológico 43, 23-40. | |
dc.relation | Mora, H., Kellogg, J., Freymueller, J., Mencin, D., Fernandes, R., Diederix, H., . . . Corchuelo, Y. (2019). Crustal deformation in the northern Andes – A new GPS velocity field. Journal of South American Earth Sciences, Volume 89, 76-91. | |
dc.relation | Nikolsky, S. (1977). A Course of Mathematical Analysis vol1 , vol2. Moscow: Mir Publisher. | |
dc.relation | Ojeda, A., & Havskov, J. (2001). Crustal structure and local seismicity in Colombia. Journal of Seismology 5, 575-593. | |
dc.relation | Pacheco, J., & Sykes, L. (1992). Seismic moment catalog of large shallow earthquakes, 1900 to 1989. Bulletin of the Seismological Society of America, volume 82, 1306-1349. | |
dc.relation | Pennington, W. (1981). Subduction of the Eastern Panama Basin and seismotectonics of northwestern South America. Journal of Geophysical Research: Solid Earth, Volume 86, Issue B11, 10753-10770. | |
dc.relation | Raff, A. (1968). Sea‐floor spreading-Another rift. Journal of Geophysical Research, Volume 73, Issue 12, 3699-3705. | |
dc.relation | Ramirez, J. (1979). Geological and Geophysical setting of Colombia. Project Nariño I. | |
dc.relation | Ranero, C. R., Villaseñor, A., Phipps Morgan, J., & Weinrebe, W. (2005). Relationship between bend‐faulting at trenches and intermediate‐depth seismicity. Geochemistry, Geophysics, Geosystems, Volume 6, Issue 12, 1-25. | |
dc.relation | Ranero, C., Phipps, M. J., McIntosh, K., & Reichert, C. (2003). Bending-related faulting and mantle serpentinization at the Middle America trench. Nature 425, 367-373. | |
dc.relation | Reyners, M., Donna, E., Stuart, G., & Yuichi, N. (2006). Imaging subduction from the trench to 300 km depth beneath the central North Island, New Zealand, with Vp and Vp/Vs. Geophysical Journal International, Volume 165, Issue 2, 565-583. | |
dc.relation | Ruff, L., & Kanamori, H. (1980). Seismicity and the subduction process. Physics of the Earth and Planetary Interiors, Volume 23, Issue 3, 240-252. | |
dc.relation | Ryan, W. B., Carbotte, S. M., Coplan, J. O., O'Hara, S., Melkonian, A., Arko, R., . . . Zemsky, R. (2009). Global Multi‐Resolution Topography synthesis. Geochemistry, Geophysics, Geosystems, Volume 10, Issue 3. | |
dc.relation | Sacks, P. E., & Secor Jr, D. T. (1990). Delamination in collisional orogens. Geology, Volume 18, 999-1002. | |
dc.relation | Scarfi, L., Raffaele, R., Imposa, S., & Scaltrito, A. (2009). Crustal seismic velocity in the Marche region (Central Italy): computation of a minimum 1-D model with seismic station corrections. Environmental Geology, Volume 56, 1115-1121. | |
dc.relation | Sibson, R. H. (2000). Fluid involvement in normal faulting. Journal of Geodynamics, Volume 29, Issues 3–5, 469-499. | |
dc.relation | Stein, S., & Wysession, M. (2003). An Introduction to Seismology, Earthquakes, and Earth Structure. Wiley-Blackwell. | |
dc.relation | Syracuse, E., Maceira, M., Prieto, G., Zhang, H., & Ammon, C. (2016). Multiple plates subducting beneath Colombia, as illuminated by seismicity and velocity from the joint inversion of seismic and gravity data. Earth and Planetary Science Letters, Volume 444, 139-149. | |
dc.relation | Taboada, A., Dimaté, C., & Fuenzalida, A. (1998). Sismotectónica de Colombia: deformación continental activa y subducción. Física de la Tierra, 111-148. | |
dc.relation | Taboada, A., Rivera, L., Fuenzalida, A., Cisternas, A., Philip, H., Bijwaard, H., . . . Rivera, C. (2000). Geodynamics of the northern Andes: Subductions and intracontinental deformation (Colombia). Tectonics, Volume 19, Issue 5, 787-813. | |
dc.relation | Thurber, C. (1983). Earthquake locations and three‐dimensional crustal structure in the Coyote Lake Area, central California. Journal of Geophysical Research: Solid Earth, Volume 88, Issue B10, 8226-8236. | |
dc.relation | Thurber, C. (1992). Hypocenter-velocity structure coupling in local earthquake tomography. Physics of the Earth and Planetary Interiors, Volume 75, Issues 1–3, 55-62. | |
dc.relation | Turcotte, D., & Schubert, G. (2014). Geodynamics. New York: Cambridge University press. | |
dc.relation | Uyeda, S., & Kanamori, H. (1979). Back‐arc opening and the mode of subduction. Journal of Geophysical Research: Solid Earth, Volume 84, Issue B3, 1049-1061. | |
dc.relation | Van Andel, T., Heath, G., Malfait, B., Heinrichs, D., & Ewing, J. (1971). Tectonics of the Panama Basin, Eastern Equatorial Pacific. Geological Society of American Bulletin, Volume 82, 1489-1508. | |
dc.relation | Van der Hilst, R., & Mann, P. (1994). Tectonic implications of tomographic images of subducted lithosphere beneath northwestern South America. Geology, Volume 22, 451-454. | |
dc.relation | Vargas, C., & Mann, P. (2013). Tearing and Breaking Off of Subducted Slabs as the Result of Collision of the Panama Arc‐Indenter with Northwestern South America. Bulletin of the Seismological Society of America, Volume 103, 2025-2046. | |
dc.relation | Wadati, K. (1993). On the Travel Time of Earthquake Waves. Journal of the Meteorological Society of Japan, 101-111. | |
dc.relation | Wagner, L., Jaramillo, J., Ramirez-Hoyos, L., Monsalve, G., Cardona, A., & Becker, T. (2017). Transient slab flattening beneath Colombia. Geophysical Research Letters, Volume 44, Issue 13. | |
dc.relation | Walck, M. (1988). Three‐dimensional Vp/Vs variations for the Coso Region, California. Journal of Geophysical Research: Solid Earth, Volume 93, Issue B3, 2047-2052. | |
dc.relation | Waldhauser, F., & Ellsworth, W. (2000). A Double-Difference Earthquake Location Algorithm: Method and Application to the Northern Hayward Fault, California. Bulletin of the Seismological Society of America, Volume 90, 1353-1368. | |
dc.relation | Wesson, R., Lee, W., & Gibbs, J. (1971). Aftershocks of the San Fernando Earthquake. U.S. Geological survey Professional Paper 73, 24-29. | |
dc.relation | Yano, T., & Matsubara, M. (2017). Effect of newly refined hypocenter locations on the seismic activity recorded during the 2016 Kumamoto Earthquake sequence. Earth, Planets and Space volume 69, 69-74. | |
dc.rights | Atribución-SinDerivadas 4.0 Internacional | |
dc.rights | Atribución-SinDerivadas 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-nd/4.0/ | |
dc.rights | Acceso abierto | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | Geometría de subducción de la placa de Nazca bajo el noroeste de Suramérica, a partir del análisis de microsismicidad reciente | |
dc.type | Otro | |