dc.contributor | Gómez Grosso, Luis Alberto | |
dc.contributor | Fisiología Celular y Molecular | |
dc.creator | Rivera Escobar, Hernán Mauricio | |
dc.date.accessioned | 2021-01-15T20:59:48Z | |
dc.date.available | 2021-01-15T20:59:48Z | |
dc.date.created | 2021-01-15T20:59:48Z | |
dc.date.issued | 2020-12-04 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/78784 | |
dc.description.abstract | miRNAs are small non-coding RNAs associated with post-transcriptional gene regulation in melanoma, a cancer of melanocytes, cells specialized in melanin synthesis. The present work aimed to evaluate the differential expression of miRNAs and to establish potential functional relationships through their targets in the B16F1 melanoma cell line under conditions of decreased cell growth and differential pigmentation induced by L-tyrosine (L-Tyr) and 5-Bromo-2'-deoxyuridine (BrdU) in vitro. A reduction in proliferation and changes in melanin concentration was confirmed in B16F1 cells exposed to 2.5 µg. mL-1 BrdU or 5 mM L-Tyr. Using DEseq2, counts obtained by small RNAseq were analyzed and differential expression of 35 miRNAs in cells exposed to L-Tyr, 22 under-expressed, and 14 over-expressed; and of 33 miRNAs by exposure to BrdU, 11 over-expressed and 21 under-expressed. The bioinformatics analysis facilitated the construction of co-expression and miRNA regulation network models together with associated targets by KEGG functional enrichment, with the control of the cell cycle, senescence, and pigmentation. Expression levels of 211-5p, 129-5p, 148b-3p, 470-5p, 470-3p, 27b-3p and 30d-5p microRNAs and Mitf, Tyr, Tyrp1, Dct, Ccnd1, Cdk4 Cdk2 and p21 mRNAs were confirmed by RT-qPCR. The results obtained, improve our understanding of the potential functional associations between miRNAs and gene sets during melanogenesis, cell cycle control, and senescence and propose new scenarios for the study of melanoma. | |
dc.description.abstract | Los miRNAs son RNAs pequeños no codificantes asociados con la regulación post-transcripcional de genes, en melanoma, un cáncer de melanocitos, células especializadas en la síntesis de melanina. El objetivo del presente trabajo fue evaluar la expresión diferencial de miRNAs y establecer potenciales relaciones funcionales a través de sus dianas en la línea celular de melanoma B16F1 bajo condiciones de disminución del crecimiento celular y pigmentación diferencial inducidas por la L-tirosina (L-Tyr) y la 5-bromo-2´-deoxiuridina (BrdU) in vitro. Se confirmó una reducción en la proliferación y cambios en la concentración de melanina en células B16F1 expuestas a BrdU 2.5 µg.mL-1 o a L-Tyr 5 mM. Usando DEseq2, se analizaron los conteos obtenidos por small RNAseq y se determinó la expresión diferencial de 35 miRNAs en células expuestas a L-Tyr, 22 sub-expresados y 14 sobre-expresados; y de 33 miRNAs por exposición a BrdU, 11 sobre-expresados y 21 sub-expresados. El análisis bioinformático, facilitó la construcción de modelos en red de co-expresión y de regulación de miRNAs junto a dianas asociadas por enriquecimiento funcional KEGG, con el control del ciclo celular, senescencia y pigmentación. Los niveles de expresión de los microRNAs 211-5p, 129-5p, 148b-3p, 470-5p, 470-3p, 27b-3p y 30d-5p y de los mRNAs Mitf, Tyr, Tyrp1, Dct, Ccnd1, Cdk4 Cdk2 y p21, se confirmaron por RT-qPCR. Los resultados obtenidos, mejoran nuestra comprensión de las potenciales asociaciones funcionales entre conjuntos de miRNAs y genes durante la melanogénesis, el control del ciclo celular y la senescencia y propone nuevos escenarios para el estudio del melanoma. | |
dc.language | spa | |
dc.publisher | Bogotá - Medicina - Doctorado en Ciencias Biomédicas | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | Abdel-Malek, Z. A., Swope, V. B., Trinkle, L. S., Ferroni, E. N., Boissy, R. E., & Nordlund, J. J. (1988). Alteration of the Cloudman melanoma cell cycle by prostaglandins E1 and E2 determined by using a 5-bromo-2'-deoxyuridine method of DNA analysis. J Cell Physiol, 136(2), 247-256. doi:10.1002/jcp.1041360206 | |
dc.relation | Aftab, M. N., Dinger, M. E., & Perera, R. J. (2014). The role of microRNAs and long non-coding RNAs in the pathology, diagnosis, and management of melanoma. Arch Biochem Biophys, 563, 60-70. doi:10.1016/j.abb.2014.07.022 | |
dc.relation | Agarwal, V., Bell, G. W., Nam, J. W., & Bartel, D. P. (2015). Predicting effective microRNA target sites in mammalian mRNAs. Elife, 4. doi:10.7554/eLife.05005 | |
dc.relation | Alvarez Gaviria, W. (2007). Cilios, melanocitos y bases moleculares de los sentidos. Acta otorrinolaringol. cir. cabeza cuello, 35(2), 45-57. Retrieved from http://bases.bireme.br/cgi-bin/wxislind.exe/iah/online/?IsisScript=iah/iah.xis&src=google&base=LILACS&lang=p&nextAction=lnk&exprSearch=497495&indexSearch=ID | |
dc.relation | Amaral, L. A., Scala, A., Barthelemy, M., & Stanley, H. E. (2000). Classes of small-world networks. Proc Natl Acad Sci U S A, 97(21), 11149-11152. doi:10.1073/pnas.200327197 | |
dc.relation | Ameres, S. L., & Zamore, P. D. (2013). Diversifying microRNA sequence and function. Nat Rev Mol Cell Biol, 14(8), 475-488. doi:10.1038/nrm3611 | |
dc.relation | Anders, S., & Huber, W. (2010). Differential expression analysis for sequence count data. Genome Biol, 11(10), R106. doi:10.1186/gb-2010-11-10-r106 | |
dc.relation | Asangani, I. A., Harms, P. W., Dodson, L., Pandhi, M., Kunju, L. P., Maher, C. A., . . . Chinnaiyan, A. M. (2012). Genetic and epigenetic loss of microRNA-31 leads to feed-forward expression of EZH2 in melanoma. Oncotarget, 3(9), 1011-1025. doi:10.18632/oncotarget.622 | |
dc.relation | Babapoor, S., Fleming, E., Wu, R., & Dadras, S. S. (2014). A novel miR-451a isomiR, associated with amelanotypic phenotype, acts as a tumor suppressor in melanoma by retarding cell migration and invasion. PLoS One, 9(9), e107502. doi:10.1371/journal.pone.0107502 | |
dc.relation | Balch, C. M., Gershenwald, J. E., Soong, S. J., Thompson, J. F., Atkins, M. B., Byrd, D. R., . . . Sondak, V. K. (2009). Final version of 2009 AJCC melanoma staging and classification. J Clin Oncol, 27(36), 6199-6206. doi:10.1200/JCO.2009.23.4799 | |
dc.relation | Bald, T., Quast, T., Landsberg, J., Rogava, M., Glodde, N., Lopez-Ramos, D., . . . Tuting, T. (2014). Ultraviolet-radiation-induced inflammation promotes angiotropism and metastasis in melanoma. Nature, 507(7490), 109-113. doi:10.1038/nature13111 | |
dc.relation | Bandyopadhyay, D., & Medrano, E. E. (2000). Melanin accumulation accelerates melanocyte senescence by a mechanism involving p16INK4a/CDK4/pRB and E2F1. Ann N Y Acad Sci, 908, 71-84. doi:10.1111/j.1749-6632.2000.tb06637.x | |
dc.relation | Bates, S., Bonetta, L., MacAllan, D., Parry, D., Holder, A., Dickson, C., & Peters, G. (1994). CDK6 (PLSTIRE) and CDK4 (PSK-J3) are a distinct subset of the cyclin-dependent kinases that associate with cyclin D1. Oncogene, 9(1), 71-79. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8302605 | |
dc.relation | Bemis, L. T., Chen, R., Amato, C. M., Classen, E. H., Robinson, S. E., Coffey, D. G., . . . Robinson, W. A. (2008). MicroRNA-137 targets microphthalmia-associated transcription factor in melanoma cell lines. Cancer Res, 68(5), 1362-1368. doi:10.1158/0008-5472.CAN-07-2912 | |
dc.relation | Bennett, D. C. (2015). Genetics of melanoma progression: the rise and fall of cell senescence. Pigment Cell Melanoma Res. doi:10.1111/pcmr.12422 | |
dc.relation | Bennett, P. E., Bemis, L., Norris, D. A., & Shellman, Y. G. (2013). miR in melanoma development: miRNAs and acquired hallmarks of cancer in melanoma. Physiol Genomics, 45(22), 1049-1059. doi:10.1152/physiolgenomics.00116.2013 | |
dc.relation | Bhattacharya, A., Schmitz, U., Raatz, Y., Schonherr, M., Kottek, T., Schauer, M., . . . Kunz, M. (2015). miR-638 promotes melanoma metastasis and protects melanoma cells from apoptosis and autophagy. Oncotarget, 6(5), 2966-2980. doi:10.18632/oncotarget.3070 | |
dc.relation | Bleazard, T., Lamb, J. A., & Griffiths-Jones, S. (2015). Bias in microRNA functional enrichment analysis. Bioinformatics, 31(10), 1592-1598. doi:10.1093/bioinformatics/btv023 | |
dc.relation | Bonazzi, V. F., Stark, M. S., & Hayward, N. K. (2012). MicroRNA regulation of melanoma progression. Melanoma Res, 22(2), 101-113. doi:10.1097/CMR.0b013e32834f6fbb | |
dc.relation | Boyle, G. M., Woods, S. L., Bonazzi, V. F., Stark, M. S., Hacker, E., Aoude, L. G., . . . Hayward, N. K. (2011). Melanoma cell invasiveness is regulated by miR-211 suppression of the BRN2 transcription factor. Pigment Cell Melanoma Res, 24(3), 525-537. doi:10.1111/j.1755-148X.2011.00849.x | |
dc.relation | Brenner, M., & Hearing, V. J. (2008). The protective role of melanin against UV damage in human skin. Photochem Photobiol, 84(3), 539-549. doi:10.1111/j.1751-1097.2007.00226.x | |
dc.relation | Brohee, S., Faust, K., Lima-Mendez, G., Sand, O., Janky, R., Vanderstocken, G., . . . van Helden, J. (2008). NeAT: a toolbox for the analysis of biological networks, clusters, classes and pathways. Nucleic Acids Res, 36(Web Server issue), W444-451. doi:10.1093/nar/gkn336 | |
dc.relation | Brohee, S., Faust, K., Lima-Mendez, G., Vanderstocken, G., & van Helden, J. (2008). Network Analysis Tools: from biological networks to clusters and pathways. Nat Protoc, 3(10), 1616-1629. doi:10.1038/nprot.2008.100 | |
dc.relation | Bunz, F., Dutriaux, A., Lengauer, C., Waldman, T., Zhou, S., Brown, J. P., . . . Vogelstein, B. (1998). Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science, 282(5393), 1497-1501. doi:10.1126/science.282.5393.1497 | |
dc.relation | Campisi, J., & d'Adda di Fagagna, F. (2007). Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol, 8(9), 729-740. doi:10.1038/nrm2233 | |
dc.relation | Cao, Y., DePinho, R. A., Ernst, M., & Vousden, K. (2011). Cancer research: past, present and future. Nat Rev Cancer, 11(10), 749-754. doi:10.1038/nrc3138 | |
dc.relation | Caramuta, S., Egyhazi, S., Rodolfo, M., Witten, D., Hansson, J., Larsson, C., & Lui, W. O. (2010). MicroRNA expression profiles associated with mutational status and survival in malignant melanoma. J Invest Dermatol, 130(8), 2062-2070. doi:10.1038/jid.2010.63 | |
dc.relation | Costa, L. D. F. R., F. A.; Travieso, G.; Villas Boas, P. R. (2007). Characterization of complex networks: A survey of measurements. Advances in Physics, 56( 1), 167-242. doi:10.1080/00018730601170527 | |
dc.relation | Couts, K. L., Anderson, E. M., Gross, M. M., Sullivan, K., & Ahn, N. G. (2013). Oncogenic B-Raf signaling in melanoma cells controls a network of microRNAs with combinatorial functions. Oncogene, 32(15), 1959-1970. doi:10.1038/onc.2012.209 | |
dc.relation | Cui, S., Zhang, K., Li, C., Chen, J., Pan, Y., Feng, B., . . . Chen, L. (2016). Methylation-associated silencing of microRNA-129-3p promotes epithelial-mesenchymal transition, invasion and metastasis of hepatocelluar cancer by targeting Aurora-A. Oncotarget, 7(47), 78009-78028. doi:10.18632/oncotarget.12870 | |
dc.relation | Cunha, E. S., Kawahara, R., Kadowaki, M. K., Amstalden, H. G., Noleto, G. R., Cadena, S. M., . . . Martinez, G. R. (2012). Melanogenesis stimulation in B16-F10 melanoma cells induces cell cycle alterations, increased ROS levels and a differential expression of proteins as revealed by proteomic analysis. Exp Cell Res, 318(15), 1913-1925. doi:10.1016/j.yexcr.2012.05.019 | |
dc.relation | Chang, X., Zhang, H., Lian, S., & Zhu, W. (2016). miR-137 suppresses tumor growth of malignant melanoma by targeting aurora kinase A. Biochem Biophys Res Commun, 475(3), 251-256. doi:10.1016/j.bbrc.2016.05.090 | |
dc.relation | Charrier-Savournin, F. B., Chateau, M. T., Gire, V., Sedivy, J., Piette, J., & Dulic, V. (2004). p21-Mediated nuclear retention of cyclin B1-Cdk1 in response to genotoxic stress. Mol Biol Cell, 15(9), 3965-3976. doi:10.1091/mbc.e03-12-0871 | |
dc.relation | Chen, C., Ridzon, D. A., Broomer, A. J., Zhou, Z., Lee, D. H., Nguyen, J. T., . . . Guegler, K. J. (2005). Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res, 33(20), e179. doi:10.1093/nar/gni178 | |
dc.relation | Chen, J., Feilotter, H. E., Pare, G. C., Zhang, X., Pemberton, J. G., Garady, C., . . . Tron, V. A. (2010). MicroRNA-193b represses cell proliferation and regulates cyclin D1 in melanoma. Am J Pathol, 176(5), 2520-2529. doi:10.2353/ajpath.2010.091061 | |
dc.relation | Chen, X., Wang, J., Shen, H., Lu, J., Li, C., Hu, D. N., . . . Tu, L. (2011). Epigenetics, microRNAs, and carcinogenesis: functional role of microRNA-137 in uveal melanoma. Invest Ophthalmol Vis Sci, 52(3), 1193-1199. doi:10.1167/iovs.10-5272 | |
dc.relation | Chen, X. Y., Zhang, J., Hou, L. D., Zhang, R., Chen, W., Fan, H. N., . . . Zhu, J. S. (2018). Upregulation of PD-L1 predicts poor prognosis and is associated with miR-191-5p dysregulation in colon adenocarcinoma. Int J Immunopathol Pharmacol, 32, 2058738418790318. doi:10.1177/2058738418790318 | |
dc.relation | Chen, Y., Cao, K. E., Wang, S., Chen, J., He, B., He, G. U., . . . Zhou, J. (2016). MicroRNA-138 suppresses proliferation, invasion and glycolysis in malignant melanoma cells by targeting HIF-1alpha. Exp Ther Med, 11(6), 2513-2518. doi:10.3892/etm.2016.3220 | |
dc.relation | Cheun, W. L. (2004). The chemical structure of melanin. Pigment Cell Res, 17(4), 422-423; discussion 423-424. doi:10.1111/j.1600-0749.2004.00165_1.x | |
dc.relation | d'Ischia, M., Wakamatsu, K., Cicoira, F., Di Mauro, E., Garcia-Borron, J. C., Commo, S., . . . Ito, S. (2015). Melanins and Melanogenesis: From Pigment Cells to Human Health and Technological Applications. Pigment Cell Melanoma Res. doi:10.1111/pcmr.12393 | |
dc.relation | Dai, X., Rao, C., Li, H., Chen, Y., Fan, L., Geng, H., . . . Hou, L. (2015). Regulation of pigmentation by microRNAs: MITF-dependent microRNA-211 targets TGF-beta receptor 2. Pigment Cell Melanoma Res, 28(2), 217-222. doi:10.1111/pcmr.12334 | |
dc.relation | Damsky, W. E., Theodosakis, N., & Bosenberg, M. (2014). Melanoma metastasis: new concepts and evolving paradigms. Oncogene, 33(19), 2413-2422. doi:10.1038/onc.2013.194 | |
dc.relation | Dar, A. A., Majid, S., de Semir, D., Nosrati, M., Bezrookove, V., & Kashani-Sabet, M. (2011). miRNA-205 suppresses melanoma cell proliferation and induces senescence via regulation of E2F1 protein. J Biol Chem, 286(19), 16606-16614. doi:10.1074/jbc.M111.227611 | |
dc.relation | Dar, A. A., Majid, S., Rittsteuer, C., de Semir, D., Bezrookove, V., Tong, S., . . . Kashani-Sabet, M. (2013). The role of miR-18b in MDM2-p53 pathway signaling and melanoma progression. J Natl Cancer Inst, 105(6), 433-442. doi:10.1093/jnci/djt003 | |
dc.relation | Debacq-Chainiaux, F., Erusalimsky, J. D., Campisi, J., & Toussaint, O. (2009). Protocols to detect senescence-associated beta-galactosidase (SA-betagal) activity, a biomarker of senescent cells in culture and in vivo. Nat Protoc, 4(12), 1798-1806. doi:10.1038/nprot.2009.191 | |
dc.relation | Decker, H., & Tuczek, F. (2000). Tyrosinase/catecholoxidase activity of hemocyanins: structural basis and molecular mechanism. Trends Biochem Sci, 25(8), 392-397. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10916160 | |
dc.relation | Diao, Y., Jin, B., Huang, L., & Zhou, W. (2018). MiR-129-5p inhibits glioma cell progression in vitro and in vivo by targeting TGIF2. J Cell Mol Med, 22(4), 2357-2367. doi:10.1111/jcmm.13529 | |
dc.relation | Diermeier, S., Schmidt-Bruecken, E., Kubbies, M., Kunz-Schughart, L. A., & Brockhoff, G. (2004). Exposure to continuous bromodeoxyuridine (BrdU) differentially affects cell cycle progression of human breast and bladder cancer cell lines. Cell Prolif, 37(2), 195-206. doi:10.1111/j.1365-2184.2004.00296.x | |
dc.relation | Ding, J., Huang, S., Wu, S., Zhao, Y., Liang, L., Yan, M., . . . He, X. (2010). Gain of miR-151 on chromosome 8q24.3 facilitates tumour cell migration and spreading through downregulating RhoGDIA. Nat Cell Biol, 12(4), 390-399. doi:10.1038/ncb2039 | |
dc.relation | Ding, N., Wang, S., Yang, Q., Li, Y., Cheng, H., Wang, J., . . . Fang, X. (2015). Deep sequencing analysis of microRNA expression in human melanocyte and melanoma cell lines. Gene, 572(1), 135-145. doi:10.1016/j.gene.2015.07.013 | |
dc.relation | Ding, Z., Jian, S., Peng, X., Liu, Y., Wang, J., Zheng, L., . . . Zhou, M. (2015). Loss of MiR-664 Expression Enhances Cutaneous Malignant Melanoma Proliferation by Upregulating PLP2. Medicine (Baltimore), 94(33), e1327. doi:10.1097/MD.0000000000001327 | |
dc.relation | Du, J., Widlund, H. R., Horstmann, M. A., Ramaswamy, S., Ross, K., Huber, W. E., . . . Fisher, D. E. (2004). Critical role of CDK2 for melanoma growth linked to its melanocyte-specific transcriptional regulation by MITF. Cancer Cell, 6(6), 565-576. doi:10.1016/j.ccr.2004.10.014 | |
dc.relation | Dweep, H., & Gretz, N. (2015). miRWalk2.0: a comprehensive atlas of microRNA-target interactions. Nat Methods, 12(8), 697. doi:10.1038/nmeth.3485 | |
dc.relation | Ekimler, S., & Sahin, K. (2014). Computational Methods for MicroRNA Target Prediction. Genes (Basel), 5(3), 671-683. doi:10.3390/genes5030671 | |
dc.relation | Epstein, W. L., Fukuyama, K., & Drake, T. E. (1973). Ultrastructural effects of thymidine analogs in melanosomes and virus activation in cloned hamster melanoma cells in culture. Yale J Biol Med, 46(5), 471-481. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/4798393 | |
dc.relation | Fan, Y., Siklenka, K., Arora, S. K., Ribeiro, P., Kimmins, S., & Xia, J. (2016). miRNet - dissecting miRNA-target interactions and functional associations through network-based visual analysis. Nucleic Acids Res, 44(W1), W135-141. doi:10.1093/nar/gkw288 | |
dc.relation | Fan, Y., & Xia, J. (2018). miRNet-Functional Analysis and Visual Exploration of miRNA-Target Interactions in a Network Context. Methods Mol Biol, 1819, 215-233. doi:10.1007/978-1-4939-8618-7_10 | |
dc.relation | Fattore, L., Ruggiero, C. F., Pisanu, M. E., Liguoro, D., Cerri, A., Costantini, S., . . . Ciliberto, G. (2019). Reprogramming miRNAs global expression orchestrates development of drug resistance in BRAF mutated melanoma. Cell Death Differ, 26(7), 1267-1282. doi:10.1038/s41418-018-0205-5 | |
dc.relation | Fawcett, D. W. (1966). An atlas of fine structure: the cell, its organelles, and inclusions. Philadelphia,: W. B. Saunders Co. | |
dc.relation | Felli, N., Felicetti, F., Lustri, A. M., Errico, M. C., Bottero, L., Cannistraci, A., . . . Care, A. (2013). miR-126&126* restored expressions play a tumor suppressor role by directly regulating ADAM9 and MMP7 in melanoma. PLoS One, 8(2), e56824. doi:10.1371/journal.pone.0056824 | |
dc.relation | Fernandes, B., Matama, T., Guimaraes, D., Gomes, A., & Cavaco-Paulo, A. (2016). Fluorescent quantification of melanin. Pigment Cell Melanoma Res, 29(6), 707-712. doi:10.1111/pcmr.12535 | |
dc.relation | Flórez Vargas, Ó. R. (2008). Expresión diferencial de ARNs pequeños en células de melanoma inducidas a supresión de crecimiento in vitro. (Maestría), Universidad Nacional de Colombia. Retrieved from http://eds.a.ebscohost.com.ezproxy.unal.edu.co/eds/detail/detail?vid=2&sid=e81e3236-0391-48e3-b816-49637e9373b2%40sessionmgr4001&hid=4213&bdata=Jmxhbmc9ZXMmc2l0ZT1lZHMtbGl2ZQ%3d%3d#AN=unc.000385548&db=cat02704a | |
dc.relation | Flórez Vargas, Ó. R., & Gomez, L. A. (2008). Expresión diferencial de dos microRNAs asociados con el silenciamiento de la ciclina D1 en células de melanoma B16 en senescencia inducida por la 5-bromo-2-desoxiuridina. Revista de la Asociación Colombiana de Ciencias Biológicas. Retrieved from http://ezproxy.unal.edu.co/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=cat02704a&AN=unc.000385548&lang=es&site=eds-live | |
dc.relation | Fu, T. Y., Chang, C. C., Lin, C. T., Lai, C. H., Peng, S. Y., Ko, Y. J., & Tang, P. C. (2011). Let-7b-mediated suppression of basigin expression and metastasis in mouse melanoma cells. Exp Cell Res, 317(4), 445-451. doi:10.1016/j.yexcr.2010.11.004 | |
dc.relation | Ganesan, A. K., Ho, H., Bodemann, B., Petersen, S., Aruri, J., Koshy, S., . . . White, M. A. (2008). Genome-wide siRNA-based functional genomics of pigmentation identifies novel genes and pathways that impact melanogenesis in human cells. PLoS Genet, 4(12), e1000298. doi:10.1371/journal.pgen.1000298 | |
dc.relation | García, M. (2017). Mortalidad por melanoma cutáneo en Colombia: estudio de tendencias. Asociación Colombiana de Dermatologpia y cirugía dermatológica, 25(1), 8-15. Retrieved from https://revistasocolderma.org/articulo-revista/mortalidad-por-melanoma-cutaneo-en-colombia-estudio-de-tendencias | |
dc.relation | Garcia, R. I., Werner, I., & Szabo, G. (1979). Effect of 5-bromo-2'-deoxyuridine on growth and differentiation of cultured embryonic retinal pigment cells. In Vitro, 15(10), 779-788. doi:10.1007/bf02618304 | |
dc.relation | Gaziel-Sovran, A., Segura, M. F., Di Micco, R., Collins, M. K., Hanniford, D., Vega-Saenz de Miera, E., . . . Hernando, E. (2011). miR-30b/30d regulation of GalNAc transferases enhances invasion and immunosuppression during metastasis. Cancer Cell, 20(1), 104-118. doi:10.1016/j.ccr.2011.05.027 | |
dc.relation | Gencia, I., Baderca, F., Avram, S., Gogulescu, A., Marcu, A., Seclaman, E., . . . Solovan, C. (2020). A preliminary study of microRNA expression in different types of primary melanoma. Bosn J Basic Med Sci, 20(2), 197-208. doi:10.17305/bjbms.2019.4271 | |
dc.relation | Git, A., Dvinge, H., Salmon-Divon, M., Osborne, M., Kutter, C., Hadfield, J., . . . Caldas, C. (2010). Systematic comparison of microarray profiling, real-time PCR, and next-generation sequencing technologies for measuring differential microRNA expression. RNA, 16(5), 991-1006. doi:10.1261/rna.1947110 | |
dc.relation | Glovanella, B. C., Stehlin, J. S., Santamaria, C., Yim, S. O., Morgan, A. C., Williams, L. J., Jr., . . . Mumford, D. M. (1976). Human neoplastic and normal cells in tissue culture. I. Cell lines derived from malignant melanomas and normal melanocytes. J Natl Cancer Inst, 56(6), 1131-1142. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/994214 | |
dc.relation | Glud, M., & Gniadecki, R. (2013). MicroRNAs in the pathogenesis of malignant melanoma. J Eur Acad Dermatol Venereol, 27(2), 142-150. doi:10.1111/j.1468-3083.2012.04579.x | |
dc.relation | Glud, M., Manfe, V., Biskup, E., Holst, L., Dirksen, A. M., Hastrup, N., . . . Gniadecki, R. (2011). MicroRNA miR-125b induces senescence in human melanoma cells. Melanoma Res, 21(3), 253-256. doi:10.1097/CMR.0b013e328345333b | |
dc.relation | Glud, M., Rossing, M., Hother, C., Holst, L., Hastrup, N., Nielsen, F. C., . . . Drzewiecki, K. T. (2010). Downregulation of miR-125b in metastatic cutaneous malignant melanoma. Melanoma Res, 20(6), 479-484. doi:10.1097/CMR.0b013e32833e32a1 | |
dc.relation | Gomez, L. A. (2009). Aplicación de microarreglos de cADN para estudiar algunos determinantes moleculares de la supresión del crecimiento celular en cáncer. Biomedica, 29(1). | |
dc.relation | Gomez, L. A., Strasberg Rieber, M., & Rieber, M. (1995). Decrease in actin gene expression in melanoma cells compared to melanocytes is partly counteracted by BrdU-induced cell adhesion and antagonized by L-tyrosine induction of terminal differentiation. Biochem Biophys Res Commun, 216(1), 84-89. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/7488128 | |
dc.relation | Gomez, L. A., Strasberg Rieber, M., & Rieber, M. (1996). PCR-mediated differential display and cloning of a melanocyte gene decreased in malignant melanoma and up-regulated with sensitization to DNA damage. DNA Cell Biol, 15(5), 423-427. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8924217 | |
dc.relation | Goppner, D., & Leverkus, M. (2011). Prognostic parameters for the primary care of melanoma patients: what is really risky in melanoma? J Skin Cancer, 2011, 521947. doi:10.1155/2011/521947 | |
dc.relation | Grant, G. R., Manduchi, E., & Stoeckert, C. J., Jr. (2007). Analysis and management of microarray gene expression data. Curr Protoc Mol Biol, Chapter 19, Unit 19 16. doi:10.1002/0471142727.mb1906s77 | |
dc.relation | Guerra, L., Bover, L., & Mordoh, J. (1990). Differentiating effect of L-tyrosine on the human melanoma cell line IIB-MEL-J. Exp Cell Res, 188(1), 61-65. doi:10.1016/0014-4827(90)90278-i | |
dc.relation | Guzzi, P. H., Di Martino, M. T., Tagliaferri, P., Tassone, P., & Cannataro, M. (2015). Analysis of miRNA, mRNA, and TF interactions through network-based methods. EURASIP Journal on Bioinformatics and Systems Biology, 2015(1). doi:10.1186/s13637-015-0023-8 | |
dc.relation | Haass, N. K., Smalley, K. S., Li, L., & Herlyn, M. (2005). Adhesion, migration and communication in melanocytes and melanoma. Pigment Cell Res, 18(3), 150-159. doi:10.1111/j.1600-0749.2005.00235.x | |
dc.relation | Haddad, M. M., Xu, W., Schwahn, D. J., Liao, F., & Medrano, E. E. (1999). Activation of a cAMP pathway and induction of melanogenesis correlate with association of p16(INK4) and p27(KIP1) to CDKs, loss of E2F-binding activity, and premature senescence of human melanocytes. Exp Cell Res, 253(2), 561-572. doi:10.1006/excr.1999.4688 | |
dc.relation | Haflidadottir, B. S., Bergsteinsdottir, K., Praetorius, C., & Steingrimsson, E. (2010). miR-148 regulates Mitf in melanoma cells. PLoS One, 5(7), e11574. doi:10.1371/journal.pone.0011574 | |
dc.relation | Hamzeiy, H., Allmer, J., & Yousef, M. (2014). Computational methods for microRNA target prediction. Methods Mol Biol, 1107, 207-221. doi:10.1007/978-1-62703-748-8_12 | |
dc.relation | Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144(5), 646-674. doi:10.1016/j.cell.2011.02.013 | |
dc.relation | Hanniford, D., Segura, M. F., Zhong, J., Philips, E., Jirau-Serrano, X., Darvishian, F., . . . Hernando, E. (2015). Identification of metastasis-suppressive microRNAs in primary melanoma. J Natl Cancer Inst, 107(3). doi:10.1093/jnci/dju494 | |
dc.relation | Hao, S., Luo, C., Abukiwan, A., Wang, G., He, J., Huang, L., . . . He, D. (2015). miR-137 inhibits proliferation of melanoma cells by targeting PAK2. Exp Dermatol, 24(12), 947-952. doi:10.1111/exd.12812 | |
dc.relation | Haycock, J. W. (1993). Polyvinylpyrrolidone as a blocking agent in immunochemical studies. Anal Biochem, 208(2), 397-399. doi:10.1006/abio.1993.1068 | |
dc.relation | Hayflick, L. (1965). The Limited in Vitro Lifetime of Human Diploid Cell Strains. Exp Cell Res, 37, 614-636. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/14315085 | |
dc.relation | Henao JD, L.-K. L., Pinzon-Velasco A. (2019). coexnet: An R package to build CO-EXpression NETworks from Microarray Data (Version version 1.8.0.) [R package]. | |
dc.relation | Hoffmann, I., Draetta, G., & Karsenti, E. (1994). Activation of the phosphatase activity of human cdc25A by a cdk2-cyclin E dependent phosphorylation at the G1/S transition. EMBO J, 13(18), 4302-4310. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/7523110 | |
dc.relation | Hsiao, J. J., & Fisher, D. E. (2014). The roles of microphthalmia-associated transcription factor and pigmentation in melanoma. Arch Biochem Biophys, 563, 28-34. doi:10.1016/j.abb.2014.07.019 | |
dc.relation | Inui, M., Martello, G., & Piccolo, S. (2010). MicroRNA control of signal transduction. Nat Rev Mol Cell Biol, 11(4), 252-263. doi:10.1038/nrm2868 | |
dc.relation | Jiang, Z., Zhang, Y., Chen, X., Wu, P., & Chen, D. (2019). Inactivation of the Wnt/beta-catenin signaling pathway underlies inhibitory role of microRNA-129-5p in epithelial-mesenchymal transition and angiogenesis of prostate cancer by targeting ZIC2. Cancer Cell Int, 19, 271. doi:10.1186/s12935-019-0977-9 | |
dc.relation | Jolliffe, I. (2014). Principal Component Analysis Wiley StatsRef: Statistics Reference Online. | |
dc.relation | Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: a review and recent developments. Philos Trans A Math Phys Eng Sci, 374(2065), 20150202. doi:10.1098/rsta.2015.0202 | |
dc.relation | Kanitz, A., & Gerber, A. P. (2010). Circuitry of mRNA regulation. Wiley Interdiscip Rev Syst Biol Med, 2(2), 245-251. doi:10.1002/wsbm.55 | |
dc.relation | Kappelmann, M., Kuphal, S., Meister, G., Vardimon, L., & Bosserhoff, A. K. (2013). MicroRNA miR-125b controls melanoma progression by direct regulation of c-Jun protein expression. Oncogene, 32(24), 2984-2991. doi:10.1038/onc.2012.307 | |
dc.relation | Kapranov, P., Willingham, A. T., & Gingeras, T. R. (2007). Genome-wide transcription and the implications for genomic organization. Nat Rev Genet, 8(6), 413-423. doi:10.1038/nrg2083 | |
dc.relation | Katase, N., Terada, K., Suzuki, T., Nishimatsu, S., & Nohno, T. (2015). miR-487b, miR-3963 and miR-6412 delay myogenic differentiation in mouse myoblast-derived C2C12 cells. BMC Cell Biol, 16, 13. doi:10.1186/s12860-015-0061-9 | |
dc.relation | Katayama, S., Tomaru, Y., Kasukawa, T., Waki, K., Nakanishi, M., Nakamura, M., . . . Wahlestedt, C. (2005). Antisense transcription in the mammalian transcriptome. Science, 309(5740), 1564-1566. doi:10.1126/science.1112009 | |
dc.relation | Kato, J., Matsushime, H., Hiebert, S. W., Ewen, M. E., & Sherr, C. J. (1993). Direct binding of cyclin D to the retinoblastoma gene product (pRb) and pRb phosphorylation by the cyclin D-dependent kinase CDK4. Genes Dev, 7(3), 331-342. doi:10.1101/gad.7.3.331 | |
dc.relation | Kim, K. H., Bin, B. H., Kim, J., Dong, S. E., Park, P. J., Choi, H., . . . Lee, T. R. (2014). Novel inhibitory function of miR-125b in melanogenesis. Pigment Cell Melanoma Res, 27(1), 140-144. doi:10.1111/pcmr.12179 | |
dc.relation | Kornfeld, J. W., & Bruning, J. C. (2014). Regulation of metabolism by long, non-coding RNAs. Front Genet, 5, 57. doi:10.3389/fgene.2014.00057 | |
dc.relation | Kozomara, A., Birgaoanu, M., & Griffiths-Jones, S. (2019). miRBase: from microRNA sequences to function. Nucleic Acids Res, 47(D1), D155-D162. doi:10.1093/nar/gky1141 | |
dc.relation | Kozubek, J., Ma, Z., Fleming, E., Duggan, T., Wu, R., Shin, D. G., & Dadras, S. S. (2013). In-depth characterization of microRNA transcriptome in melanoma. PLoS One, 8(9), e72699. doi:10.1371/journal.pone.0072699 | |
dc.relation | Kuilman, T., Michaloglou, C., Mooi, W. J., & Peeper, D. S. (2010). The essence of senescence. Genes Dev, 24(22), 2463-2479. doi:10.1101/gad.1971610 | |
dc.relation | Kunz, M. (2013). MicroRNAs in melanoma biology. Adv Exp Med Biol, 774, 103-120. doi:10.1007/978-94-007-5590-1_6 | |
dc.relation | Kyrgidis, A., Tzellos, T. G., & Triaridis, S. (2010). Melanoma: Stem cells, sun exposure and hallmarks for carcinogenesis, molecular concepts and future clinical implications. J Carcinog, 9, 3. doi:10.4103/1477-3163.62141 | |
dc.relation | Lagunas, M. V. (2004). Estudio paramétrico para la producción de melanina en Escherichia coli recombinante. INSTITUTO TECNOLÓGICO DE CELAYA. Retrieved from http://www.ibt.unam.mx/alfredo/VictorHugoLagunas.pdf | |
dc.relation | Latchana, N., Abrams, Z. B., Howard, J. H., Regan, K., Jacob, N., Fadda, P., . . . Carson, W. E., 3rd. (2017). Plasma MicroRNA Levels Following Resection of Metastatic Melanoma. Bioinform Biol Insights, 11, 1177932217694837. doi:10.1177/1177932217694837 | |
dc.relation | Leal, L. G., Lopez, C., & Lopez-Kleine, L. (2014). Construction and comparison of gene co-expression networks shows complex plant immune responses. PeerJ, 2, e610. doi:10.7717/peerj.610 | |
dc.relation | Lee, H. E., Kim, E. H., Choi, H. R., Sohn, U. D., Yun, H. Y., Baek, K. J., . . . Kim, D. S. (2012). Dipeptides Inhibit Melanin Synthesis in Mel-Ab Cells through Down-Regulation of Tyrosinase. Korean J Physiol Pharmacol, 16(4), 287-291. doi:10.4196/kjpp.2012.16.4.287 | |
dc.relation | Lee, J. T. (2012). Epigenetic regulation by long noncoding RNAs. Science, 338(6113), 1435-1439. doi:10.1126/science.1231776 | |
dc.relation | Leitao, A. L., Costa, M. C., & Enguita, F. J. (2014). A guide for miRNA target prediction and analysis using web-based applications. Methods Mol Biol, 1182, 265-277. doi:10.1007/978-1-4939-1062-5_23 | |
dc.relation | Levkoff, L. H., Marshall, G. P., 2nd, Ross, H. H., Caldeira, M., Reynolds, B. A., Cakiroglu, M., . . . Laywell, E. D. (2008). Bromodeoxyuridine inhibits cancer cell proliferation in vitro and in vivo. Neoplasia, 10(8), 804-816. doi:10.1593/neo.08382 | |
dc.relation | Li, J., Donath, S., Li, Y., Qin, D., Prabhakar, B. S., & Li, P. (2010). miR-30 regulates mitochondrial fission through targeting p53 and the dynamin-related protein-1 pathway. PLoS Genet, 6(1), e1000795. doi:10.1371/journal.pgen.1000795 | |
dc.relation | Li, J., Li, C., Han, J., Zhang, C., Shang, D., Yao, Q., . . . Li, X. (2014). The detection of risk pathways, regulated by miRNAs, via the integration of sample-matched miRNA-mRNA profiles and pathway structure. J Biomed Inform, 49, 187-197. doi:10.1016/j.jbi.2014.02.004 | |
dc.relation | Li, J. Y., Zheng, L. L., Wang, T. T., & Hu, M. (2016). Functional Annotation of Metastasis-associated MicroRNAs of Melanoma: A Meta-analysis of Expression Profiles. Chin Med J (Engl), 129(20), 2484-2490. doi:10.4103/0366-6999.191793 | |
dc.relation | Li, M., Long, C., Yang, G., Luo, Y., & Du, H. (2016). MiR-26b inhibits melanoma cell proliferation and enhances apoptosis by suppressing TRAF5-mediated MAPK activation. Biochem Biophys Res Commun, 471(3), 361-367. doi:10.1016/j.bbrc.2016.02.021 | |
dc.relation | Li, R., Qian, N., Tao, K., You, N., Wang, X., & Dou, K. (2010). MicroRNAs involved in neoplastic transformation of liver cancer stem cells. J Exp Clin Cancer Res, 29, 169. doi:10.1186/1756-9966-29-169 | |
dc.relation | Li, R., Zhang, L., Jia, L., Duan, Y., Li, Y., Wang, J., . . . Sha, N. (2014). MicroRNA-143 targets Syndecan-1 to repress cell growth in melanoma. PLoS One, 9(4), e94855. doi:10.1371/journal.pone.0094855 | |
dc.relation | Li, W., Chang, J., Wang, S., Liu, X., Peng, J., Huang, D., . . . Li, J. (2015). miRNA-99b-5p suppresses liver metastasis of colorectal cancer by down-regulating mTOR. Oncotarget, 6(27), 24448-24462. doi:10.18632/oncotarget.4423 | |
dc.relation | Li, X., Wu, Z., Fu, X., & Han, W. (2014). lncRNAs: insights into their function and mechanics in underlying disorders. Mutat Res Rev Mutat Res, 762, 1-21. doi:10.1016/j.mrrev.2014.04.002 | |
dc.relation | Lindgren, J., Uvdal, P., Sjovall, P., Nilsson, D. E., Engdahl, A., Schultz, B. P., & Thiel, V. (2012). Molecular preservation of the pigment melanin in fossil melanosomes. Nat Commun, 3, 824. doi:10.1038/ncomms1819 | |
dc.relation | Ling, Y. H., Sui, M. H., Zheng, Q., Wang, K. Y., Wu, H., Li, W. Y., . . . Xu, L. N. (2018). miR-27b regulates myogenic proliferation and differentiation by targeting Pax3 in goat. Sci Rep, 8(1), 3909. doi:10.1038/s41598-018-22262-4 | |
dc.relation | Liu, S., Tetzlaff, M. T., Liu, A., Liegl-Atzwanger, B., Guo, J., & Xu, X. (2012). Loss of microRNA-205 expression is associated with melanoma progression. Lab Invest, 92(7), 1084-1096. doi:10.1038/labinvest.2012.62 | |
dc.relation | Liu, S. M., Lu, J., Lee, H. C., Chung, F. H., & Ma, N. (2014). miR-524-5p suppresses the growth of oncogenic BRAF melanoma by targeting BRAF and ERK2. Oncotarget, 5(19), 9444-9459. doi:10.18632/oncotarget.2452 | |
dc.relation | Liu, Y., & Simon, J. D. (2005). Metal-ion interactions and the structural organization of Sepia eumelanin. Pigment Cell Res, 18(1), 42-48. doi:10.1111/j.1600-0749.2004.00197.x | |
dc.relation | Long, J., Menggen, Q., Wuren, Q., Shi, Q., & Pi, X. (2018). Long Noncoding RNA Taurine-Upregulated Gene1 (TUG1) Promotes Tumor Growth and Metastasis Through TUG1/Mir-129-5p/Astrocyte-Elevated Gene-1 (AEG-1) Axis in Malignant Melanoma. Med Sci Monit, 24, 1547-1559. doi:10.12659/msm.906616 | |
dc.relation | Lopez-Kleine, L., Leal, L., & Lopez, C. (2013). Biostatistical approaches for the reconstruction of gene co-expression networks based on transcriptomic data. Brief Funct Genomics, 12(5), 457-467. doi:10.1093/bfgp/elt003 | |
dc.relation | Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol, 15(12), 550. doi:10.1186/s13059-014-0550-8 | |
dc.relation | Ludwig, A., Rehberg, S., & Wegner, M. (2004). Melanocyte-specific expression of dopachrome tautomerase is dependent on synergistic gene activation by the Sox10 and Mitf transcription factors. FEBS Lett, 556(1-3), 236-244. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/14706856 | |
dc.relation | Luo, C., Tetteh, P. W., Merz, P. R., Dickes, E., Abukiwan, A., Hotz-Wagenblatt, A., . . . Eichmuller, S. B. (2013). miR-137 inhibits the invasion of melanoma cells through downregulation of multiple oncogenic target genes. J Invest Dermatol, 133(3), 768-775. doi:10.1038/jid.2012.357 | |
dc.relation | Luo, L., Xia, L., Zha, B., Zuo, C., Deng, D., Chen, M., . . . Zhang, Q. (2018). miR-335-5p targeting ICAM-1 inhibits invasion and metastasis of thyroid cancer cells. Biomed Pharmacother, 106, 983-990. doi:10.1016/j.biopha.2018.07.046 | |
dc.relation | Ma, X., Zheng, Q., Zhao, G., Yuan, W., & Liu, W. (2020). Regulation of cellular senescence by microRNAs. Mech Ageing Dev, 189, 111264. doi:10.1016/j.mad.2020.111264 | |
dc.relation | Ma, Z., Swede, H., Cassarino, D., Fleming, E., Fire, A., & Dadras, S. S. (2011). Up-regulated Dicer expression in patients with cutaneous melanoma. PLoS One, 6(6), e20494. doi:10.1371/journal.pone.0020494 | |
dc.relation | Margue, C., Philippidou, D., Reinsbach, S. E., Schmitt, M., Behrmann, I., & Kreis, S. (2013). New target genes of MITF-induced microRNA-211 contribute to melanoma cell invasion. PLoS One, 8(9), e73473. doi:10.1371/journal.pone.0073473 | |
dc.relation | Marin, M. B., Ghenea, S., Spiridon, L. N., Chiritoiu, G. N., Petrescu, A. J., & Petrescu, S. M. (2012). Tyrosinase degradation is prevented when EDEM1 lacks the intrinsically disordered region. PLoS One, 7(8), e42998. doi:10.1371/journal.pone.0042998 | |
dc.relation | Martin del Campo, S. E., Latchana, N., Levine, K. M., Grignol, V. P., Fairchild, E. T., Jaime-Ramirez, A. C., . . . Carson, W. E., 3rd. (2015). MiR-21 enhances melanoma invasiveness via inhibition of tissue inhibitor of metalloproteinases 3 expression: in vivo effects of MiR-21 inhibitor. PLoS One, 10(1), e0115919. doi:10.1371/journal.pone.0115919 | |
dc.relation | Martinez, I., Cazalla, D., Almstead, L. L., Steitz, J. A., & DiMaio, D. (2011). miR-29 and miR-30 regulate B-Myb expression during cellular senescence. Proc Natl Acad Sci U S A, 108(2), 522-527. doi:10.1073/pnas.1017346108 | |
dc.relation | Martinez, N. J., & Walhout, A. J. (2009). The interplay between transcription factors and microRNAs in genome-scale regulatory networks. Bioessays, 31(4), 435-445. doi:10.1002/bies.200800212 | |
dc.relation | Masterson, J. C., & O'Dea, S. (2007). 5-Bromo-2-deoxyuridine activates DNA damage signalling responses and induces a senescence-like phenotype in p16-null lung cancer cells. Anticancer Drugs, 18(9), 1053-1068. doi:10.1097/CAD.0b013e32825209f6 | |
dc.relation | Mc Auley, M. T., Choi, H., Mooney, K., Paul, E., & Miller, V. M. (2015). Systems Biology and Synthetic Biology: A New Epoch for Toxicology Research. Advances in Toxicology, 2015, 14. doi:10.1155/2015/575403 | |
dc.relation | Melnikova, V. O., Bolshakov, S. V., Walker, C., & Ananthaswamy, H. N. (2004). Genomic alterations in spontaneous and carcinogen-induced murine melanoma cell lines. Oncogene, 23(13), 2347-2356. doi:10.1038/sj.onc.1207405 | |
dc.relation | Mendes, A. D. R. M. D. A. (2003). Mutual information: a dependence measure for nonlinear time series. Econometrics. Retrieved from https://www.researchgate.net/publication/23742865_Mutual_information_a_dependence_measure_for_nonlinear_time_series | |
dc.relation | Mercer, T. R., Gerhardt, D. J., Dinger, M. E., Crawford, J., Trapnell, C., Jeddeloh, J. A., . . . Rinn, J. L. (2012). Targeted RNA sequencing reveals the deep complexity of the human transcriptome. Nat Biotechnol, 30(1), 99-104. doi:10.1038/nbt.2024 | |
dc.relation | Meyer, P. E., Lafitte, F., & Bontempi, G. (2008). minet: A R/Bioconductor package for inferring large transcriptional networks using mutual information. BMC Bioinformatics, 9, 461. doi:10.1186/1471-2105-9-461 | |
dc.relation | Michishita, E., Nakabayashi, K., Suzuki, T., Kaul, S. C., Ogino, H., Fujii, M., . . . Ayusawa, D. (1999). 5-Bromodeoxyuridine induces senescence-like phenomena in mammalian cells regardless of cell type or species. J Biochem, 126(6), 1052-1059. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10578056 | |
dc.relation | Miller, A. J., & Mihm, M. C., Jr. (2006). Melanoma. N Engl J Med, 355(1), 51-65. doi:10.1056/NEJMra052166 | |
dc.relation | Min, H., & Yoon, S. (2010). Got target? Computational methods for microRNA target prediction and their extension. Exp Mol Med, 42(4), 233-244. doi:10.3858/emm.2010.42.4.032 | |
dc.relation | Mione, M., & Bosserhoff, A. (2015). MicroRNAs in melanocyte and melanoma biology. Pigment Cell Melanoma Res, 28(3), 340-354. doi:10.1111/pcmr.12346 | |
dc.relation | Miyamura, Y., Coelho, S. G., Wolber, R., Miller, S. A., Wakamatsu, K., Zmudzka, B. Z., . . . Hearing, V. J. (2007). Regulation of human skin pigmentation and responses to ultraviolet radiation. Pigment Cell Res, 20(1), 2-13. doi:10.1111/j.1600-0749.2006.00358.x | |
dc.relation | Montañez, R., Rodríguez-Caso, C., & Bellés, X. (2013). MicroRNA-mRNA Regulation Networks. In W. Dubitzky, O. Wolkenhauer, K.-H. Cho, & H. Yokota (Eds.), Encyclopedia of Systems Biology (pp. 1354-1357). New York, NY: Springer New York. | |
dc.relation | Mueller, D. W., Rehli, M., & Bosserhoff, A. K. (2009). miRNA expression profiling in melanocytes and melanoma cell lines reveals miRNAs associated with formation and progression of malignant melanoma. J Invest Dermatol, 129(7), 1740-1751. doi:10.1038/jid.2008.452 | |
dc.relation | Muller, D. W., & Bosserhoff, A. K. (2008). Integrin beta 3 expression is regulated by let-7a miRNA in malignant melanoma. Oncogene, 27(52), 6698-6706. doi:10.1038/onc.2008.282 | |
dc.relation | Murray, B. S., Choe, S. E., Woods, M., Ryan, T. E., & Liu, W. (2010). An in silico analysis of microRNAs: mining the miRNAome. Mol Biosyst, 6(10), 1853-1862. doi:10.1039/c003961f | |
dc.relation | Narita, M., Nunez, S., Heard, E., Narita, M., Lin, A. W., Hearn, S. A., . . . Lowe, S. W. (2003). Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell, 113(6), 703-716. doi:10.1016/s0092-8674(03)00401-x | |
dc.relation | Nicetto, D., & Zaret, K. S. (2019). Role of H3K9me3 heterochromatin in cell identity establishment and maintenance. Curr Opin Genet Dev, 55, 1-10. doi:10.1016/j.gde.2019.04.013 | |
dc.relation | Niles, R. M., & Makarski, J. S. (1978). Control of melanogenesis in mouse melanoma cells of varying metastatic potential. J Natl Cancer Inst, 61(2), 523-526. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/210294 | |
dc.relation | Nishioka, E., Funasaka, Y., Kondoh, H., Chakraborty, A. K., Mishima, Y., & Ichihashi, M. (1999). Expression of tyrosinase, TRP-1 and TRP-2 in ultraviolet-irradiated human melanomas and melanocytes: TRP-2 protects melanoma cells from ultraviolet B induced apoptosis. Melanoma Res, 9(5), 433-443. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10596909 | |
dc.relation | Noguchi, S., Kumazaki, M., Yasui, Y., Mori, T., Yamada, N., & Akao, Y. (2014). MicroRNA-203 regulates melanosome transport and tyrosinase expression in melanoma cells by targeting kinesin superfamily protein 5b. J Invest Dermatol, 134(2), 461-469. doi:10.1038/jid.2013.310 | |
dc.relation | Noguchi, S., Mori, T., Otsuka, Y., Yamada, N., Yasui, Y., Iwasaki, J., . . . Akao, Y. (2012). Anti-oncogenic microRNA-203 induces senescence by targeting E2F3 protein in human melanoma cells. J Biol Chem, 287(15), 11769-11777. doi:10.1074/jbc.M111.325027 | |
dc.relation | Noren Hooten, N., & Evans, M. K. (2017). Techniques to Induce and Quantify Cellular Senescence. J Vis Exp(123). doi:10.3791/55533 | |
dc.relation | Numata, J., Ebenhoh, O., & Knapp, E. W. (2008). Measuring correlations in metabolomic networks with mutual information. Genome Inform, 20, 112-122. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/19425127 | |
dc.relation | Nyholm, A. M., Lerche, C. M., Manfe, V., Biskup, E., Johansen, P., Morling, N., . . . Gniadecki, R. (2014). miR-125b induces cellular senescence in malignant melanoma. BMC Dermatol, 14, 8. doi:10.1186/1471-5945-14-8 | |
dc.relation | Omer, A., Singh, P., Yadav, N. K., & Singh, R. K. (2015). microRNAs: role in leukemia and their computational perspective. Wiley Interdiscip Rev RNA, 6(1), 65-78. doi:10.1002/wrna.1256 | |
dc.relation | Ouzounova, M., Vuong, T., Ancey, P. B., Ferrand, M., Durand, G., Le-Calvez Kelm, F., . . . Hernandez-Vargas, H. (2013). MicroRNA miR-30 family regulates non-attachment growth of breast cancer cells. BMC Genomics, 14, 139. doi:10.1186/1471-2164-14-139 | |
dc.relation | Pasztor, L. M., & Hu, F. (1972). An amelanotic variant of B16 malignant melanoma. Cancer Res, 32(8), 1769-1774. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/5044135 | |
dc.relation | Patterson, M. K. (1979). Measurement of growth and viability of cells in culture. Methods in Enzymology, 11, 141-152. doi:doi:10.1016/s0076-6879(79)58132-4 | |
dc.relation | Pei, B., & Shin, D. G. (2012). Reconstruction of biological networks by incorporating prior knowledge into Bayesian network models. J Comput Biol, 19(12), 1324-1334. doi:10.1089/cmb.2011.0194 | |
dc.relation | Peng, D. F., Sugihara, H., & Hattori, T. (2001). Bromodeoxyuridine induces p53-dependent and -independent cell cycle arrests in human gastric carcinoma cell lines. Pathobiology, 69(2), 77-85. doi:10.1159/000048760 | |
dc.relation | Penna, E., Orso, F., Cimino, D., Tenaglia, E., Lembo, A., Quaglino, E., . . . Taverna, D. (2011). microRNA-214 contributes to melanoma tumour progression through suppression of TFAP2C. EMBO J, 30(10), 1990-2007. doi:10.1038/emboj.2011.102 | |
dc.relation | Peñaloza, L. N., & Gomez, L. A. (2000). Expresión del Gen PRL-1 en Células de Melanoma Murino B-16 Inducidas a Supresión del Crecimiento con el Sensibilizador a la Radiación Ultravioleta: Bromodeoxiuridina (Maestria), Pontificia Universidad Javeriana. Bogotá-Colombia. | |
dc.relation | Peterson, S. M., Thompson, J. A., Ufkin, M. L., Sathyanarayana, P., Liaw, L., & Congdon, C. B. (2014). Common features of microRNA target prediction tools. Frontiers in Genetics, 5. doi:10.3389/fgene.2014.00023 | |
dc.relation | Poenitzsch Strong, A. M., Setaluri, V., & Spiegelman, V. S. (2014). microRNA-340 as a modulator of RAS–RAF–MAPK signaling in melanoma. Archives of Biochemistry and Biophysics, 563, 118-124. doi:http://dx.doi.org/10.1016/j.abb.2014.07.012 | |
dc.relation | Pozarowski, P., & Darzynkiewicz, Z. (2004). Analysis of cell cycle by flow cytometry. Methods Mol Biol, 281, 301-311. doi:10.1385/1-59259-811-0:301 | |
dc.relation | Prezioso, J. A., Wang, N., Duty, L., Bloomer, W. D., & Gorelik, E. (1993). Enhancement of pulmonary metastasis formation and gamma-glutamyltranspeptidase activity in B16 melanoma induced by differentiation in vitro. Clin Exp Metastasis, 11(3), 263-274. doi:10.1007/BF00121169 | |
dc.relation | Price, C., & Chen, J. (2014). MicroRNAs in Cancer Biology and Therapy: Current Status and Perspectives. Genes Dis, 1(1), 53-63. doi:10.1016/j.gendis.2014.06.004 | |
dc.relation | Price, P. M. (1976). The effect of 5-bromodeoxyuridine on messenger RNA production in cultured cells. Biochim Biophys Acta, 447(3), 304-311. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/987803 | |
dc.relation | Pritchard, C. C., Cheng, H. H., & Tewari, M. (2012). MicroRNA profiling: approaches and considerations. Nat Rev Genet, 13(5), 358-369. doi:10.1038/nrg3198 | |
dc.relation | Qi, M., Huang, X., Zhou, L., & Zhang, J. (2014). Identification of differentially expressed microRNAs in metastatic melanoma using next-generation sequencing technology. Int J Mol Med, 33(5), 1117-1121. doi:10.3892/ijmm.2014.1668 | |
dc.relation | Qiu, H. J., Lu, X. H., Yang, S. S., Weng, C. Y., Zhang, E. K., & Chen, F. C. (2016). MiR-769 promoted cell proliferation in human melanoma by suppressing GSK3B expression. Biomed Pharmacother, 82, 117-123. doi:10.1016/j.biopha.2016.04.052 | |
dc.relation | Rambow, F., Bechadergue, A., Luciani, F., Gros, G., Domingues, M., Bonaventure, J., . . . Larue, L. (2016). Regulation of Melanoma Progression through the TCF4/miR-125b/NEDD9 Cascade. J Invest Dermatol, 136(6), 1229-1237. doi:10.1016/j.jid.2016.02.803 | |
dc.relation | Ramirez, C. A., & Gomez, L. A. (2005). Extracción y solubilidad de la melanina total producida por células de melanoma murino B16 expuestas al aminoácido L-tirosina. Laboratorio de Fisiología Molecular. Instituto Nacional de Salud. | |
dc.relation | Rauth, S., & Davidson, R. L. (1993). Suppression of tyrosinase gene expression by bromodeoxyuridine in Syrian hamster melanoma cells is not due to its incorporation into upstream or coding sequences of the tyrosinase gene. Somat Cell Mol Genet, 19(3), 285-293. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8332936 | |
dc.relation | Rauth, S., Hoganson, G. E., & Davidson, R. L. (1990). Bromodeoxyuridine- and cyclic AMP-mediated regulation of tyrosinase in Syrian hamster melanoma cells. Somat Cell Mol Genet, 16(6), 583-592. doi:10.1007/BF01233099 | |
dc.relation | Ren, J. W., Li, Z. J., & Tu, C. (2015). MiR-135 post-transcriptionally regulates FOXO1 expression and promotes cell proliferation in human malignant melanoma cells. Int J Clin Exp Pathol, 8(6), 6356-6366. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/26261511 | |
dc.relation | Rieber, M., & Rieber, M. S. (1994). Cyclin-dependent kinase 2 and cyclin A interaction with E2F are targets for tyrosine induction of B16 melanoma terminal differentiation. Cell Growth Differ, 5(12), 1339-1346. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/7696182 | |
dc.relation | Rieber, M., & Strasberg-Rieber, M. (1998). Induction of p53 and melanoma cell death is reciprocal with down-regulation of E2F, cyclin D1 and pRB. Int J Cancer, 76(5), 757-760. doi:10.1002/(sici)1097-0215(19980529)76:5<757::aid-ijc22>3.0.co;2-# | |
dc.relation | Rieber, M., & Strasberg Rieber, M. (1998). Induction of p53 without increase in p21WAF1 in betulinic acid-mediated cell death is preferential for human metastatic melanoma. DNA Cell Biol, 17(5), 399-406. doi:10.1089/dna.1998.17.399 | |
dc.relation | Rodier, F., & Campisi, J. (2011). Four faces of cellular senescence. J Cell Biol, 192(4), 547-556. doi:10.1083/jcb.201009094 | |
dc.relation | Rothhammer, T., & Bosserhoff, A. K. (2007). Epigenetic events in malignant melanoma. Pigment Cell Res, 20(2), 92-111. doi:10.1111/j.1600-0749.2007.00367.x | |
dc.relation | Ryu, B., Kim, D. S., Deluca, A. M., & Alani, R. M. (2007). Comprehensive expression profiling of tumor cell lines identifies molecular signatures of melanoma progression. PLoS One, 2(7), e594. doi:10.1371/journal.pone.0000594 | |
dc.relation | Salama, R., Sadaie, M., Hoare, M., & Narita, M. (2014). Cellular senescence and its effector programs. Genes Dev, 28(2), 99-114. doi:10.1101/gad.235184.113 | |
dc.relation | Sand, M., Skrygan, M., Sand, D., Georgas, D., Gambichler, T., Hahn, S. A., . . . Bechara, F. G. (2013). Comparative microarray analysis of microRNA expression profiles in primary cutaneous malignant melanoma, cutaneous malignant melanoma metastases, and benign melanocytic nevi. Cell Tissue Res, 351(1), 85-98. doi:10.1007/s00441-012-1514-5 | |
dc.relation | Santiesteban, R. J., C (2012). Redes Bayesianas. Revista Vinculando. Retrieved from http://vinculando.org/articulos/redes-bayesianas.html | |
dc.relation | Sarangarajan, R., & Apte, S. P. (2006). The polymerization of melanin: a poorly understood phenomenon with egregious biological implications. Melanoma Res, 16(1), 3-10. doi:10.1097/01.cmr.0000195699.35143.df | |
dc.relation | Sarkar, D., Leung, E. Y., Baguley, B. C., Finlay, G. J., & Askarian-Amiri, M. E. (2015). Epigenetic regulation in human melanoma: past and future. Epigenetics, 10(2), 103-121. doi:10.1080/15592294.2014.1003746 | |
dc.relation | Schefe, J. H., Lehmann, K. E., Buschmann, I. R., Unger, T., & Funke-Kaiser, H. (2006). Quantitative real-time RT-PCR data analysis: current concepts and the novel "gene expression's CT difference" formula. J Mol Med (Berl), 84(11), 901-910. doi:10.1007/s00109-006-0097-6 | |
dc.relation | Schultz, J., Lorenz, P., Gross, G., Ibrahim, S., & Kunz, M. (2008). MicroRNA let-7b targets important cell cycle molecules in malignant melanoma cells and interferes with anchorage-independent growth. Cell Res, 18(5), 549-557. doi:10.1038/cr.2008.45 | |
dc.relation | Segura, M. F., Hanniford, D., Menendez, S., Reavie, L., Zou, X., Alvarez-Diaz, S., . . . Hernando, E. (2009). Aberrant miR-182 expression promotes melanoma metastasis by repressing FOXO3 and microphthalmia-associated transcription factor. Proc Natl Acad Sci U S A, 106(6), 1814-1819. doi:10.1073/pnas.0808263106 | |
dc.relation | Serguienko, A., Grad, I., Wennerstrom, A. B., Meza-Zepeda, L. A., Thiede, B., Stratford, E. W., . . . Munthe, E. (2015). Metabolic reprogramming of metastatic breast cancer and melanoma by let-7a microRNA. Oncotarget, 6(4), 2451-2465. doi:10.18632/oncotarget.3235 | |
dc.relation | Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D., & Lowe, S. W. (1997). Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell, 88(5), 593-602. doi:10.1016/s0092-8674(00)81902-9 | |
dc.relation | Sestakova, B., Ondrusova, L., & Vachtenheim, J. (2010). Cell cycle inhibitor p21/ WAF1/ CIP1 as a cofactor of MITF expression in melanoma cells. Pigment Cell Melanoma Res, 23(2), 238-251. doi:10.1111/j.1755-148X.2010.00670.x | |
dc.relation | Setijono, S. R., Park, M., Kim, G., Kim, Y., Cho, K. W., & Song, S. J. (2018). miR-218 and miR-129 regulate breast cancer progression by targeting Lamins. Biochem Biophys Res Commun, 496(3), 826-833. doi:10.1016/j.bbrc.2018.01.146 | |
dc.relation | Shain, A. H., Yeh, I., Kovalyshyn, I., Sriharan, A., Talevich, E., Gagnon, A., . . . Bastian, B. C. (2015). The Genetic Evolution of Melanoma from Precursor Lesions. N Engl J Med, 373(20), 1926-1936. doi:10.1056/NEJMoa1502583 | |
dc.relation | Shain, A. H., Yeh, I., Kovalyshyn, I., Sriharan, A., Talevich, E., Gagnon, A., . . . Bastian, B. C. (2015). The Genetic Evolution of Melanoma from Precursor Lesions. New England Journal of Medicine, 373(20), 1926-1936. doi:doi:10.1056/NEJMoa1502583 | |
dc.relation | Shen, X., Kong, S., Yang, Q., Yin, Q., Cong, H., Wang, X., & Ju, S. (2020). PCAT-1 promotes cell growth by sponging miR-129 via MAP3K7/NF-kappaB pathway in multiple myeloma. J Cell Mol Med. doi:10.1111/jcmm.15035 | |
dc.relation | Sheppard, K. E., & McArthur, G. A. (2013). The cell-cycle regulator CDK4: an emerging therapeutic target in melanoma. Clin Cancer Res, 19(19), 5320-5328. doi:10.1158/1078-0432.CCR-13-0259 | |
dc.relation | Shin, S. Y., Kim, C. G., Lim, Y., & Lee, Y. H. (2011). The ETS family transcription factor ELK-1 regulates induction of the cell cycle-regulatory gene p21(Waf1/Cip1) and the BAX gene in sodium arsenite-exposed human keratinocyte HaCaT cells. J Biol Chem, 286(30), 26860-26872. doi:10.1074/jbc.M110.216721 | |
dc.relation | Siegel, R. L., Miller, K. D., & Jemal, A. (2020). Cancer statistics, 2020. CA Cancer J Clin, 70(1), 7-30. doi:10.3322/caac.21590 | |
dc.relation | Silagi, S. (1976). Effects of 5-bromodeoxyuridine on tumorigenicity, immunogenicity, virus production, plasminogen activator, and melanogenesis of mouse melanoma cells. Int Rev Cytol, 45, 65-111. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/821894 | |
dc.relation | Silagi, S., & Bruce, S. A. (1970). Suppression of malignancy and differentiation in melanotic melanoma cells. Proc Natl Acad Sci U S A, 66(1), 72-78. doi:10.1073/pnas.66.1.72 | |
dc.relation | Slominski, A. (1989). L-tyrosine induces synthesis of melanogenesis related proteins. Life Sci, 45(19), 1799-1803. doi:10.1016/0024-3205(89)90520-1 | |
dc.relation | Slominski, A., & Paus, R. (1990). Are L-tyrosine and L-dopa hormone-like bioregulators? J Theor Biol, 143(1), 123-138. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/2359315 | |
dc.relation | Slominski, A., Tobin, D. J., Shibahara, S., & Wortsman, J. (2004). Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol Rev, 84(4), 1155-1228. doi:10.1152/physrev.00044.2003 | |
dc.relation | Slominski, A., Zmijewski, M. A., & Pawelek, J. (2012). L-tyrosine and L-dihydroxyphenylalanine as hormone-like regulators of melanocyte functions. Pigment Cell Melanoma Res, 25(1), 14-27. doi:10.1111/j.1755-148X.2011.00898.x | |
dc.relation | Smith, V. A., Yu, J., Smulders, T. V., Hartemink, A. J., & Jarvis, E. D. (2006). Computational inference of neural information flow networks. PLoS Comput Biol, 2(11), e161. doi:10.1371/journal.pcbi.0020161 | |
dc.relation | Solano, F. (2014). Melanins: Skin Pigments and Much More—Types, Structural Models, Biological Functions, and Formation Routes. New Journal of Science, 2014. doi:http://dx.doi.org/10.1155/2014/498276 | |
dc.relation | Stead, E., White, J., Faast, R., Conn, S., Goldstone, S., Rathjen, J., . . . Dalton, S. (2002). Pluripotent cell division cycles are driven by ectopic Cdk2, cyclin A/E and E2F activities. Oncogene, 21(54), 8320-8333. doi:10.1038/sj.onc.1206015 | |
dc.relation | Strasberg Rieber, M., & Rieber, M. (1995). Suppression of cyclin D1 but not cdk4 or cyclin A with induction of melanoma terminal differentiation. Biochem Biophys Res Commun, 216(1), 422-427. doi:10.1006/bbrc.1995.2640 | |
dc.relation | Streicher, K. L., Zhu, W., Lehmann, K. P., Georgantas, R. W., Morehouse, C. A., Brohawn, P., . . . Yao, Y. (2012). A novel oncogenic role for the miRNA-506-514 cluster in initiating melanocyte transformation and promoting melanoma growth. Oncogene, 31(12), 1558-1570. doi:10.1038/onc.2011.345 | |
dc.relation | Su, W., Hong, L., Xu, X., Huang, S., Herpai, D., Li, L., . . . Sun, P. (2018). miR-30 disrupts senescence and promotes cancer by targeting both p16(INK4A) and DNA damage pathways. Oncogene, 37(42), 5618-5632. doi:10.1038/s41388-018-0358-1 | |
dc.relation | Suh, N. (2018). MicroRNA controls of cellular senescence. BMB Rep, 51(10), 493-499. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/30269742 | |
dc.relation | Sun, V., Zhou, W. B., Majid, S., Kashani-Sabet, M., & Dar, A. A. (2014). MicroRNA-mediated regulation of melanoma. Br J Dermatol, 171(2), 234-241. doi:10.1111/bjd.12989 | |
dc.relation | Sun, V., Zhou, W. B., Nosrati, M., Majid, S., Thummala, S., de Semir, D., . . . Dar, A. A. (2015). Antitumor activity of miR-1280 in melanoma by regulation of Src. Mol Ther, 23(1), 71-78. doi:10.1038/mt.2014.176 | |
dc.relation | Suzuki, T., Michishita, E., Ogino, H., Fujii, M., & Ayusawa, D. (2002). Synergistic induction of the senescence-associated genes by 5-bromodeoxyuridine and AT-binding ligands in HeLa cells. Exp Cell Res, 276(2), 174-184. doi:10.1006/excr.2002.5524 | |
dc.relation | Suzuki, T., Minagawa, S., Michishita, E., Ogino, H., Fujii, M., Mitsui, Y., & Ayusawa, D. (2001). Induction of senescence-associated genes by 5-bromodeoxyuridine in HeLa cells. Exp Gerontol, 36(3), 465-474. doi:10.1016/s0531-5565(00)00223-0 | |
dc.relation | Swoboda, R. K., & Herlyn, M. (2013). There is a world beyond protein mutations: the role of non-coding RNAs in melanomagenesis. Exp Dermatol, 22(5), 303-306. doi:10.1111/exd.12117 | |
dc.relation | Tam, S. W., Theodoras, A. M., Shay, J. W., Draetta, G. F., & Pagano, M. (1994). Differential expression and regulation of Cyclin D1 protein in normal and tumor human cells: association with Cdk4 is required for Cyclin D1 function in G1 progression. Oncogene, 9(9), 2663-2674. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8058330 | |
dc.relation | Tang, H., Zhu, J., Du, W., Liu, S., Zeng, Y., Ding, Z., . . . Huang, J. (2018). CPNE1 is a target of miR-335-5p and plays an important role in the pathogenesis of non-small cell lung cancer. J Exp Clin Cancer Res, 37(1), 131. doi:10.1186/s13046-018-0811-6 | |
dc.relation | Tay, Y., Zhang, J., Thomson, A. M., Lim, B., & Rigoutsos, I. (2008). MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature, 455(7216), 1124-1128. doi:10.1038/nature07299 | |
dc.relation | Terry, N. H., & White, R. A. (2006). Flow cytometry after bromodeoxyuridine labeling to measure S and G2+M phase durations plus doubling times in vitro and in vivo. Nat Protoc, 1(2), 859-869. doi:10.1038/nprot.2006.113 | |
dc.relation | Thomas, L., Chan, P. W., Chang, S., & Damsky, C. (1993). 5-Bromo-2-deoxyuridine regulates invasiveness and expression of integrins and matrix-degrading proteinases in a differentiated hamster melanoma cell. J Cell Sci, 105 ( Pt 1), 191-201. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8360273 | |
dc.relation | Thomson, D. W., Bracken, C. P., & Goodall, G. J. (2011). Experimental strategies for microRNA target identification. Nucleic Acids Res, 39(16), 6845-6853. doi:10.1093/nar/gkr330 | |
dc.relation | Treiber, T., Treiber, N., & Meister, G. (2019). Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nat Rev Mol Cell Biol, 20(1), 5-20. doi:10.1038/s41580-018-0059-1 | |
dc.relation | Tucker, M. A., & Goldstein, A. M. (2003). Melanoma etiology: where are we? Oncogene, 22(20), 3042-3052. doi:10.1038/sj.onc.1206444 | |
dc.relation | Tuncbag, N., Braunstein, A., Pagnani, A., Huang, S. S., Chayes, J., Borgs, C., . . . Fraenkel, E. (2013). Simultaneous reconstruction of multiple signaling pathways via the prize-collecting steiner forest problem. J Comput Biol, 20(2), 124-136. doi:10.1089/cmb.2012.0092 | |
dc.relation | Ulrich, K., Tritsch, G. L., & Moore, G. E. (1968). Tyrosine utilization by pigmented hamster melanoma cells cultured in vitro. Int J Cancer, 3(4), 446-453. doi:10.1002/ijc.2910030405 | |
dc.relation | Urán, M. E., & Cano, L. E. (2008). Melanina: implicaciones en la patogénesis de algunas enfermedades y su capacidad de evadir la respuesta inmune del hospedero. Infectio, 12, 128-148. Retrieved from http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0123-93922008000200007&nrm=iso | |
dc.relation | Velazquez-Torres, G., Shoshan, E., Ivan, C., Huang, L., Fuentes-Mattei, E., Paret, H., . . . Bar-Eli, M. (2018). A-to-I miR-378a-3p editing can prevent melanoma progression via regulation of PARVA expression. Nat Commun, 9(1), 461. doi:10.1038/s41467-018-02851-7 | |
dc.relation | Vitiello, M., Tuccoli, A., D'Aurizio, R., Sarti, S., Giannecchini, L., Lubrano, S., . . . Poliseno, L. (2017). Context-dependent miR-204 and miR-211 affect the biological properties of amelanotic and melanotic melanoma cells. Oncotarget, 8(15), 25395-25417. doi:10.18632/oncotarget.15915 | |
dc.relation | Volinia, S., Galasso, M., Costinean, S., Tagliavini, L., Gamberoni, G., Drusco, A., . . . Croce, C. M. (2010). Reprogramming of miRNA networks in cancer and leukemia. Genome Res, 20(5), 589-599. doi:10.1101/gr.098046.109 | |
dc.relation | Wang, D., Qiu, C., Zhang, H., Wang, J., Cui, Q., & Yin, Y. (2010). Human microRNA oncogenes and tumor suppressors show significantly different biological patterns: from functions to targets. PLoS One, 5(9). doi:10.1371/journal.pone.0013067 | |
dc.relation | Wang, H. F., Chen, H., Ma, M. W., Wang, J. A., Tang, T. T., Ni, L. S., . . . Bai, B. X. (2013). miR-573 regulates melanoma progression by targeting the melanoma cell adhesion molecule. Oncol Rep, 30(1), 520-526. doi:10.3892/or.2013.2451 | |
dc.relation | Wang, P., Zhao, Y., Fan, R., Chen, T., & Dong, C. (2016). MicroRNA-21a-5p Functions on the Regulation of Melanogenesis by Targeting Sox5 in Mouse Skin Melanocytes. Int J Mol Sci, 17(7). doi:10.3390/ijms17070959 | |
dc.relation | Wang, T., & Xu, Z. (2010). miR-27 promotes osteoblast differentiation by modulating Wnt signaling. Biochem Biophys Res Commun, 402(2), 186-189. doi:10.1016/j.bbrc.2010.08.031 | |
dc.relation | Wang, Z., Zhao, Z., Yang, Y., Luo, M., Zhang, M., Wang, X., . . . Huang, C. (2018). MiR-99b-5p and miR-203a-3p Function as Tumor Suppressors by Targeting IGF-1R in Gastric Cancer. Sci Rep, 8(1), 10119. doi:10.1038/s41598-018-27583-y | |
dc.relation | Watanabe, Y., Tomita, M., & Kanai, A. (2007). Computational methods for microRNA target prediction. Methods Enzymol, 427, 65-86. doi:10.1016/S0076-6879(07)27004-1 | |
dc.relation | Weller, E. M., Dietrich, I., Viaggi, S., Beisker, W., & Nusse, M. (1993). Flow cytometric analysis of bromodeoxyuridine-induced micronuclei. Mutagenesis, 8(5), 437-444. doi:10.1093/mutage/8.5.437 | |
dc.relation | Wrathall, J. R., Oliver, C., Silagi, S., & Essner, E. (1973). Suppression of pigmentation in mouse melanoma cells by 5-bromodeoxyuridine: effects on tyrosinase activity and melanosome formation. J Cell Biol, 57(2), 406-423. doi:10.1083/jcb.57.2.406 | |
dc.relation | Wu, C., Jin, B., Chen, L., Zhuo, D., Zhang, Z., Gong, K., & Mao, Z. (2013). MiR-30d induces apoptosis and is regulated by the Akt/FOXO pathway in renal cell carcinoma. Cell Signal, 25(5), 1212-1221. doi:10.1016/j.cellsig.2013.01.028 | |
dc.relation | Wu, Q., Guo, L., Jiang, F., Li, L., Li, Z., & Chen, F. (2015). Analysis of the miRNA-mRNA-lncRNA networks in ER+ and ER- breast cancer cell lines. J Cell Mol Med, 19(12), 2874-2887. doi:10.1111/jcmm.12681 | |
dc.relation | Xu, J., Li, C. X., Li, Y. S., Lv, J. Y., Ma, Y., Shao, T. T., . . . Li, X. (2011). MiRNA-miRNA synergistic network: construction via co-regulating functional modules and disease miRNA topological features. Nucleic Acids Res, 39(3), 825-836. doi:10.1093/nar/gkq832 | |
dc.relation | Xu, J., & Wong, C. W. (2013). Enrichment analysis of miRNA targets. Methods Mol Biol, 936, 91-103. doi:10.1007/978-1-62703-083-0_8 | |
dc.relation | Xu, S., Ge, J., Zhang, Z., & Zhou, W. (2017). MiR-129 inhibits cell proliferation and metastasis by targeting ETS1 via PI3K/AKT/mTOR pathway in prostate cancer. Biomed Pharmacother, 96, 634-641. doi:10.1016/j.biopha.2017.10.037 | |
dc.relation | Xu, S., Yi, X. M., Zhang, Z. Y., Ge, J. P., & Zhou, W. Q. (2016). miR-129 predicts prognosis and inhibits cell growth in human prostate carcinoma. Mol Med Rep, 14(6), 5025-5032. doi:10.3892/mmr.2016.5859 | |
dc.relation | Xu, Y., Brenn, T., Brown, E. R., Doherty, V., & Melton, D. W. (2012). Differential expression of microRNAs during melanoma progression: miR-200c, miR-205 and miR-211 are downregulated in melanoma and act as tumour suppressors. Br J Cancer, 106(3), 553-561. doi:10.1038/bjc.2011.568 | |
dc.relation | Ya, G., Wang, H., Ma, Y., Hu, A., Ma, Y., Hu, J., & Yu, Y. (2017). Serum miR-129 functions as a biomarker for colorectal cancer by targeting estrogen receptor (ER) beta. Pharmazie, 72(2), 107-112. doi:10.1691/ph.2017.6718 | |
dc.relation | Yang, C. H., Yue, J., Pfeffer, S. R., Handorf, C. R., & Pfeffer, L. M. (2011). MicroRNA miR-21 regulates the metastatic behavior of B16 melanoma cells. J Biol Chem, 286(45), 39172-39178. doi:10.1074/jbc.M111.285098 | |
dc.relation | Yao, B., La, L. B., Chen, Y. C., Chang, L. J., & Chan, E. K. (2012). Defining a new role of GW182 in maintaining miRNA stability. EMBO Rep, 13(12), 1102-1108. doi:10.1038/embor.2012.160 | |
dc.relation | Yao, S. (2016). MicroRNA biogenesis and their functions in regulating stem cell potency and differentiation. Biol Proced Online, 18, 8. doi:10.1186/s12575-016-0037-y | |
dc.relation | Yepes, S., Lopez, R., Andrade, R. E., Rodriguez-Urrego, P. A., Lopez-Kleine, L., & Torres, M. M. (2016). Co-expressed miRNAs in gastric adenocarcinoma. Genomics, 108(2), 93-101. doi:10.1016/j.ygeno.2016.07.002 | |
dc.relation | Yu, X., Lin, J., Zack, D. J., Mendell, J. T., & Qian, J. (2008). Analysis of regulatory network topology reveals functionally distinct classes of microRNAs. Nucleic Acids Res, 36(20), 6494-6503. doi:10.1093/nar/gkn712 | |
dc.relation | Yu, Y., Schleich, K., Yue, B., Ji, S., Lohneis, P., Kemper, K., . . . Lee, S. (2018). Targeting the Senescence-Overriding Cooperative Activity of Structurally Unrelated H3K9 Demethylases in Melanoma. Cancer Cell, 33(2), 322-336 e328. doi:10.1016/j.ccell.2018.01.002 | |
dc.relation | Zeng, A., Yin, J., Li, Y., Li, R., Wang, Z., Zhou, X., . . . You, Y. (2018). miR-129-5p targets Wnt5a to block PKC/ERK/NF-kappaB and JNK pathways in glioblastoma. Cell Death Dis, 9(3), 394. doi:10.1038/s41419-018-0343-1 | |
dc.relation | Zhang, D., & Yang, N. (2019). MiR-335-5p Inhibits Cell Proliferation, Migration and Invasion in Colorectal Cancer through Downregulating LDHB. J BUON, 24(3), 1128-1136. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/31424671 | |
dc.relation | Zhang, L. L., Zhang, L. F., Guo, X. H., Zhang, D. Z., Yang, F., & Fan, Y. Y. (2018). Downregulation of miR-335-5p by Long Noncoding RNA ZEB1-AS1 in Gastric Cancer Promotes Tumor Proliferation and Invasion. DNA Cell Biol, 37(1), 46-52. doi:10.1089/dna.2017.3926 | |
dc.relation | Zhang, P., Li, J., Song, Y., & Wang, X. (2017). MiR-129-5p Inhibits Proliferation and Invasion of Chondrosarcoma Cells by Regulating SOX4/Wnt/beta-Catenin Signaling Pathway. Cell Physiol Biochem, 42(1), 242-253. doi:10.1159/000477323 | |
dc.relation | Zhang, R., Xu, J., Zhao, J., & Bai, J. (2017). Mir-30d suppresses cell proliferation of colon cancer cells by inhibiting cell autophagy and promoting cell apoptosis. Tumour Biol, 39(6), 1010428317703984. doi:10.1177/1010428317703984 | |
dc.relation | Zhang, X., Lin, D., Lin, Y., Chen, H., Zou, M., Zhong, S., . . . Han, S. (2017). Proteasome beta-4 subunit contributes to the development of melanoma and is regulated by miR-148b. Tumour Biol, 39(6), 1010428317705767. doi:10.1177/1010428317705767 | |
dc.relation | Zhang, Z., Zhang, S., Ma, P., Jing, Y., Peng, H., Gao, W.-Q., & Zhuang, G. (2015). Lin28B promotes melanoma growth by mediating a microRNA regulatory circuit. Carcinogenesis, 36(9), 937-945. doi:10.1093/carcin/bgv085 | |
dc.relation | Zhao, J. J., Lin, J., Zhu, D., Wang, X., Brooks, D., Chen, M., . . . Carrasco, R. (2014). miR-30-5p functions as a tumor suppressor and novel therapeutic tool by targeting the oncogenic Wnt/beta-catenin/BCL9 pathway. Cancer Res, 74(6), 1801-1813. doi:10.1158/0008-5472.CAN-13-3311-T | |
dc.relation | Zhou, J., Xu, D., Xie, H., Tang, J., Liu, R., Li, J., . . . Cao, K. (2015). miR-33a functions as a tumor suppressor in melanoma by targeting HIF-1alpha. Cancer Biol Ther, 16(6), 846-855. doi:10.1080/15384047.2015.1030545 | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights | Acceso abierto | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Derechos reservados - Universidad Nacional de Colombia | |
dc.title | Evaluación de miRNAs en la línea celular de melanoma B16 inducida a pigmentación diferencial y disminución del crecimiento celular por la L-Tirosina y la 5-bromo-2´-deoxiuridina | |
dc.type | Otro | |