dc.contributorAlvis Gómez, Karim Martina
dc.contributorArboleda Granados, Humberto
dc.contributorGRUPO DE NEUROCIENCIAS-UNIVERSIDAD NACIONAL DE COLOMBIA
dc.creatorHernández Sandoval, Erika Yolanda
dc.date.accessioned2020-07-17T22:43:06Z
dc.date.accessioned2022-09-21T15:48:58Z
dc.date.available2020-07-17T22:43:06Z
dc.date.available2022-09-21T15:48:58Z
dc.date.created2020-07-17T22:43:06Z
dc.date.issued2020-06-18
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/77799
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3385597
dc.description.abstractAutism Spectrum Disorder (ASD) is a neurodevelopmental disorder with deficits in social interaction, communication and repetitive behaviors and interests. The etiology of ASD has both genetic and epigenetic components. One of the strongly related genes is SHANK3 for which epigenetic changes have been found, relating them to ASD symptoms. On the other hand, it is known that aerobic physical exercise influences epigenetic regulation and improvements in cognitive and motor aspects. The aim is to evaluate the effects of an aerobic training program on the DNA methylation of the SHANK3 gene and the reaction times in pediatric population with ASD in the city of Bogotá. There were nine participants who had a peripheral blood sample taken before and after training, reaction time was evaluated before and after training, and aerobic training consisted of 10 weeks, two days per week. The results showed changes in the pre and post reaction times, finding a median of 326ms and 287ms, respectively. To analyze these results, the Kruskal-Wallis test was used, where no statistically significant difference was found (p = 0.53). For the methylation percentage, a hypermethylation pattern was found in the analyzed region with a median of 92% and 91% in the PRE and POS measurements, respectively, and a statistically significant difference was found in position CpG 108 of island 2 of SHANK3 , with a p=0.036 using the Kruskall-Wallis test. This is the first training program for the pediatric population with ASD and the first approach to the epigenetic characterization of this population in Colombia, taking into account that in other countries, data on genetics as epigenetics of ASD are more accurately known. It is important to continue developing this type of research to strengthen the different treatments that are currently known for both ASD and other pathologies related to neurodevelopment and neurodegeneration, considering that aerobic physical exercise is a potential modulator of epigenetic behavior.
dc.description.abstractEl Trastorno de Espectro Autista (TEA) es un desorden del neurodesarrollo con déficits en interacción social, comunicación y comportamientos e intereses repetitivos. La etiología del TEA presenta tanto componentes genéticos como epigenéticos. Uno de los genes fuertemente relacionados es el SHANK3 para el que se han encontrado cambios epigenéticos, relacionándolos con sintomatología del TEA. Por otro lado, se sabe que el ejercicio físico aeróbico influye en la regulación epigenética y mejoras en aspectos cognitivos y motores. El objetivo es evaluar los efectos de un programa de entrenamiento aeróbico en la metilación de ADN del gen SHANK3 y en los tiempos de reacción en población pediátrica con TEA de la ciudad de Bogotá. Se contó con nueve participantes a los cuales se les tomó una muestra de sangre periférica antes y después del entrenamiento, y se evaluó el tiempo de reacción antes y después del entrenamiento; el entrenamiento aeróbico consistió en 10 semanas, dos días por semana. En los resultados se evidenciaron cambios en los tiempos de reacción pre y pos, encontrando una mediana de 326ms y 287ms, respectivamente. Para analizar dichos resultados se usó la prueba de prueba de Kruskal-Wallis donde no se encontró una diferencia estadísticamente significativa (p=0,53). Para el porcentaje de metilación se encontró un patrón de hipermetilación en la región analizada con una mediana de 92% y 91% en las mediciones PRE y POS respectivamente, y se encontró una diferencia estadísticamente significativa en la posición CpG 108 de la isla 2 de SHANK3, con un p=0,036 mediante la prueba de Kruskall- Wallis. Este es el primer programa de entrenamiento para población pediátrica con TEA y el primer acercamiento a la caracterización epigenética de esta población en Colombia, teniendo en cuenta que en otros países se conocen con más precisión datos sobre la genética y epigenética del TEA. Es importante continuar desarrollando este tipo de investigaciones para fortalecer los diferentes tratamientos que se conocen actualmente tanto para el TEA como para otras patologías relacionadas con el neurodesarrollo y la neurodegeneración, teniendo en cuenta que el ejercicio físico de tipo aeróbico es un potencial modulador del comportamiento epigenético y también de procesos cognitivos.
dc.languagespa
dc.publisherBogotá - Medicina - Maestría en Neurociencias
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relation1. Bareño Rodríguez CM. Inclusión educativa: fundamental para el tratamiento integral del trastorno del espectro autista (TEA). Univ Nac Colomb. 2015;1–27.
dc.relation2. Silva Costa FC, Pfeifer LI. Intervención De Integración Sensorial En Niños Con Trastorno Del Espectro Autista. Rev Chil Ter Ocup [Internet]. 2016;16(1):99–107. Available from: http://www.revistaterapiaocupacional.uchile.cl/index.php/RTO/article/viewFile/41947/44040
dc.relation3. Talero-Gutiérrez C, Mario E-PC, Sánchez-Quiñones P, Morales-Rubio G, Vélez-van-Meerbeke A. Trastorno del espectro autista y función ejecutiva. Acta Neurológica Colomb [Internet]. 2015;31(3):246–52. Available from: http://www.scielo.org.co/pdf/anco/v31n3/v31n3a04.pdf
dc.relation4. PROTOCOLO CLÍNICO PARA EL DIAGNÓSTICO, TRATAMIENTO Y RUTA DE ATENCIÓN INTEGRAL DE NIÑOS Y NIÑAS CON TRASTORNOS DEL ESPECTRO AUTISTA. 2015 [cited 2017 Aug 5]; Available from: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/DE/CA/Protocolo-TEA-final.pdf
dc.relation5. Leigh JP, Du J. Brief Report: Forecasting the Economic Burden of Autism in 2015 and 2025 in the United States. J Autism Dev Disord [Internet]. 2015 Dec 17 [cited 2017 Aug 13];45(12):4135–9. Available from: http://link.springer.com/10.1007/s10803-015-2521-7
dc.relation6. Knapp M, Romeo R, Beecham J. Economic cost of autism in the UK. Autism [Internet]. 2009 May [cited 2017 Aug 13];13(3):317–36. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19369391
dc.relation7. Barrett B, Byford S, Sharac J, Hudry K, Leadbitter K, Temple K, et al. Service and wider societal costs of very young children with autism in the UK. J Autism Dev Disord. 2012;42(5):797–804
dc.relation8. Leblond CS, Nava C, Polge A, Gauthier J, Huguet G, Lumbroso S, et al. Meta-analysis of SHANK Mutations in Autism Spectrum Disorders: A Gradient of Severity in Cognitive Impairments. PLoS Genet. 2014;10(9).
dc.relation9. Miles JH. Autism spectrum disorders--a genetics review. Genet Med. 2011;13(4):278–94.
dc.relation10. Hamza M, Halayem S, Mrad R, Bourgou S, Charfi F, Belhadj A. Implication de l’épigénétique dans les troubles du spectre autistique : revue de la littérature. Encephale [Internet]. 2016; Available from: http://linkinghub.elsevier.com/retrieve/pii/S0013700616301919
dc.relation11. Zhu L, Wang X, Li XL, Towers A, Cao X, Wang P, et al. Epigenetic dysregulation of SHANK3 in brain tissues from individuals with autism spectrum disorders. Hum Mol Genet. 2014;23(6):1563–78.
dc.relation12. Baum SH, Stevenson RA, Wallace MT. Behavioral, perceptual, and neural alterations in sensory and multisensory function in autism spectrum disorder. Prog Neurobiol [Internet]. 2015 Nov [cited 2017 Aug 5];134:140–60. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26455789
dc.relation13. Bo J, Lee C-M, Colbert A, Shen B. Do children with autism spectrum disorders have motor learning difficulties? Res Autism Spectr Disord [Internet]. 2016;23:50–62. Available from: http://www.sciencedirect.com/science/article/pii/S175094671530012X
dc.relation14. Hannant P, Tavassoli T, Cassidy S. The role of sensorimotor difficulties in autism spectrum conditions. Front Neurol. 2016;7(AUG):1–11.
dc.relation15. D’Mello AM, Stoodley CJ. Cerebro-cerebellar circuits in autism spectrum disorder. Front Neurosci. 2015;9(NOV).
dc.relation16. D’Mello AM, Crocetti D, Mostofsky SH, Stoodley CJ. Cerebellar gray matter and lobular volumes correlate with core autism symptoms. NeuroImage Clin [Internet]. 2015;7:631–9. Available from: http://dx.doi.org/10.1016/j.nicl.2015.02.007
dc.relation17. Allen G, Müller RA, Courchesne E. Cerebellar function in autism: Functional magnetic resonance image activation during a simple motor task. Biol Psychiatry. 2004;56(4):269–78.
dc.relation18. Silver WG, Rapin I. Neurobiological basis of autism. Pediatr Clin North Am [Internet]. 2012;59(1):45–61. Available from: http://dx.doi.org/10.1016/j.pcl.2011.10.010
dc.relation19. Dziuk MA, Larson JCG, Apostu A, Mahone EM, Denckla MB, Mostofsky SH. Dyspraxia in autism: association with motor, social, and communicative deficits. Dev Med Child Neurol [Internet]. 2007 Oct [cited 2017 Aug 5];49(10):734–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17880641
dc.relation20. Beyer KB, Sage MD, Staines WR, Middleton LE, McIlroy WE. A single aerobic exercise session accelerates movement execution but not central processing. Neuroscience [Internet]. 2017 Mar [cited 2017 Aug 6];346:149–59. Available from: http://linkinghub.elsevier.com/retrieve/pii/S030645221730026X
dc.relation21. Davis CL, Tomporowski PD, Boyle CA, Waller JL, Miller PH, Naglieri JA, et al. Effects of aerobic exercise on overweight children’s cognitive functioning: a randomized controlled trial. Res Q Exerc Sport [Internet]. 2007;78(5):510–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18274222%5Cnhttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2662758
dc.relation22. Chuang LY, Tsai YJ, Chang YK, Huang CJ, Hung TM. Effects of acute aerobic exercise on response preparation in a Go/No Go Task in children with ADHD: An ERP study. J Sport Heal Sci [Internet]. 2015;4(1):82–8. Available from: http://dx.doi.org/10.1016/j.jshs.2014.11.002
dc.relation23. Tan, Beron WZ, Pooley, Julie A, Speelman, Craig P. A Meta-Analytic Review of the Efficacy of Physical Exercise Interventions on Cognition in Individuals with Autism Spectrum Disorder and ADHD. J Autism Dev Disord. 2016;46(9):3126–43.
dc.relation24. Lang R, Koegel LK, Ashbaugh K, Regester A, Ence W, Smith W. Physical exercise and individuals with autism spectrum disorders: A systematic review. Res Autism Spectr Disord [Internet]. 2010;4(4):565–76. Available from: http://dx.doi.org/10.1016/j.rasd.2010.01.006
dc.relation25. King-Himmelreich TS, Schramm S, Wolters MC, Schmetzer J, Möser C V., Knothe C, et al. The impact of endurance exercise on global and AMPK gene-specific DNA methylation. Biochem Biophys Res Commun. 2016;474(2):284–90.
dc.relation26. Sølvsten CAE, de Paoli F, Christensen JH, Nielsen AL. Voluntary Physical Exercise Induces Expression and Epigenetic Remodeling of VegfA in the Rat Hippocampus. Mol Neurobiol [Internet]. 2016 Dec 14 [cited 2017 Aug 21]; Available from: http://link.springer.com/10.1007/s12035-016-0344-y
dc.relation27. Kashimoto RK, Toffoli L V., Manfredo MHF, Volpini VL, Martins-Pinge MC, Pelosi GG, et al. Physical exercise affects the epigenetic programming of rat brain and modulates the adaptive response evoked by repeated restraint stress. Behav Brain Res [Internet]. 2016;296:286–9. Available from: http://dx.doi.org/10.1016/j.bbr.2015.08.038
dc.relation28. Li D, Karnath H-O, Xu X. Candidate Biomarkers in Children with Autism Spectrum Disorder: A Review of MRI Studies. Neurosci Bull [Internet]. 2017;33(2):219–37. Available from: http://link.springer.com/10.1007/s12264-017-0118-1
dc.relation29. Schmitz C, Martineau J, Barthélémy C, Assaiante C. Motor control and children with autism: Deficit of anticipatory function? Neurosci Lett. 2003;348(1):17–20.
dc.relation30. Bastian AJ. Learning to predict the future: the cerebellum adapts feedforward movement control. Curr Opin Neurobiol [Internet]. 2006 Dec [cited 2017 Aug 5];16(6):645–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17071073
dc.relation31. McMorris T, McMorris T. Chapter 22 – Exercise–Cognition Interaction: State of the Art and Future Research. In: Exercise-Cognition Interaction [Internet]. 2016 [cited 2017 Aug 6]. p. 459–81. Available from: http://www.sciencedirect.com.ezproxy.unal.edu.co/science/article/pii/B9780128007785000220
dc.relation32. Audiffren M, Tomporowski PD, Zagrodnik J. Acute aerobic exercise and information processing: Energizing motor processes during a choice reaction time task. Acta Psychol (Amst) [Internet]. 2008 [cited 2017 Aug 6];129:410–9. Available from: http://ac.els-cdn.com.ezproxy.unal.edu.co/S0001691808001224/1-s2.0-S0001691808001224-main.pdf?_tid=0b8a0a60-7b05-11e7-b329-00000aacb35f&acdnat=1502064905_50a9bde123aaab363346be6d2e45497b
dc.relation33. Chu C-H, Alderman BL, Wei G-X, Chang Y-K. Effects of acute aerobic exercise on motor response inhibition: An ERP study using the stop-signal task. J Sport Heal Sci [Internet]. 2015;4(1):73–81. Available from: http://www.sciencedirect.com/science/article/pii/S2095254614001239
dc.relation34. Bremer E, Crozier M, Lloyd M. A systematic review of the behavioural outcomes following exercise interventions for children and youth with autism spectrum disorder. Autism [Internet]. 2016;(January):1–17. Available from: http://aut.sagepub.com/content/early/2016/01/27/1362361315616002.abstract
dc.relation35. Brand S, Jossen S, Holsboer-Trachsler E, Pühse U, Gerber M. Impact of aerobic exercise on sleep and motor skills in children with autism spectrum disorders – a pilot study. Neuropsychiatr Dis Treat [Internet]. 2015;11:1911. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4531010&tool=pmcentrez&rendertype=abstract
dc.relation36. Garrabé de Lara J. El autísmo. Historia y clasificaciones. Salud Ment [Internet]. 2012;35(3):257–61. Available from: http://www.inprf-cd.gob.mx/pdf/sm3503/sm3503257.pdf
dc.relation37. Rubén P, Seldas P. DSM-5: la nueva clasificación de los TEA. [cited 2017 Oct 21]; Available from: http://apacu.info/wp-content/uploads/2014/10/Nueva-clasificación-DSMV.pdf
dc.relation38. Yoo H. Genetics of Autism Spectrum Disorder: Current Status and Possible Clinical Applications. Exp Neurobiol [Internet]. 2015;24(4):257. Available from: https://synapse.koreamed.org/DOIx.php?id=10.5607/en.2015.24.4.257
dc.relation39. Boccuto L, Lauri M, Sarasua SM, Skinner CD, Buccella D, Dwivedi A, et al. Prevalence of SHANK3 variants in patients with different subtypes of autism spectrum disorders. Eur J Hum Genet [Internet]. 2013;21(3):310–6. Available from: http://www.nature.com/doifinder/10.1038/ejhg.2012.175
dc.relation40. Kubota T, Mochizuki K. Epigenetic effect of environmental factors on autism spectrum disorders. Int J Environ Res Public Health. 2016;13(5).
dc.relation41. Martínez-Sanchis S, Ben Shalom D, Gal E. Neurobiological foundations of multisensory integration in people with autism spectrum disorders: the role of the medial prefrontal cortex. 2014 [cited 2017 Aug 5]; Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4255523/pdf/fnhum-08-00970.pdf
dc.relation42. Larson JCG, Mostofsky SH. Evidence That the Pattern of Visuomotor Sequence Learning Is Aotered in Children With Autism. Autism Res. 2008;1(6):341–53.
dc.relation43. Guillon Q, Afzali MH, Rogé B, Baduel S, Kruck J, Hadjikhani N. The importance of networking in Autism gaze analysis. PLoS One. 2015;10(10):1–14.
dc.relation44. Gidley Larson JC, Bastian AJ, Donchin O, Shadmehr R, Mostofsky SH. Acquisition of internal models of motor tasks in children with autism. Brain. 2008;131(11):2894–903.
dc.relation45. Turner KC, Frost L, Linsenbardt D, McIlroy JR, Müller R-A. Atypically diffuse functional connectivity between caudate nuclei and cerebral cortex in autism. Behav Brain Funct [Internet]. 2006;2(1):34. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1635430&tool=pmcentrez&rendertype=abstract%5Cnhttp://www.ncbi.nlm.nih.gov/pubmed/17042953
dc.relation46. Horlin C, Albrecht MA, Falkmer M, Leung D, Ordqvist A, Tan T, et al. Visual search strategies of children with and without autism spectrum disorders during an embedded figures task. Res Autism Spectr Disord [Internet]. 2014;8(5):463–71. Available from: http://dx.doi.org/10.1016/j.rasd.2014.01.006
dc.relation47. O’riordan MA. Superior Visual Search in Adults with Autism. Autism [Internet]. 2004 Sep 29 [cited 2017 Aug 5];8(3):229–48. Available from: http://journals.sagepub.com/doi/10.1177/1362361304045219
dc.relation48. Belmonte MK, Cook EH, Anderson GM, Rubenstein JLR, Greenough WT, Beckel-Mitchener a, et al. Autism as a disorder of neural information processing: directions for research and targets for therapy. Mol Psychiatry [Internet]. 2004;9(7):646–63. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15037868
dc.relation49. Tsai PT. Autism and cerebellar dysfunction: Evidence from animal models. Semin Fetal Neonatal Med [Internet]. 2016;21(5):349–55. Available from: http://dx.doi.org/10.1016/j.siny.2016.04.009
dc.relation50. Fautrelle L, Pichat C, Ricolfi F, Peyrin C, Bonnetblanc F. Catching falling objects: The role of the cerebellum in processing sensory-motor errors that may influence updating of feedforward commands. An fMRI study. Neuroscience [Internet]. 2011;190:135–44. Available from: http://dx.doi.org/10.1016/j.neuroscience.2011.06.034
dc.relation51. Mostofsky SH, Powell SK, Simmonds DJ, Goldberg MC, Caffo B, Pekar JJ. Decreased connectivity and cerebellar activity in autism during motor task performance. Brain. 2009;132(9):2413–25.
dc.relation52. Mosconi MW, Wang Z, Schmitt LM, Tsai P, Sweeney JA. The role of cerebellar circuitry alterations in the pathophysiology of autism spectrum disorders. Front Neurosci. 2015;9(SEP):1–24.
dc.relation53. Glazebrook C, Gonzalez D, Hansen S, Elliott D. The role of vision for online control of manual aiming movements in persons with autism spectrum disorders. Autism [Internet]. 2009 Jul 17 [cited 2017 Aug 5];13(4):411–33. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19535469
dc.relation54. Campione GC, Piazza C, Villa L, Molteni M. Three-Dimensional Kinematic Analysis of Prehension Movements in Young Children with Autism Spectrum Disorder: New Insights on Motor Impairment. J Autism Dev Disord. 2016;46(6):1985–99.
dc.relation55. Rinehart NJ, Bradshaw JL, Brereton A V., Tonge BJ. Movement preparation in high-functioning autism and\rAsperger Disorder: A serial choice reaction time task\rinvolving motor reprogramming. J Autism Dev Disord. 2001;31(1):79–88.
dc.relation56. Tamorri S. Neurociencias y deporte : psicología deportiva, procesos mentales del atleta. Editorial Paidotribo; 2004. 128 p.
dc.relation57. Landa RJ, Haworth JL, Nebel MB. Ready, set, go! Low anticipatory response during a dyadic task in infants at high familial risk for autism. Front Psychol. 2016;7(MAY):1–12.
dc.relation58. Martín D, Klaus Carl, Lehnertz K. Manual de metodología del entrenamiento deportivo. Editorial Paidotribo; 2001. 184 p.
dc.relation59. Debrabant J, Gheysen F, Vingerhoets G, Van Waelvelde H. Age-related differences in predictive response timing in children: Evidence from regularly relative to irregularly paced reaction time performance. Hum Mov Sci [Internet]. 2012;31(4):801–10. Available from: http://dx.doi.org/10.1016/j.humov.2011.09.006
dc.relation60. Arons MH, Lee XK, Thynne CJ, Kim XSA, Schob C, Kindler S, et al. Shank3 Is Part of a Zinc-Sensitive Signaling System That Regulates Excitatory Synaptic Strength. 2016;36(35):9124–34.
dc.relation61. Moessner R, Marshall CR, Sutcliffe JS, Skaug J, Pinto D, Vincent J, et al. Contribution of SHANK3 Mutations to Autism Spectrum Disorder. Am J Hum Genet [Internet]. 2007;81(6):1289–97. Available from: http://linkinghub.elsevier.com/retrieve/pii/S000292970763777X
dc.relation62. Wang X, Xu Q, Bey AL, Lee Y, Jiang Y. Transcriptional and functional complexity of Shank3 provides a molecular framework to understand the phenotypic heterogeneity of SHANK3 causing autism and Shank3 mutant mice. Mol Autism [Internet]. 2014;5(1):30. Available from: http://molecularautism.biomedcentral.com/articles/10.1186/2040-2392-5-30
dc.relation63. Monteiro P, Feng G. SHANK proteins: roles at the synapse and in autism spectrum disorder. Nat Rev Neurosci [Internet]. 2017;18(3):147–57. Available from: http://www.nature.com/doifinder/10.1038/nrn.2016.183
dc.relation64. Waga C, Asano H, Sanagi H, Suzuki E, Nakamura S, Tsuchiya A, et al. Identification of two novel Shank3 transcripts in the developing mouse neocortex. Neurochemistry JOF. 2014;280–93.
dc.relation65. Jiang Y, Ehlers MD. Review Modeling Autism by SHANK Gene Mutations in Mice. Neuron [Internet]. 2013;78(1):8–27. Available from: http://dx.doi.org/10.1016/j.neuron.2013.03.016
dc.relation66. Uchino S, Waga C. SHANK3 as an autism spectrum disorder-associated gene. Brain Dev [Internet]. 2013;35(2):106–10. Available from: http://dx.doi.org/10.1016/j.braindev.2012.05.013
dc.relation67. Durand CM, Betancur C, Boeckers TM, Bockmann J, Chaste P, Fauchereau F, et al. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat Genet [Internet]. 2007 Jan [cited 2017 Sep 9];39(1):25–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17173049
dc.relation68. Meng H, Cao Y, Qin J, Song X, Zhang Q, Shi Y, et al. DNA Methylation , Its Mediators and Genome Integrity. 2015;11.
dc.relation69. Cui X. DNA methylation in spermatogenesis and male infertility ( Review ). 2018;(August 2016).
dc.relation70. Ching T-T, Maunakea AK, Jun P, Hong C, Zardo G, Pinkel D, et al. Epigenome analyses using BAC microarrays identify evolutionary conservation of tissue-specific methylation of SHANK3. Nat Genet [Internet]. 2005;37(6):645–51. Available from: http://www.nature.com/doifinder/10.1038/ng1563
dc.relation71. Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, D’Souza C, Fouse SD, et al. Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature [Internet]. 2010;466(7303):253–7. Available from: http://www.nature.com/doifinder/10.1038/nature09165
dc.relation72. Ladd-Acosta C, Hansen KD, Briem E, Fallin MD, Kaufmann WE, Feinberg AP. Common DNA methylation alterations in multiple brain regions in autism. Mol Psychiatry [Internet]. 2014;19(8):862–71. Available from: http://www.nature.com/doifinder/10.1038/mp.2013.114
dc.relation73. Wong CCY, Meaburn EL, Ronald A, Price TS, Jeffries AR, Schalkwyk LC, et al. Methylomic analysis of monozygotic twins discordant for autism spectrum disorder and related behavioural traits. Mol Psychiatry [Internet]. 2014;19(4):495–503. Available from: http://www.nature.com/doifinder/10.1038/mp.2013.41
dc.relation74. Erickson KI, Hillman CH, Kramer AF. Physical activity, brain, and cognition. Curr Opin Behav Sci [Internet]. 2015;4:27–32. Available from: http://dx.doi.org/10.1016/j.cobeha.2015.01.005
dc.relation75. Davranche K, Burle B, Audiffren M, Hasbroucq T. Physical exercise facilitates motor processes in simple reaction time performance: An electromyographic analysis. Neurosci Lett. 2006;396(1):54–6.
dc.relation76. Schapschröer M, Baker J, Schorer J. Effects of domain-specific exercise load on speed and accuracy of a domain-specific perceptual-cognitive task. Hum Mov Sci [Internet]. 2016 Aug [cited 2017 Aug 6];48:121–31. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0167945716300604
dc.relation77. Tomporowski PD. Effects of acute bouts of exercise on cognition. [cited 2017 Aug 6]; Available from: http://ac.els-cdn.com.ezproxy.unal.edu.co/S0001691802001348/1-s2.0-S0001691802001348-main.pdf?_tid=19866548-7ac2-11e7-8357-00000aacb35f&acdnat=1502036153_f45623cef4118da015165aa3a22fdabc
dc.relation78. McMorris T, Hale BJ. Differential effects of differing intensities of acute exercise on speed and accuracy of cognition: A meta-analytical investigation. Brain Cogn [Internet]. 2012;80(3):338–51. Available from: http://dx.doi.org/10.1016/j.bandc.2012.09.001
dc.relation79. McMorris T, Koutsandréou F, Niemann C, Wegner M, Budde H. Chapter 13 – Acute Exercise and Cognition in Children and Adolescents: The Roles of Testosterone and Cortisol. In: Exercise-Cognition Interaction [Internet]. 2016 [cited 2017 Aug 9]. p. 283–94. Available from: http://www.sciencedirect.com.ezproxy.unal.edu.co/science/article/pii/B978012800778500013X
dc.relation80. Tsai CL, Chen FC, Pan CY, Wang CH, Huang TH, Chen TC. Impact of acute aerobic exercise and cardiorespiratory fitness on visuospatial attention performance and serum BDNF levels. Psychoneuroendocrinology [Internet]. 2014;41(1):121–31. Available from: http://dx.doi.org/10.1016/j.psyneuen.2013.12.014
dc.relation81. Chen A-G, Yan J, Yin H-C, Pan C-Y, Chang Y-K. Effects of acute aerobic exercise on multiple aspects of executive function in preadolescent children. Psychol Sport Exerc [Internet]. 2014 Nov [cited 2017 Aug 13];15(6):627–36. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1469029214000818
dc.relation82. Tomporowski PD, McCullick B, Pendleton DM, Pesce C. Exercise and children’s cognition: The role of exercise characteristics and a place for metacognition. J Sport Heal Sci [Internet]. 2015;4(1):47–55. Available from: http://dx.doi.org/10.1016/j.jshs.2014.09.003
dc.relation83. Chaddock-Heyman L, Erickson KI, Voss MW, Knecht AM, Pontifex MB, Castelli DM, et al. The effects of physical activity on functional MRI activation associated with cognitive control in children: a randomized controlled intervention. Front Hum Neurosci [Internet]. 2013;7(March):1–13. Available from: http://journal.frontiersin.org/article/10.3389/fnhum.2013.00072/abstract
dc.relation84. Petrus C, Adamson SR, Block L, Einarson SJ, Sharifnejad M, Harris SR. Effects of Exercise Interventions on Stereotypic Behaviours in Children with Autism Spectrum Disorder. Physiother Canada [Internet]. 2008;60(2):134–45. Available from: http://utpjournals.press/doi/10.3138/physio.60.2.134
dc.relation85. Srinivasan SM, Pescatello LS, Bhat AN. Current Perspectives on Physical Activity and Exercise Recommendations for Children and Adolescents With Autism Spectrum Disorders. Phys Ther [Internet]. 2014;94(6):875–89. Available from: https://academic.oup.com/ptj/article-lookup/doi/10.2522/ptj.20130157
dc.relation86. Fernandes J, Arida RM, Gomez-Pinilla F. Physical exercise as an epigenetic modulator of brain plasticity and cognition. Neurosci Biobehav Rev [Internet]. 2017 Sep [cited 2017 Aug 13];80:443–56. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0149763417301495
dc.relation87. Denham J. Exercise and epigenetic inheritance of disease risk. Acta Physiol [Internet]. 2017 Apr 19 [cited 2017 Oct 21]; Available from: http://www.ncbi.nlm.nih.gov/pubmed/28371392
dc.relation88. Pareja-Galeano H, Sanchis-Gomar F, García-Giménez JL. Physical exercise and epigenetic modulation: Elucidating intricate mechanisms. Sport Med. 2014;44(4):429–36.
dc.relation89. Voisin S, Eynon N, Yan X, Bishop DJ. Exercise training and DNA methylation in humans. Acta Physiol. 2015;213(1):39–59.
dc.relation90. Rodrigues GM, Toffoli L V., Manfredo MH, Francis-Oliveira J, Silva AS, Raquel HA, et al. Acute stress affects the global DNA methylation profile in rat brain: Modulation by physical exercise. Behav Brain Res [Internet]. 2015;279:123–8. Available from: http://dx.doi.org/10.1016/j.bbr.2014.11.023
dc.relation91. Types of Physical Activity - NHLBI, NIH [Internet]. [cited 2017 Sep 22]. Available from: https://www.nhlbi.nih.gov/health/health-topics/topics/phys/types
dc.relation92. Heyward VH. Evaluación de la aptitud física y prescripción del ejercicio. 2008. 44–45 p.
dc.relation93. Frontera WR. Medicina deportiva clínica : tratamiento médico y rehabilitación. 7th ed. Madrid: Elsevier; 2008. 15 p.
dc.relation94. Marjerrison AD, Woodruff ME, Hanna LE. Evaluating the prediction of maximal heart rate in children and adolescents. Res Q Exerc Sport. 2010;81(4):466–71.
dc.relation95. Machado FA, Denadai BS. Validity of Maximum Heart Rate Prediction Equations for Children and Adolescents. Arq Bras Cardiol. 2011;97(2):136–40.
dc.relation96. Tsang S-Y, Ahmad T, Mat FWK, Zhao C, Xiao S, Xia K, et al. Variation of global DNA methylation levels with age and in autistic children. Hum Genomics [Internet]. 2016;10(1):31. Available from: http://humgenomics.biomedcentral.com/articles/10.1186/s40246-016-0086-y%5Cnhttp://humgenomics.biomedcentral.com/articles/10.1186/s40246-016-0086-y%5Cnhttp://humgenomics.biomedcentral.com/articles/10.1186/s40246-016-0086-y
dc.relation97. Sharkey BJ, Gaskill SE. Fitness & health. 445 p.
dc.relation98. Clark SJ, Statham A, Stirzaker C, Molloy PL, Frommer M. PROTOCOL DNA methylation : Bisulphite modification and analysis. 2010;1(5):2353–64.
dc.relation99. Tusna E. BiSearch : primer-design and search tool for PCR on bisulfite-treated genomes. 2005;33(1):1–6.
dc.relation100. Lewin J, Schmitt AO, Adorján P, Hildmann T, Piepenbrock C. Quantitative DNA methylation analysis based on four-dye trace data from direct sequencing of. 2004;20(17):3005–12.
dc.relation101. Hernández HG, Tse MY, Pang SC, Arboleda H, Forero DA. Review IS IO. 2013;
dc.relation102. World Health Organization. Recomendaciones Mundiales sobre Actividad Física para la Salud. Geneva WHO Libr Cat [Internet]. 2010;(Completo):1–58. Available from: http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Recomendaciones+Mundiales+sobre+actividad+F?sica+para+la+salud#4%5Cnhttp://whqlibdoc.who.int/publications/2010/9789243599977_spa.pdf
dc.relation103. Oliveira B de, Dalmaschio L. Aplicación clínica de la escala de autismo en los niños. Rev Cubana Pediatr [Internet]. 2016;88(4):406–16. Available from: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0034-7531201600040000
dc.relation104. Perry A, Condillac RA, Freeman NL, Dunn-Geier J, Belair J. Multi-site study of the Childhood Autism Rating Scale (CARS) in five clinical groups of young children. J Autism Dev Disord. 2005;35(5):625–34.
dc.relation105. Brodeur DA, Stewart J, Dawkins T, Burack JA. Utilitarian Attention by Children with Autism Spectrum Disorder on a Filtering Task. J Autism Dev Disord [Internet]. 2018;0(0):0. Available from: http://dx.doi.org/10.1007/s10803-018-3619-5
dc.relation106. Bar-haim Y, Shulman C, Lamy D, Reuveni A. Attention to Eyes and Mouth in High-Functioning Children with Autism. 2006;36(1).
dc.relation107. Mosconi XMW, Mohanty S, Greene RK, Cook EH, Vaillancourt DE, Sweeney JA. Feedforward and Feedback Motor Control Abnormalities Implicate Cerebellar Dysfunctions in Autism Spectrum Disorder. J Neurosci. 2015;35(5):2015–25.
dc.relation108. Ellemberg D, St-louis-desche M. The effect of acute physical exercise on cognitive function during development. Pshychol Sport Ecerc. 2010;11:122–126.
dc.relation109. Egger F, Conzelmann A, Schmidt M. Psychology of Sport & Exercise The e ff ect of acute cognitively engaging physical activity breaks on children ’ s executive functions : Too much of a good thing ? Psychol Sport Exerc [Internet]. 2018;36(August 2017):178–86. Available from: https://doi.org/10.1016/j.psychsport.2018.02.014
dc.relation110. Ludyga S, Gerber M, Herrmann C, Brand S, Pühse U. Trends in Neuroscience and Education Chronic effects of exercise implemented during school-break time on neurophysiological indices of inhibitory control in adolescents. Trends Neurosci Educ [Internet]. 2018;10(June 2017):1–7. Available from: https://doi.org/10.1016/j.tine.2017.11.001
dc.relation111. Correa-Mesa JF, Álvarez-Peña PA. Neurología de la anticipación y sus implicaciones en el deporte Anticipation neurology and its implications in sports. Rev da Faculdad Med. 2016;64(1):99–109.
dc.relation112. James SJ, Shpyleva S, Melnyk S, Pavliv O, Pogribny IP. Elevated 5-hydroxymethylcytosine in the Engrailed-2 (EN-2) promoter is associated with increased gene expression and decreased MeCP2 binding in autism cerebellum. Transl Psychiatry [Internet]. 2014;4(9):e460. Available from: http://dx.doi.org/10.1038/tp.2014.87
dc.relation113. Davies MN, Volta M, Pidsley R, Lunnon K, Dixit A, Lovestone S, et al. Functional annotation of the human brain methylome identifies tissue-specific epigenetic variation across brain and blood. Genome Biol [Internet]. 2012;13(6):R43. Available from: http://genomebiology.biomedcentral.com/articles/10.1186/gb-2012-13-6-r43
dc.relation114. Walton E, Hass J, Liu J, Roffman JL, Bernardoni F, Roessner V, et al. Correspondence of DNA Methylation Between Blood and Brain Tissue and Its Application to Schizophrenia Research. 2016;42(2):406–14.
dc.relation115. Braun PR, Han S, Hing B, Nagahama Y, Gaul LN, Heinzman JT, et al. Genome-wide DNA methylation comparison between live human brain and peripheral tissues within individuals. 2019;
dc.relation116. Andrews S V., Sheppard B, Windham GC, Schieve LA, Schendel DE, Croen LA, et al. Case-control meta-analysis of blood DNA methylation and autism spectrum disorder. Mol Autism. 2018;9(1):1–11.
dc.relation117. Natural D, Cells K, Schweiger MR, Bloch W, Zimmer P. Impact of Acute Aerobic Exercise on Genome-Wide Pilot Study. Genes (Basel). 2019 May 19;10(5):380. doi: 10.3390/genes10050380
dc.relation118. Boyne DJ, Sullivan DEO, Olij BF, King WD, Friedenreich CM, Brenner DR. Physical Activity , Global DNA Methylation , and Breast Cancer Risk : A Systematic Literature Review and Meta-analysis. 2018;27(November).
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleMetilación del gen SHANK3 y tiempos de reacción antes y después de un entrenamiento de tipo aeróbico en una población pediátrica con Trastorno de Espectro Autista en la ciudad de Bogotá
dc.typeOtros


Este ítem pertenece a la siguiente institución