dc.contributor | Baquero, Edwin A. | |
dc.contributor | Institut national des sciences appliquées de Toulouse (INSA Toulouse) | |
dc.contributor | Universidad Nacional de Colombia - Sede Bogotá | |
dc.contributor | Estado Sólido y Catálisis Ambiental | |
dc.creator | Zuluaga Villamil, María Alejandra | |
dc.date.accessioned | 2021-01-20T17:28:27Z | |
dc.date.available | 2021-01-20T17:28:27Z | |
dc.date.created | 2021-01-20T17:28:27Z | |
dc.date.issued | 2020-12-18 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/78849 | |
dc.description.abstract | La activación de enlaces C-H a través de la coordinación de enlaces sigma ha crecido en los últimos treinta años como una herramienta importante en la funcionalización de hidrocarburos. Más específicamente, la deuteración de moléculas orgánicas a través de la activación de enlaces C-H (intercambio H/D) no solo es atractiva debido a las varias aplicaciones de estas moléculas deuteradas en las ciencias de la vida, sino porque también es un proceso directo que no requiere de pasos intermedios que pueden conllevar al detrimento de la reacción. Así mismo, el uso de nanopartículas metálicas (MNPs) pequeñas como catalizadores del intercambio H/D es de gran interés ya que son sistemas altamente eficaces, lo que conlleva a un estudio sistemático para tener control en la reactividad de las nanopartículas y así poder tener mejores selectividades en reacciones de intercambio H/D a través de activaciones C-H. Esto se puede lograr mediante el adecuado uso de soportes o ligandos estabilizantes de las nanopartículas. La polivinipirrolidona (PVP) ha sido reportada como un soporte utilizado comúnmente en la síntesis de nanopartículas debido a que este polímero permite modificar propiedades como el crecimiento, la dispersión y la reducción debido a su naturaleza anfifílica. Sin embargo, este tipo de estabilización suele presentar un alto nivel de aglomeración que puede afectar el área superficial y la selectividad de las nanopartículas. En este sentido, y gracias a sus propiedades estereoelectrónicas únicas, los ligandos Carbeno N-Heterocíclico (NHC) son ligandos versátiles que han sido ampliamente usados en la síntesis de complejos metálicos y en la funcionalización de superficies metálicas. Es así que se han reportado recientemente el uso de ligandos del tipo NHCs lipo e hidrosolubles como estabilizantes de nanopartículas de Ru y Ru/Pt para la deuteración enantioespecífica de L-lisina y 2-fenilpiridina, mostrando ser catalizadores eficientes en estos dos medios, pero presentando fenómenos de reducción en sistemas aromáticos. Las selectividades conseguidas muestran que los metilenos en las posiciones alfa, gama y épsilon respecto del grupo amino-ácido son susceptibles de ser deuterados cuando sólo se usa Ru en las MNPs, mientras que la selectividad mejora cuando se dopan con Pt, encontrándose que solo hay deuteraciones en las posiciones alfa y épsilon. No obstante, al aplicar estos sistemas en otros sustratos, no se obtienen altas selectividades y la reducción de sistemas aromáticos no disminuye para ninguno de estos sistemas, lo cual ha sido observado en nanopartículas de iridio reportadas en el último año.
En este orden de ideas, en este trabajo se presenta la síntesis de MNPs de Ru e Ir, así como las versiones bimetálicas Ru/Ir por el método de bottom up como catalizadores para la deuteración de 2-fenilpiridina, 2-metil-naftilamina, 5,6,7,8-tetrahidro-naftilamina, L-lisina y L-fenilalanina. Estas NPs son dispersables tanto en medio orgánico como acuoso gracias a la presencia de soportes como PVP o ligandos estabilizantes del tipo NHC. Las MNPs fueron caracterizadas por técnicas convencionales tales como TEM, ATR-IR, DRX, y RMN en estado sólido donde se destaca la obtención de nanopartículas de tamaños entre 1 y 2 nm con una buena dispersión. Los sistemas aquí presentados fueron activos en la deuteración de y fenilpiridina, 2-metil-naftilamina, 5,6,7,8-tetrahidro-naftilamina, y L-lisina. Las MNPs presentaron selectividades inesperadas, pues no solo las posiciones 6 de la piridina y orto del anillo fenilo en la fenilpiridina se deuteraron, sino que también posiciones más alejadas como la 3, 4 y 5 de la piridina presentaron deuteración. Por otro lado, la posición 9 de la 2-metil-naftilamina y 5,6,7,8-tetrahidro-naftilamina y α y ε al grupo aminoácido de la L-lisina se deuteran completamente, mientras que con L-fenilalanina se presenció la reducción del anillo aromático. Interesantemente, tanto las NPs bimetálicas estabilizadas con PVP como las estabilizadas por NHC no presentaron reducción del anillo y se reconoció una diferente selectividad y porcentaje de deuteración sobre la fenilpiridina, siendo superiores aquellas estabilizadas por NHC, mostrando un efecto electrónico del estabilizante, además de observarse una sinergia entre los comportamientos de NPs de Ru como de Ir. | |
dc.description.abstract | The activation of CH bonds through the coordination of sigma bonds has grown in the last thirty years as an important tool in the functionalization of hydrocarbons. More specifically, the deuteration of organic molecules through the activation of CH bonds (H/D exchange) is not only attractive due to the various applications of these decayed molecules in life sciences, but also because it is a direct process that does not require intermediate steps that can lead to the detriment of the reaction. Likewise, the use of small metal nanoparticles (MNPs) as catalysts for H/D exchange is of great interest since they are highly efficient systems, which leads to a systematic study to control the reactivity of the nanoparticles and thus be able to have better selectivities in reactions of H/D exchange through C-H bond activation. This can be achieved through the appropriate use of stabilizing supports or ligands of nanoparticles. Polyvinipyrrolidone (PVP) has been reported as a commonly used support in the synthesis of nanoparticles because this polymer allows modifying properties such as growth, dispersion and reduction due to its amphiphilic nature. However, this type of stabilization usually presents a high level of agglomeration that can affect the surface area and selectivity of the nanoparticles. In this sense, and thanks to their unique stereoelectronic properties, N-Heterocyclic Carbene (NHC) ligands are versatile ligands that have been widely used in the synthesis of complexes6 and in the functionalization of metal surfaces. This is how they have been Recently reported the use of lipo and water-soluble NHCs type ligands as stabilizers of nanoparticles of Ru and Ru/Pt for the enantiospecific deuteration of L-lysine and 2-phenylpyridine, showing to be efficient catalysts in these two media, but presenting reduction phenomena in aromatic systems. The selectivities achieved show that the methylenes in the alpha, gamma and epsilon positions with respect to the amino-acid group are capable of deuteration when only Ru is used in the MNPs, while the selectivity improves when they are doped with Pt, finding that there are only deuterations in the alpha and epsilon positions. However, when applying these systems to other substrates, high selectivities are not obtained and the reduction of aromatic systems does not decrease for any of these systems, which has been observed in iridium nanoparticles reported in the last year.
In this sense, here we present the synthesis of Ru and Ir MNPs, as well as the Ru / Ir bimetallic versions as catalysts for the deuteration of 2-phenylpyridine, 2-methyl-naftylamine, 5,6,7,8-tetrahydro-naftylamine, L-lysine and L-phenylalanine. These NPs are dispersible in both organic and aqueous media thanks to the presence of supports such as PVP or NHC as stabilizing ligands. MNPs were characterized by conventional techniques such as TEM, ATR-IR, XRD, and solid-state NMR. The systems presented here were active in the deuteration of phenylpyridine, 2-methyl-naftylamine, 5,6,7,8-tetrahydro-naftylamine, and L-lysine. The MNPs showed unexpected selectivity, since not only the 6 positions of pyridine and ortho of the phenyl ring in phenylpyridine were deuterated, but also further positions such as 3, 4, and 5 from pyridine were deuterated. On the other hand, the 9 position from 2-methyl-naftylamine and 5,6,7,8-tetrahydro-naftylamine, and the α and ε positions to the amino acid group of L-lysine were completely deuterated, while with L-phenylalanine the reduction of the aromatic ring was witnessed. Interestingly, both the bimetallic NPs stabilized with PVP and those stabilized by NHC did not present ring reduction and a different selectivity and percentage of deuteration over phenylpyridine was recognized, those stabilized by NHC being higher, showing an electronic effect of the stabilizer, in addition to being observed a synergy between the behaviors of Ru and Ir NPs. | |
dc.language | spa | |
dc.publisher | Bogotá - Ciencias - Maestría en Ciencias - Química | |
dc.publisher | Departamento de Química | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | Asensio, J. M.; Bouzouita, D.; Van Leeuwen, P. W. N. M.; Chaudret, B. σ-H-H, σ-C-H, and σ-Si-H Bond Activation Catalyzed by Metal Nanoparticles. Chem. Rev. 2020, 120 (2), 1042–1084. https://doi.org/10.1021/acs.chemrev.9b00368. | |
dc.relation | Atzrodt, J.; Derdau, V.; Kerr, W. J.; Reid, M. Deuterium- and Tritium-Labelled Compounds: Applications in the Life Sciences. Angew. Chemie - Int. Ed. 2018, 57 (7), 1758–1784. https://doi.org/10.1002/anie.201704146. | |
dc.relation | Crabtree, R. H.; Lei, A. Introduction: CH Activation. Chem. Rev. 2017, 117 (13), 8481–8482. https://doi.org/10.1021/acs.chemrev.7b00307. | |
dc.relation | Koczkur, K. M.; Mourdikoudis, S.; Polavarapu, L.; Skrabalak, S. E. Polyvinylpyrrolidone (PVP) in Nanoparticle Synthesis. Dalt. Trans. 2015, 44 (41), 17883–17905. https://doi.org/10.1039/c5dt02964c. | |
dc.relation | Hopkinson, M. N.; Richter, C.; Schedler, M.; Glorius, F. An Overview of N-Heterocyclic Carbenes. Nature 2014, 510 (7506), 485–496. https://doi.org/10.1038/nature13384. | |
dc.relation | Zhukhovitskiy, A. V.; MacLeod, M. J.; Johnson, J. A. Carbene Ligands in Surface Chemistry: From Stabilization of Discrete Elemental Allotropes to Modification of Nanoscale and Bulk Substrates. Chem. Rev. 2015, 115 (20), 11503–11532. https://doi.org/10.1021/acs.chemrev.5b00220. | |
dc.relation | An, Y. Y.; Yu, J. G.; Han, Y. F. Recent Advances in the Chemistry of N-Heterocyclic-Carbene-Functionalized Metal-Nanoparticles and Their Applications. Chinese J. Chem. 2019, 37 (1), 76–87. https://doi.org/10.1002/cjoc.201800450. | |
dc.relation | Martínez-Prieto, L. M.; Baquero, E. A.; Pieters, G.; Flores, J. C.; De Jesús, E.; Nayral, C.; Delpech, F.; Van Leeuwen, P. W. N. M.; Lippens, G.; Chaudret, B. Monitoring of Nanoparticle Reactivity in Solution: Interaction of l-Lysine and Ru Nanoparticles Probed by Chemical Shift Perturbation Parallels Regioselective H/D Exchange. Chem. Commun. 2017, 53 (43), 5850–5853. https://doi.org/10.1039/c7cc02445b. | |
dc.relation | Bouzouita, D.; Lippens, G.; Baquero, E. A.; Fazzini, P. F.; Pieters, G.; Coppel, Y.; Lecante, P.; Tricard, S.; Martínez-Prieto, L. M.; Chaudret, B. Tuning the Catalytic Activity and Selectivity of Water-Soluble Bimetallic RuPt Nanoparticles by Modifying Their Surface Metal Distribution. Nanoscale 2019, 11 (35), 16544–16552. https://doi.org/10.1039/c9nr04149d. | |
dc.relation | Foster, A. B. Deuterium Isotope Effects in Studies of Drug Metabolism. Trends Pharmacol. Sci. 1984, 5 (C), 524–527. https://doi.org/10.1016/0165-6147(84)90534-0. | |
dc.relation | Cherrah, Y.; Falconnet, J. B.; Desage, M.; Brazier, J. L.; Zini, R.; Tillement, J. P. Study of Deuterium Isotope Effects on Protein Binding by Gas Chromatography/Mass Spectrometry. Caffeine and Deuterated Isotopomers. Biomed. Environ. Mass Spectrom. 1987, 14 (11), 653–657. https://doi.org/10.1002/bms.1200141115. | |
dc.relation | Atzrodt, J.; Derdau, V. Pd- and Pt-Catalyzed H/D Exchange Methods and Their Application for Internal MS Standard Preparation from a Sanofi-Aventis Perspective. J. Label. Compd. Radiopharm. 2010, 53 (11–12), 674–685. https://doi.org/10.1002/jlcr.1818. | |
dc.relation | Voges, R.; Heys, J. R.; Moenius, T. Preparation of Compounds Labeled with Tritium and Carbon-14. | |
dc.relation | Heys, R. Investigation of [IrH2(Me2CO)2(PPh3)2]BF4 as a Catalyst of Hydrogen Isotope Exchange of Substrates in Solution. J. Chem. Soc. Chem. Commun. 1992, No. 9, 680. https://doi.org/10.1039/c39920000680. | |
dc.relation | Hesk, D.; Das, P. R.; Evans, B. Deuteration of Acetanilides and Other Substituted Aromatics Using [Ir(COD)(Cy3P)(Py)]PF6 as Catalyst. J. Label. Compd. Radiopharm. 1995, 36 (5), 497–502. https://doi.org/10.1002/jlcr.2580360514. | |
dc.relation | Neubert, L.; Michalik, D.; Ba, S.; Imm, S.; Neumann, H.; Atzrodt, J.; Derdau, V.; Holla, W.; Beller, M. Ruthenium-Catalyzed Selective α , β -Deuteration of Bioactive Amines. 2012. | |
dc.relation | Bai, W.; Lee, K.; Kai, S.; Tse, S.; Chan, K. W.; Lin, Z.; Jia, G. Ruthenium-Catalyzed Deuteration of Alcohols with Deuterium Oxide. 2015. https://doi.org/10.1021/acs.organomet.5b00134. | |
dc.relation | Khaskin, E.; Milstein, D. Simple and Efficient Catalytic Reaction for the Selective Deuteration of Alcohols. ACS Catal. 2013, 3 (3), 448–452. https://doi.org/10.1021/cs400092p. | |
dc.relation | Chen, S.; Song, G.; Li, X. Chelation-Assisted Rhodium Hydride-Catalyzed Regioselective H / D Exchange in Arenes. Tetrahedron Lett. 2008, 49 (48), 6927–6930. https://doi.org/10.1016/j.tetlet.2008.09.122. | |
dc.relation | Yang, H.; Dormer, P. G.; Rivera, N. R.; Hoover, A. J. Palladium ( II ) -Mediated C À H Tritiation of Complex Pharmaceuticals. 2018, No. Ii, 1883–1887. https://doi.org/10.1002/anie.201711364. | |
dc.relation | Hickman, A. J.; Cismesia, M. A.; Sanford, M. S. Structure Activity Relationship Study of Diimine PtII Catalysts for H/D Exchange. Organometallics 2012. | |
dc.relation | Rhodium, N.; Derdau, V.; Atzrodt, J.; Zimmermann, J.; Kroll, C. Hydrogen–Deuterium Exchange Reactions of Aromatic Compounds and Heterocycles by NaBD4-Activated Rhodium, Platinum and Palladium Catalysts. Chem. Eur. 2009, 10397–10404. https://doi.org/10.1002/chem.200901107. | |
dc.relation | Jere, F. T.; Miller, D. J.; Jackson, J. E. Stereoretentive C−H Bond Activation in the Aqueous Phase Catalytic Hydrogenation of Amino Acids to Amino Alcohols. Org. Lett. 2003, 5 (4), 527–530. https://doi.org/10.1021/ol0274211. | |
dc.relation | Heuer-Jungemann, A.; Feliu, N.; Bakaimi, I.; Hamaly, M.; Alkilany, A.; Chakraborty, I.; Masood, A.; Casula, M. F.; Kostopoulou, A.; Oh, E.; Susumu, K.; Stewart, M. H.; Medintz, I. L.; Stratakis, E.; Parak, W. J.; Kanaras, A. G. The Role of Ligands in the Chemical Synthesis and Applications of Inorganic Nanoparticles. Chem. Rev. 2019, 119 (8), 4819–4880. https://doi.org/10.1021/acs.chemrev.8b00733. | |
dc.relation | Pieters, G.; Taglang, C.; Bonnefille, E.; Gutmann, T.; Puente, C.; Berthet, J. C.; Dugave, C.; Chaudret, B.; Rousseau, B. Regioselective and Stereospecific Deuteration of Bioactive Aza Compounds by the Use of Ruthenium Nanoparticles. Angew. Chemie - Int. Ed. 2014, 53 (1), 230–234. https://doi.org/10.1002/anie.201307930. | |
dc.relation | Valero, M.; Bouzouita, D.; Palazzolo, A.; Atzrodt, J.; Dugave, C.; Tricard, S.; Feuillastre, S.; Pieters, G.; Chaudret, B.; Derdau, V. NHC-Stabilized Iridium Nanoparticles as Catalysts in Hydrogen Isotope Exchange Reactions of Anilines. Angew. Chemie - Int. Ed. 2019. https://doi.org/10.1002/anie.201914369. | |
dc.relation | Sharma, S.; Kurashige, W.; Niihori, Y.; Negishi, Y. Nanocluster Science; Elsevier Inc., 2017. https://doi.org/10.1016/B978-0-323-37829-1.00001-8. | |
dc.relation | Sharma, G.; Kumar, A.; Sharma, S.; Naushad, M.; Prakash Dwivedi, R.; ALOthman, Z. A.; Mola, G. T. Novel Development of Nanoparticles to Bimetallic Nanoparticles and Their Composites: A Review. J. King Saud Univ. - Sci. 2019, 31 (2), 257–269. https://doi.org/10.1016/j.jksus.2017.06.012. | |
dc.relation | Chen, Y.; Peng, D. L.; Lin, D.; Luo, X. Preparation and Magnetic Properties of Nickel Nanoparticles via the Thermal Decomposition of Nickel Organometallic Precursor in Alkylamines. Nanotechnology 2007, 18 (50). https://doi.org/10.1088/0957-4484/18/50/505703. | |
dc.relation | Zhou, Y.; Yang, G.; Pan, H. Bin; Zhu, C.; Fu, S.; Shi, Q.; Du, D.; Cheng, X.; Yang, J.; Wai, C. M.; Lin, Y. Ultrasonic-Assisted Synthesis of Carbon Nanotube Supported Bimetallic Pt-Ru Nanoparticles for Effective Methanol Oxidation. J. Mater. Chem. A 2015, 3 (16), 8459–8465. https://doi.org/10.1039/c5ta00695c. | |
dc.relation | Kusada, K.; Kobayashi, H.; Yamamoto, T.; Matsumura, S.; Sumi, N.; Sato, K.; Nagaoka, K.; Kubota, Y.; Kitagawa, H. Discovery of Face-Centered-Cubic Ruthenium Nanoparticles: Facile Size-Controlled Synthesis Using the Chemical Reduction Method. J. Am. Chem. Soc. 2013, 135 (15), 5493–5496. https://doi.org/10.1021/ja311261s. | |
dc.relation | Pan, C.; Pelzer, K.; Philippot, K.; Chaudret, B.; Dassenoy, F.; Lecante, P.; Casanove, M. J. Ligand-Stabilized Ruthenium Nanoparticles: Synthesis, Organization, and Dynamics. J. Am. Chem. Soc. 2001, 123 (31), 7584–7593. https://doi.org/10.1021/ja003961m. | |
dc.relation | Lacroix, L. M.; Lachaize, S.; Falqui, A.; Respaud, M.; Chaudret, B. Iron Nanoparticle Growth in Organic Superstructures. J. Am. Chem. Soc. 2009, 131 (2), 549–557. https://doi.org/10.1021/ja805719c. | |
dc.relation | LaMer, V. K.; Dinegar, R. H. Theory, Production and Mechanism of Formation of Monodispersed Hydrosols. J. Am. Chem. Soc. 1950, 72 (11), 4847–4854. https://doi.org/10.1021/ja01167a001. | |
dc.relation | Hierrezuelo, J.; Sadeghpour, A.; Szilagyi, I.; Vaccaro, A.; Borkovec, M. Electrostatic Stabilization of Charged Colloidal Particles with Adsorbed Polyelectrolytes of Opposite Charge. Langmuir 2010, 26 (19), 15109–15111. https://doi.org/10.1021/la102912u. | |
dc.relation | Wanzlick, H. W. Aspects of Nucleophilic Carbene Chemistry. Angew. Chemie Int. Ed. English 1962, 1 (2), 75–80. https://doi.org/10.1002/anie.196200751. | |
dc.relation | Arduengo, A. J.; Harlow, R. L.; Kline, M. A Stable Crystalline Carbene. J. Am. Chem. Soc. 1991, 113 (1), 361–363. https://doi.org/10.1021/ja00001a054. | |
dc.relation | Herrmann, W. A.; Gooßen, L. J.; Spiegler, M. Functionalized Imidazoline-2-Ylidene Complexes of Rhodium and Palladium. J. Organomet. Chem. 1997, 547 (2), 357–366. https://doi.org/10.1016/S0022-328X(97)00434-8. | |
dc.relation | Hahn, F. E. Heterocyclic Carbenes. Angew. Chemie - Int. Ed. 2006, 45 (9), 1348–1352. https://doi.org/10.1002/anie.200503858. | |
dc.relation | Jacobsen, H.; Correa, A.; Poater, A.; Costabile, C.; Cavallo, L. Understanding the M‒(NHC) (NHC = N-Heterocyclic Carbene) Bond. Coord. Chem. Rev. 2009, 253 (5–6), 687–703. https://doi.org/10.1016/j.ccr.2008.06.006. | |
dc.relation | Alder, R. W.; Blake, M. E.; Chaker, L.; Harvey, J. N.; Paolini, F.; Schütz, J. When and How Do Diaminocarbenes Dimerize? Angew. Chemie - Int. Ed. 2004, 43 (44), 5896–5911. https://doi.org/10.1002/anie.200400654. | |
dc.relation | Ott, L. S.; Cline, M. L.; Deetlefs, M.; Seddon, K. R.; Finke, R. G. Nanoclusters in Ionic Liquids: Evidence for N-Heterocyclic Carbene Formation from Imidazolium-Based Ionic Liquids Detected by 2H NMR. J. Am. Chem. Soc. 2005, 127 (16), 5758–5759. https://doi.org/10.1021/ja0423320. | |
dc.relation | Taglang, C.; Martínez-prieto, L. M.; Rosal, I.; Maron, L.; Poteau, R.; Philippot, K.; Chaudret, B.; Perato, S.; Lone, A. S.; Puente, C.; Dugave, C.; Rousseau, B.; Pieters, G. Angewandte Enantiospecific C À H Activation Using Ruthenium Nanocatalysts. 2015, 10620–10623. https://doi.org/10.1002/ange.201504554. | |
dc.relation | Palazzolo, A.; Feuillastre, S.; Pfeifer, V.; Garcia-Argote, S.; Bouzouita, D.; Tricard, S.; Chollet, C.; Marcon, E.; Buisson, D. A.; Cholet, S.; Fenaille, F.; Lippens, G.; Chaudret, B.; Pieters, G. Efficient Access to Deuterated and Tritiated Nucleobase Pharmaceuticals and Oligonucleotides Using Hydrogen-Isotope Exchange. Angew. Chemie - Int. Ed. 2019, 58 (15), 4891–4895. https://doi.org/10.1002/anie.201813946. | |
dc.relation | Smith, C. A.; Narouz, M. R.; Lummis, P. A.; Singh, I.; Nazemi, A.; Li, C. H.; Crudden, C. M. N-Heterocyclic Carbenes in Materials Chemistry. Chem. Rev. 2019, 119 (8), 4986–5056. https://doi.org/10.1021/acs.chemrev.8b00514. | |
dc.relation | Gallego, D.; Baquero, E. A. Recent Advances on Mechanistic Studies on C-H Activation Catalyzed by Base Metals. Open Chemistry. October 22, 2018, pp 1001–1058. https://doi.org/10.1515/chem-2018-0102. | |
dc.relation | Murai, S.; Kakiuchi, F.; Sekine, S.; Tanaka, Y.; Kamatani, A.; Sonoda, M.; Chatani, N. Efficient Catalytic Addition of Aromatic Carbon-Hydrogen Bonds to Olefins. Nature 1993, 366 (6455), 529–531. https://doi.org/10.1038/366529a0. | |
dc.relation | Pla, D.; Gómez, M. Metal and Metal Oxide Nanoparticles: A Lever for C-H Functionalization. ACS Catal. 2016, 6 (6), 3537–3552. https://doi.org/10.1021/acscatal.6b00684. | |
dc.relation | Sabatier, P. Hydrogenations et Deshydrogenations Par Catalyse. Berichte der Dtsch. Chem. Gesellschaft 1911, 44 (3), 1984–2001. | |
dc.relation | Pery, T.; Pelzer, K.; Buntkowsky, G.; Philippot, K.; Limbach, H. H.; Chaudret, B. Direct NMR Evidence for the Presence of Mobile Surface Hydrides on Ruthenium Nanoparticles. ChemPhysChem 2005, 6 (4), 605–607. https://doi.org/10.1002/cphc.200400621. | |
dc.relation | García-Antón, J.; Axet, M. R.; Jansat, S.; Philippot, K.; Chaudret, B.; Pery, T.; Buntkowsky, G.; Limbach, H. H. Reactions of Olefins with Ruthenium Hydride Nanoparticles: NMR Characterization, Hydride Titration, and Room-Temperature C-C Bond Activation. Angew. Chemie - Int. Ed. 2008, 47 (11), 2074–2078. https://doi.org/10.1002/anie.200704763. | |
dc.relation | Gutmann, T.; Walaszek, B.; Yeping, X.; Wächtler, M.; Del Rosal, I.; Grünberg, A.; Poteau, R.; Axet, R.; Lavigne, G.; Chaudret, B.; Limbach, H. H.; Buntkowsky, G. Hydrido-Ruthenium Cluster Complexes as Models for Reactive Surface Hydrogen Species of Ruthenium Nanoparticles. Solid-State 2H NMR and Quantum Chemical Calculations. J. Am. Chem. Soc. 2010, 132 (33), 11759–11767. https://doi.org/10.1021/ja104229a. | |
dc.relation | Limbach, H. H.; Pery, T.; Rothermel, N.; Chaudret, B.; Gutmann, T.; Buntkowsky, G. Gas Phase 1H NMR Studies and Kinetic Modeling of Dihydrogen Isotope Equilibration Catalyzed by Ru-Nanoparticles under Normal Conditions: Dissociative: Vs. Associative Exchange. Phys. Chem. Chem. Phys. 2018, 20 (16), 10697–10712. https://doi.org/10.1039/c7cp07770j. | |
dc.relation | Parkin, G. Applications of Deuterium Isotope Effects for Probing Aspects of Reactions Involving Oxidative Addition and Reductive Elimination of H-H and C-H Bonds. J. Label. Compd. Radiopharm. 2007, 50 (11–12), 1088–1114. https://doi.org/10.1002/jlcr.1435. | |
dc.relation | Wiberg, K. B. The Deuterium Isotope Effect. Chem. Rev. 1955, 55 (4), 713–743. https://doi.org/10.1021/cr50004a004. | |
dc.relation | Gómez-Gallego, M.; Sierra, M. A. Kinetic Isotope Effects in the Study of Organometallic Reaction Mechanisms. Chem. Rev. 2011, 111 (8), 4857–4963. https://doi.org/10.1021/cr100436k. | |
dc.relation | Nelson, S. D.; Trager, W. F. The Use of Deuterium Isotope Effects to Probe the Active Site Properties, Mechanism of Cytochrome P450-Catalyzed Reactions, and Mechanisms of Metabolically Dependent Toxicity. Drug Metab. Dispos. 2003, 31 (12), 1481–1498. https://doi.org/10.1124/dmd.31.12.1481. | |
dc.relation | Guengerich, F. P. Common and Uncommon Cytochrome P450 Reactions Related to Metabolism and Chemical Toxicity. Chem. Res. Toxicol. 2001, 14 (6), 611–650. https://doi.org/10.1021/tx0002583. | |
dc.relation | Chowdhury, G.; Calcutt, M. W.; Nagy, L. D.; Guengerich, F. P. Oxidation of Methyl and Ethyl Nitrosamines by Cytochrome P450 2E1 and 2B1. Biochemistry 2012, 51 (50), 9995–10007. https://doi.org/10.1021/bi301092c. | |
dc.relation | Mullard, A. FDA Approves First Deuterated Drug. Nat. Rev. Drug Discov. 2017, 16 (5), 305. https://doi.org/10.1038/nrd.2017.89. | |
dc.relation | Mutlib, A. E.; Gerson, R. J.; Meunier, P. C.; Haley, P. J.; Chen, H.; Gan, L. S.; Davies, M. H.; Gemzik, B.; Christ, D. D.; Krahn, D. F.; Markwalder, J. A.; Seitz, S. P.; Robertson, R. T.; Miwa, G. T.; Pharmacol, T. A. The Species-Dependent Metabolism of Efavirenz Produces a Nephrotoxic Glutathione Conjugate in Rats. 2000, 113, 102–113. https://doi.org/https://doi.org/10.1006/taap.2000.9055. | |
dc.relation | Sechi, S.; Oda, Y. Quantitative Proteomics Using Mass Spectrometry. Curr. Opin. Chem. Biol. 2003, 7 (1), 70–77. https://doi.org/10.1016/S1367-5931(02)00010-8. | |
dc.relation | Taylor, P. J. Matrix Effects: The Achilles Heel of Quantitative High-Performance Liquid Chromatography-Electrospray-Tandem Mass Spectrometry. Clin. Biochem. 2005, 38 (4), 328–334. https://doi.org/10.1016/j.clinbiochem.2004.11.007. | |
dc.relation | Garnett, J. L.; Hodges, R. J. Homogeneous Metal-Catalyzed Isotopic Hydrogen Exchange in Aromatic Compounds: The Labelling of Nitrobenzene, Brornobenzene, Naphthalene, and Acetophenone. Chem. Commun. 1967, No. 19, 1001–1003. https://doi.org/10.1039/C1967001001b. | |
dc.relation | Kerr, W. J.; Lindsay, D. M.; Reid, M.; Atzrodt, J.; Derdau, V.; Rojahn, P.; Weck, R. Iridium-Catalysed Ortho-H/D and -H/T Exchange under Basic Conditions: C–H Activation of Unprotected Tetrazoles. Chem. Commun. 2016, 52 (40), 6669–6672. https://doi.org/10.1039/C6CC02137A. | |
dc.relation | Piola, L.; Ferńandez-Salas, J. A.; Manzini, S.; Nolan, S. P. Regioselective Ruthenium Catalysed H-D Exchange Using D2O as the Deuterium Source. Org. Biomol. Chem. 2014, 12 (43), 8683–8688. https://doi.org/10.1039/c4ob01798f. | |
dc.relation | Prechtl, M. H. G.; Hölscher, M.; Ben-David, Y.; Theyssen, N.; Loschen, R.; Milstein, D.; Leitner, W. H/D Exchange at Aromatic and Heteroaromatic Hydrocarbons Using D 2O as the Deuterium Source and Ruthenium Dihydrogen Complexes as the Catalyst. Angew. Chemie - Int. Ed. 2007, 46 (13), 2269–2272. https://doi.org/10.1002/anie.200603677. | |
dc.relation | Maegawa, T.; Fujiwara, Y.; Inagaki, Y.; Monguchi, Y.; Sajiki, H. A Convenient and Effective Method for the Regioselective Deuteration of Alcohols. Adv. Synth. Catal. 2008, 350 (14–15), 2215–2218. https://doi.org/10.1002/adsc.200800407. | |
dc.relation | Gao, L.; Perato, S.; Garcia-Argote, S.; Taglang, C.; Martínez-Prieto, L. M.; Chollet, C.; Buisson, D. A.; Dauvois, V.; Lesot, P.; Chaudret, B.; Rousseau, B.; Feuillastre, S.; Pieters, G. Ruthenium-Catalyzed Hydrogen Isotope Exchange of C(Sp3)-H Bonds Directed by a Sulfur Atom. Chem. Commun. 2018, 54 (24), 2986–2989. https://doi.org/10.1039/c8cc00653a. | |
dc.relation | Maegawa, T.; Fujiwara, Y.; Inagaki, Y.; Esaki, H.; Monguchi, Y.; Sajiki, H. Mild and Efficient H/D Exchange of Alkanes Based on C-H Activation Catalyzed by Rhodium on Charcoal. Angew. Chemie - Int. Ed. 2008, 47 (29), 5394–5397. https://doi.org/10.1002/anie.200800941. | |
dc.relation | Taglang, C.; Martínez-Prieto, L. M.; Del Rosal, I.; Maron, L.; Poteau, R.; Philippot, K.; Chaudret, B.; Perato, S.; Sam Lone, A.; Puente, C.; Dugave, C.; Rousseau, B.; Pieters, G. Enantiospecific C-H Activation Using Ruthenium Nanocatalysts. Angew. Chemie - Int. Ed. 2015, 54 (36), 10474–10477. https://doi.org/10.1002/anie.201504554. | |
dc.relation | Bantreil, X.; Nolan, S. P. Synthesis of N-Heterocyclic Carbene Ligands and Derived Ruthenium Olefin Metathesis Catalysts. Nat. Protoc. 2011, 6 (1), 69–77. https://doi.org/10.1038/nprot.2010.177. | |
dc.relation | Clayton, K. N.; Salameh, J. W.; Wereley, S. T.; Kinzer-Ursem, T. L. Physical Characterization of Nanoparticle Size and Surface Modification Using Particle Scattering Diffusometry. Biomicrofluidics 2016, 10 (5). https://doi.org/10.1063/1.4962992. | |
dc.relation | Martínez-Prieto, L. M.; Urbaneja, C.; Palma, P.; Cámpora, J.; Philippot, K.; Chaudret, B. A Betaine Adduct of N-Heterocyclic Carbene and Carbodiimide, an Efficient Ligand to Produce Ultra-Small Ruthenium Nanoparticles. Chem. Commun. 2015, 51 (22), 4647–4650. https://doi.org/10.1039/c5cc00211g. | |
dc.relation | Valero, M.; Bouzouita, D.; Palazzolo, A.; Atzrodt, J.; Dugave, C.; Tricard, S.; Feuillastre, S.; Pieters, G.; Chaudret, B.; Derdau, V. NHC-Stabilized Iridium Nanoparticles as Catalysts in Hydrogen Isotope Exchange Reactions of Anilines. Angew. Chemie - Int. Ed. 2019, 1–89. https://doi.org/10.1002/anie.201914369. | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights | Acceso abierto | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Derechos reservados - Universidad Nacional de Colombia | |
dc.title | Nanopartículas de Ir y Ru/Ir estabilizadas con ligandos Carbeno N-Heterocíclico para activación de enlaces C-H | |
dc.type | Otro | |