dc.contributorQuevedo, Rodolfo
dc.contributorQuímica Macrocíclica
dc.creatorMartinez Manjarres, Harold Alejandro
dc.date.accessioned2021-05-05T18:34:41Z
dc.date.available2021-05-05T18:34:41Z
dc.date.created2021-05-05T18:34:41Z
dc.date.issued2020-11-11
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/79479
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.description.abstractEstudios espectroscópicos y computacionales permitieron establecer que bisfenol A y o-dianisidina se asocian por puentes de hidrógeno intermoleculares formando un arreglo cíclico asimétrico. Los efectos geométricos y conformacionales inducidos por este arreglo inciden en el curso de la reacción con formaldehído e impiden la formación de compuestos macrocíclicos y de oligómeros benzoxazinicos. Cuando se hizo reaccionar bisfenol A, o-dianisidina y formaldehído empleando DMF como disolvente, se obtuvo el respectivo monómero benzoxazínico como producto mayoritario. Cuando se utilizó etanol como disolvente, la reacción siguió un curso diferente, el bisfenol A no participó y se obtuvo una N-etoximetilamina producto de la condensación tipo Mannich entre o-dianisidina, formaldehído y etanol. En este trabajo se presenta el análisis estructural de estas nuevas bases de Mannich y se propone una posible explicación para el comportamiento observado basada en la nucleofília de las aminas estudiadas. Finalmente, se estableció que las N-etoximetilaminas son intermediarios de la reacción de Mannich y frente a fenoles se comportan como agentes donores de formaldehído llevando a la formación de benzoxazinas.
dc.description.abstractSpectroscopic and computational studies allowed to establish the association between bisphenol A and o-dianisidine through intermolecular hydrogen bonds, forming an asymmetric cyclic arrangement. The geometric and conformational effects induced by this arrangement affect the reaction course with formaldehyde and prevent the formation of macrocyclic compounds and benzoxazine oligomers. When bisphenol A, o-dianisidine and formaldehyde were reacted using DMF as solvent, the respective benzoxazine monomer was obtained as the major product. When ethanol was used as solvent, the reaction followed a different course, bisphenol A did not participate and N-ethoxymethylamine product was obtained from a Mannich type condensation between o-dianisidine, formaldehyde and ethanol. In this work, the structural analysis of these new Mannich bases is presented and a possible explanation for the observed behavior is proposed based on the nucleophilicity of the studied amines. Finally, it was established that N-ethoxymethylamines are intermediaries of the Mannich reaction and they behave as formaldehyde donor agents with phenols leading to the formation of benzoxazines.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ciencias - Maestría en Ciencias - Química
dc.publisherDepartamento de Química
dc.publisherFacultad de Ciencias
dc.publisherBogotá
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relation[1] Petri M. Pihko, Hydrogen Bonding in Organic Synthesis. Weinheim: WILEY-VCH Verlag GmbH & Co., 2009.
dc.relation[2] M. S. Seo, S. Jang, H. Jung, and H. Kim, “Hydrogen-Bonding-Assisted Ketimine Formation of Benzophenone Derivatives,” J. Org. Chem., vol. 83, no. 23, pp. 14300–14306, 2018, doi: 10.1021/acs.joc.8b01908.
dc.relation[3] B. B. Sun et al., “Stereoselective synthesis of spirocyclohexadiene-pyrazolones: Via organic base and/or hydrogen bonding assisted [3 + 3] annulation reactions,” Org. Chem. Front., vol. 6, no. 11, pp. 1842–1857, 2019, doi: 10.1039/c8qo01391h.
dc.relation[4] N. Nuñez-Dallos, C. Díaz-Oviedo, and R. Quevedo, “Hydroxy- and aminomethylation reactions in the formation of oligomers from l-tyrosine and formaldehyde in basic medium,” Tetrahedron Lett., vol. 55, no. 30, pp. 4216–4221, 2014, doi: 10.1016/j.tetlet.2014.05.048.
dc.relation[5] R. Quevedo, N. Nuñez-Dallos, K. Wurst, and Á. Duarte-Ruiz, “A structural study of the intermolecular interactions of tyramine in the solid state and in solution,” J. Mol. Struct., vol. 1029, pp. 175–179, 2012, doi: 10.1016/j.molstruc.2012.07.013.
dc.relation[6] N. Nuñez-Dallos, A. Reyes, R. Quevedo, I. Ortiz, and A. Reyes, “Hydrogen bond assisted synthesis of azacyclophanes from l-tyrosine derivatives,” Tetrahedron Lett., vol. 53, no. 5, pp. 1216–1219, 2010, doi: https://doi.org/10.1016/j.tetlet.2009.12.116.
dc.relation[7] M. M. Sprung, “A summary of the reactions of aldehydes with amines,” Chem. Rev., vol. 26, no. 3, pp. 297–338, 1940, doi: 10.1021/cr60085a001.
dc.relation[8] P. W. G. SMITH and A. R. TATCHELL, “Aromatic Amines,” Aromat. Chem., pp. 105–143, 1969, doi: 10.1016/b978-0-08-012948-8.50009-7.
dc.relation[9] K.-H. Zapp et al., “Amino acids. In Ullmann’s Encyclopedia of Industrial Chemistry,” Ullmann’s Encycl. Ind. Chem., vol. 3, pp. 1–58, 2012, doi: 10.1002/14356007.a02.
dc.relation[10] F. Brotzel, H. Mayr, and M. Baidya, “Nucleophilicities of Amines , Amino Acids and Pyridines,” Org. Biomol. Chem., vol. 8, pp. 1929–1935, 2010.
dc.relation[11] J. O. H. N. G. Riffiths, C. Chemistry, and L. Ls, “Dyes- Correct,” Ullmann’s Encycl., vol. 100 C, pp. 41–93, 2011, doi: 10.1002/14356007.a03.
dc.relation[12] P. Y. Bruice, Organic chemistry. 2016.
dc.relation[13] S. Nikfar and M. Jaberidoost, Dyes and Colorants, Third Edit., vol. 2, no. 1. Elsevier, 2014.
dc.relation[14] Neue Bücher, “N Y 」 L,” Angew. Chemie, vol. 56, no. 33–34, pp. 238–238, 1943.
dc.relation[15] D. P. C. C. L. E. Y. N. to K. in 20 Weeks, “Houben-Weyl, vol. IV/2, p. 494; Science of Synthesis, vol. 31, 2007, 1475.,” Dk, vol. 53, no. 9, pp. 1689–1699, 2015, doi: 10.1017/CBO9781107415324.004.
dc.relation[16] “D. V. Banthorpe et al., J. Chem. Soc. Perkin Trans. 2 1973, 551 – 56. H. J. Shine et al., J. Am. Chem. Soc. 99 (1977) 3719 – 23. Z. J. Allan, Justus Liebigs Ann. Chem. 1978, no. 5, 705 – 09.”
dc.relation[17] “O. Winkler: ‘“Beitrag zum Nachweis von Di- phenylbasen im Harn,”’ Zentralbl. Arbeitsmed. Arbeitsschutz 9 (1959) 140 – 42.”
dc.relation[18] “H. Steinberg: ‘“The hazard of benzidine to criminal justice personnel,”’ NBS Spec. Publ. U.S. 1977, 480 – 421; Chem. Abstr. 87 (1977) 178486.”
dc.relation[19] “IUPAC. Compendium of Chemical Terminology, 2nd ed. (the ‘Gold Book’). Compiled by A. D. McNaught and A. Wilkinson. Blackwell Scientific Publications, Oxford (1997). Online version (2019-) created by S. J. Chalk. ISBN 0-9678550-9-8. https://doi.org/10.1351.”
dc.relation[20] U. Sani, H. U. Na’ibi, and S. A. Dailami, “In vitro antimicrobial and antioxidant studies on N-(2- hydroxylbenzylidene) pyridine -2-amine and its M(II) complexes,” Niger. J. Basic Appl. Sci., vol. 25, no. 1, p. 81, 2018, doi: 10.4314/njbas.v25i1.11.
dc.relation[21] J. Lim and E. E. Simanek, “Triazine dendrimers as drug delivery systems: From synthesis to therapy,” Advanced Drug Delivery Reviews. 2012, doi: 10.1016/j.addr.2012.03.008.
dc.relation[22] M. Liu, L. Guo, S. Jin, and B. Tan, “Covalent triazine frameworks: Synthesis and applications,” Journal of Materials Chemistry A. 2019, doi: 10.1039/c8ta12442f.
dc.relation[23] W. V. Farrar, “Reactions of formaldehyde with aromatic amines,” J. Appl. Chem., vol. 14, no. 9, pp. 389–399, 2007, doi: 10.1002/jctb.5010140905.
dc.relation[24] F. Hof, M. Schär, D. M. Scofield, F. Fischer, F. Diederich, and S. Sergeyev, “Preparation of Tröger base derivatives by cross-coupling methodologies,” Helvetica Chimica Acta. 2005, doi: 10.1002/hlca.200590168.
dc.relation[25] S. Satishkumar and M. Periasamy, “A convenient method for the synthesis and resolution of Tröger base,” Tetrahedron Asymmetry, 2006, doi: 10.1016/j.tetasy.2006.04.002.
dc.relation[26] C. Mannich and W. Krösche, “Ueber ein Kondensationsprodukt aus Formaldehyd, Ammoniak und Antipyrin,” Arch. Pharm. (Weinheim)., 1912, doi: 10.1002/ardp.19122500151.
dc.relation[27] N. S. Joshi, L. R. Whitaker, and M. B. Francis, “A three-component Mannich-type reaction for selective tyrosine bioconjugation,” J. Am. Chem. Soc., 2004, doi: 10.1021/ja0439017.
dc.relation[28] G. Roman, “Mannich bases in medicinal chemistry and drug design,” European Journal of Medicinal Chemistry. 2015, doi: 10.1016/j.ejmech.2014.10.076.
dc.relation[29] S. G. Subramaniapillai, “Mannich reaction: A versatile and convenient approach to bioactive skeletons,” J. Chem. Sci., 2013, doi: 10.1007/s12039-013-0405-y.
dc.relation[30] “(New Directions in Organic & Biological Chemistry) Maurilio Tramontini, Luigi Angiolini - Mannich Bases_ Chemistry and Uses-CRC-Press (1994).pdf.” .
dc.relation[31] H. Ishida and T. Agag, Handbook of Benzoxazine Resins. 2011.
dc.relation[32] T. Takeichi, T. Kano, and T. Agag, “Synthesis and thermal cure of high molecular weight polybenzoxazine precursors and the properties of the thermosets,” Polymer (Guildf)., vol. 46, no. 26, pp. 12172–12180, 2005, doi: 10.1016/j.polymer.2005.10.088.
dc.relation[33] F. W. Holly and A. C. Cope, “Condensation Products of Aldehydes and Ketones with o-Aminobenzyl Alcohol and o-Hydroxybenzylamine,” J. Am. Chem. Soc., 1944, doi: 10.1021/ja01239a022.
dc.relation[34] Y. Liu, S. Saha, S. A. Vignon, A. H. Flood, and J. F. Stoddart, “Template-directed syntheses of configurable and reconfigurable molecular switches,” Synthesis (Stuttg)., no. 19, pp. 3437–3445, 2005, doi: 10.1055/s-2005-918468.
dc.relation[35] C. X. Zhang, Y. Y. Deng, Y. Y. Zhang, P. Yang, and Y. Gu, “Study on products and reaction paths for synthesis of 3,4-dihydro-2H-3-phenyl-1,3-benzoxazine from phenol, aniline and formaldehyde,” Chinese Chem. Lett., 2015, doi: 10.1016/j.cclet.2014.12.005.
dc.relation[36] W. J. Burke, M. J. Kolbezen, and C. Wayne Stephens, “Condensation of Naphthols with Formaldehyde and Primary Amines,” J. Am. Chem. Soc., 1952, doi: 10.1021/ja01134a039.
dc.relation[37] Z. Brunovska, J. P. Liu, and H. Ishida, “L,3,5-Triphenylhexahydro-1,3,5-triazine - Active intermediate and precursor in the novel synthesis of benzoxazine monomers and oligomers,” Macromol. Chem. Phys., 1999, doi: 10.1002/(SICI)1521-3935(19990701)200:7<1745::AID-MACP1745>3.0.CO;2-D.
dc.relation[38] F. W. M. Ribeiro, A. F. Rodrigues-Oliveira, and T. C. Correra, “Benzoxazine Formation Mechanism Evaluation by Direct Observation of Reaction Intermediates,” J. Phys. Chem. A, 2019, doi: 10.1021/acs.jpca.9b05065.
dc.relation[39] A. D. Buckingham, J. E. Del Bene, and S. A. C. McDowell, “The hydrogen bond,” Chem. Phys. Lett., 2008, doi: 10.1016/j.cplett.2008.06.060.
dc.relation[40] M. J. Minch, “An Introduction to Hydrogen Bonding (Jeffrey, George A.),” J. Chem. Educ., 1999, doi: 10.1021/ed076p759.1.
dc.relation[41] T. Steiner, “The hydrogen bond in the solid state,” Angewandte Chemie - International Edition. 2002, doi: 10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-U.
dc.relation[42] K. T. Mahmudov and A. J. L. Pombeiro, “Resonance-Assisted Hydrogen Bonding as a Driving Force in Synthesis and a Synthon in the Design of Materials,” Chem. - A Eur. J., vol. 22, no. 46, pp. 16356–16398, 2016, doi: 10.1002/chem.201601766.
dc.relation[43] K. C. Nicolaou, W. Qian, F. Bernal, N. Uesaka, P. M. Pihko, and J. Hinrichs, “Synthesis of the ABCD ring system of azaspiracid,” Angew. Chemie - Int. Ed., 2001, doi: 10.1002/1521-3773(20011105)40.
dc.relation[44] G. Gilli and P. Gilli, The Nature of the Hydrogen Bond: Outline of a Comprehensive Hydrogen Bond Theory. 2009.
dc.relation[45] Jencks, W.P., “Donnor-Acceptor and Charge Transfer Interactions,” in Catalysis in Chemistry and Enzymology, 1987.
dc.relation[46] B. List, “Proline-catalyzed asymmetric reactions,” Tetrahedron. 2002, doi: 10.1016/S0040-4020(02)00516-1.
dc.relation[47] B. List, L. Hoang, and H. J. Martin, “New mechanistic studies on the proline-catalyzed aldol reaction,” Proc. Natl. Acad. Sci. U. S. A., 2004, doi: 10.1073/pnas.0307979101.
dc.relation[48] H. H. Sayed El‐tamany, “Eine zweite Synthese,” vol. 116, pp. 1682–1685, 1983, doi: https://doi.org/10.1002/cber.19831160444.
dc.relation[49] T. Gulder and P. S. Baran, “Strained cyclophane natural products: Macrocyclization at its limits,” Nat. Prod. Rep., vol. 29, no. 8, pp. 899–934, 2012, doi: 10.1039/c2np20034a.
dc.relation[50] X. Yu and D. Sun, “Macrocyclic drugs and synthetic methodologies toward macrocycles,” Molecules. 2013, doi: 10.3390/molecules18066230.
dc.relation[51] J. W. Steed and J. L. Atwood, Supramolecular chemistry, 2nd Editio. John Wiley & Sons, Ltd., 2009.
dc.relation[52] J. W. Steed and J. L. Atwood, Supramolecular Chemistry: Second Edition. 2009.
dc.relation[53] N. Nuñez-Dallos, A. Reyes, and R. Quevedo, “Hydrogen bond assisted synthesis of azacyclophanes from l-tyrosine derivatives,” Tetrahedron Lett., vol. 53, no. 5, pp. 530–534, 2012, doi: https://doi.org/10.1016/j.tetlet.2011.11.086.
dc.relation[54] C. Díaz-Oviedo and R. Quevedo, “N-Benzylazacyclophane synthesis via aromatic Mannich reaction,” Tetrahedron Lett., vol. 55, no. 48, pp. 6571–6574, 2014, doi: 10.1016/j.tetlet.2014.10.023.
dc.relation[55] “Granovsky, A. A. Firefly.”
dc.relation[56] “Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S.; Windus, T. L.; Dupuis, M.; Montgomery, J. A. J. Comput. Chem. 1993, 14, 1347–1363.”
dc.relation[57] T. Lu and F. Chen, “Multiwfn: A multifunctional wavefunction analyzer,” J. Comput. Chem., 2012, doi: 10.1002/jcc.22885.
dc.relation[58] “Stewart, J. J. MOPAC2016; Stewart Computational Chemistry, Colorado Springs, CO, USA, 2012.No Title.”
dc.relation[59] R. Quevedo, M. González, and C. Díaz-Oviedo, “Synthesis of macrocyclic α-amino esters through the chemoselective hydrolysis of benzoxazinephanes,” Tetrahedron Lett., vol. 53, no. 13, pp. 1595–1597, 2012, doi: 10.1016/j.tetlet.2012.01.064.
dc.relation[60] J. Řezáč and P. Hobza, “Advanced corrections of hydrogen bonding and dispersion for semiempirical quantum mechanical methods,” J. Chem. Theory Comput., 2012, doi: 10.1021/ct200751e.
dc.relation[61] N. D. Yilmazer and M. Korth, Semiempirical and Molecular Mechanics Treatment of Noncovalent Interactions. 2017.
dc.relation[62] J. C. Kromann, A. S. Christensen, C. Steinmann, M. Korth, and J. H. Jensen, “A third-generation dispersion and third-generation hydrogen bonding corrected PM6 method: PM6-D3H+,” PeerJ, 2014, doi: 10.7717/peerj.449.
dc.relation[63] C. C. Pye and T. Ziegler, “An implementation of the conductor-like screening model of solvation within the Amsterdam density functional package,” Theor. Chem. Acc., 1999, doi: 10.1007/s002140050457.
dc.relation[64] M. Evecen, H. Tanak, N. Dege, M. Kara, O. E. Dogan, and E. Ağar, “Molecular structure, spectroscopic, and density functional theory studies of o-Dianisidine,” Mol. Cryst. Liq. Cryst., vol. 648, no. 1, pp. 183–201, 2017, doi: 10.1080/15421406.2016.1275300.
dc.relation[65] J. Zhu, X. Zhao, L. Liu, R. Yang, M. Song, and S. Wu, “Thermodynamic analyses of the hydrogen bond dissociation reaction and their effects on damping and compatibility capacities of polar small molecule/nitrile-butadiene rubber systems: Molecular simulation and experimental study,” Polymer (Guildf)., vol. 155, pp. 152–167, 2018, doi: 10.1016/j.polymer.2018.09.040.
dc.relation[66] L. Sapir and D. Harries, “Revisiting Hydrogen Bond Thermodynamics in Molecular Simulations,” J. Chem. Theory Comput., 2017, doi: 10.1021/acs.jctc.7b00238.
dc.relation[67] J. H. Clark and J. Miller, “Hydrogen Bonding in Organic Synthesis. 3. Hydrogen Bond Assisted Reactions of Cyclic Organic Hydrogen Bond Electron Acceptors1 with Halogenoalkanes in the Presence of Potassium Fluoride,” J. Am. Chem. Soc., vol. 99, no. 2, pp. 498–504, 1977, doi: 10.1021/ja00444a030.
dc.relation[68] P. E. Hansen and J. Spanget-Larsen, “NMR and IR investigations of strong intramolecular hydrogen bonds,” Molecules. 2017, doi: 10.3390/molecules22040552.
dc.relation[69] M. Cheng, X. Pu, N. B. Wong, M. Li, and A. Tian, “Substituent effects on the hydrogen-bonded complex of aniline-H 2O: A computational study,” New J. Chem., 2008, doi: 10.1039/b717465a.
dc.relation[70] R. Neufeld and D. Stalke, “Accurate molecular weight determination of small molecules via DOSY-NMR by using external calibration curves with normalized diffusion coefficients,” Chem. Sci., 2015, doi: 10.1039/c5sc00670h.
dc.relation[71] D. Kanamori, A. Furukawa, T. A. Okamura, H. Yamamoto, and N. Ueyama, “Contribution of the intramolecular hydrogen bond to the shift of the pKa value and the oxidation potential of phenols and phenolate anions,” Org. Biomol. Chem., 2005, doi: 10.1039/b419361j.
dc.relation[72] G. S. Kapur, E. J. Cabrita, and S. Berger, “The qualitative probing of hydrogen bond strength by diffusion-ordered NMR spectroscopy,” Tetrahedron Lett., vol. 41, no. 37, pp. 7181–7185, 2000, doi: 10.1016/S0040-4039(00)01188-6.
dc.relation[73] P. Charisiadis, V. G. Kontogianni, C. G. Tsiafoulis, A. G. Tzakos, M. Siskos, and I. P. Gerothanassis, “1H-NMR as a structural and analytical tool of intra- and intermolecular hydrogen bonds of phenol-containing natural products and model compounds,” Molecules. 2014, doi: 10.3390/molecules190913643.
dc.relation[74] R. V. Viesser, L. C. Ducati, C. F. Tormena, and J. Autschbach, “The unexpected roles of σ and π orbitals in electron donor and acceptor group effects on the 13C NMR chemical shifts in substituted benzenes,” Chem. Sci., 2017, doi: 10.1039/c7sc02163a.
dc.relation[75] B. Diehl, “Principles in NMR spectroscopy,” NMR Spectrosc. Pharm. Anal., pp. 1–41, 2008, doi: 10.1016/B978-0-444-53173-5.00001-9.
dc.relation[76] T. F. Cummings and J. R. Shelton, “Mannich Reaction Mechanisms,” J. Org. Chem., vol. 25, no. 3, pp. 419–423, 1960, doi: 10.1021/jo01073a029.
dc.relation[77] J. Kaneti, A. J. Kirby, A. H. Koedjikov, and I. G. Pojarlieff, “Thorpe-Ingold effects in cyclizations to five-membered and six-membered rings containing planar segments. The rearrangement of N(1)-alkyl-substituted dihydroorotic acids to hydantoinacetic acids in base,” Org. Biomol. Chem., 2004, doi: 10.1039/b400248b.
dc.relation[78] J. Barluenga, A. M. Bayón, and A. Gregorio., “Monoalkylation of Primary Aromatic Amines,” J. Chem. Soc., Chem. Commun, pp. 1109–1110, 1983, doi: 10.1055/s-1993-25813.
dc.relation[79] A. K. Jordão et al., “Synthesis using microwave irradiation and antibacterial evaluation of new N,O-acetals and N,S-acetals derived from 2-amino-1,4-naphthoquinones,” Eur. J. Med. Chem., vol. 63, pp. 196–201, 2013, doi: 10.1016/j.ejmech.2013.01.010.
dc.relation[80] Z. Ji, F. Zhou, and S. Wei, “Synthesis and herbicidal activities of benzothiazole N,O-acetals,” Bioorganic Med. Chem. Lett., vol. 25, no. 19, pp. 4065–4068, 2015, doi: 10.1016/j.bmcl.2015.08.051.
dc.relation[81] Y. Harayama, M. Yoshida, D. Kamimura, and Y. Kita, “The novel and efficient direct synthesis of N,O-acetal compounds using a hypervalent iodine(III) reagent: An improved synthetic method for a key intermediate of discorhabdins,” Chem. Commun., no. 13, pp. 1764–1766, 2005, doi: 10.1039/b418212j.
dc.relation[82] J. BARLUENGA, A. BAYON, P. CAMPOS, G. ASENSIO, E. GONZALEZ-NUNEZ, and Y. MOLINA, “Preparation of N,O-aminals as synthetic equivalents of H,” J. Chem. Soc. Perkin Trans. I, vol. 21, no. 7, pp. 1631–1636, 1988.
dc.relation[83] “Frontier Orbitals and Organic Chemical Reactions,” J. Mol. Struct., 1979, doi: 10.1016/0022-2860(79)80172-6.
dc.relation[84] W. Yang and R. G. Parr, “Hardness, softness, and the fukui function in the electronic theory of metals and catalysis.,” Proc. Natl. Acad. Sci. U. S. A., 1985, doi: 10.1073/pnas.82.20.6723.
dc.relation[85] P. J. Krueger, “Intramolecular NH⋯O and NH⋯S hydrogen bonds in o-aminophenols and o-aminothiophenols,” Tetrahedron, vol. 26, no. 20, pp. 4753–4764, 1970, doi: 10.1016/S0040-4020(01)93126-6.
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleInfluencia de interacciones no covalentes en el curso de reacción entre derivados de bencidina, bisfenol A y formaldehído
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución