dc.contributorGómez Grosso, Luis Alberto
dc.contributorFisiología Celular y Molecular
dc.creatorRivera Escobar, Hernán Mauricio
dc.date.accessioned2021-01-15T20:59:48Z
dc.date.available2021-01-15T20:59:48Z
dc.date.created2021-01-15T20:59:48Z
dc.date.issued2020-12-04
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/78784
dc.description.abstractmiRNAs are small non-coding RNAs associated with post-transcriptional gene regulation in melanoma, a cancer of melanocytes, cells specialized in melanin synthesis. The present work aimed to evaluate the differential expression of miRNAs and to establish potential functional relationships through their targets in the B16F1 melanoma cell line under conditions of decreased cell growth and differential pigmentation induced by L-tyrosine (L-Tyr) and 5-Bromo-2'-deoxyuridine (BrdU) in vitro. A reduction in proliferation and changes in melanin concentration was confirmed in B16F1 cells exposed to 2.5 µg. mL-1 BrdU or 5 mM L-Tyr. Using DEseq2, counts obtained by small RNAseq were analyzed and differential expression of 35 miRNAs in cells exposed to L-Tyr, 22 under-expressed, and 14 over-expressed; and of 33 miRNAs by exposure to BrdU, 11 over-expressed and 21 under-expressed. The bioinformatics analysis facilitated the construction of co-expression and miRNA regulation network models together with associated targets by KEGG functional enrichment, with the control of the cell cycle, senescence, and pigmentation. Expression levels of 211-5p, 129-5p, 148b-3p, 470-5p, 470-3p, 27b-3p and 30d-5p microRNAs and Mitf, Tyr, Tyrp1, Dct, Ccnd1, Cdk4 Cdk2 and p21 mRNAs were confirmed by RT-qPCR. The results obtained, improve our understanding of the potential functional associations between miRNAs and gene sets during melanogenesis, cell cycle control, and senescence and propose new scenarios for the study of melanoma.
dc.description.abstractLos miRNAs son RNAs pequeños no codificantes asociados con la regulación post-transcripcional de genes, en melanoma, un cáncer de melanocitos, células especializadas en la síntesis de melanina. El objetivo del presente trabajo fue evaluar la expresión diferencial de miRNAs y establecer potenciales relaciones funcionales a través de sus dianas en la línea celular de melanoma B16F1 bajo condiciones de disminución del crecimiento celular y pigmentación diferencial inducidas por la L-tirosina (L-Tyr) y la 5-bromo-2´-deoxiuridina (BrdU) in vitro. Se confirmó una reducción en la proliferación y cambios en la concentración de melanina en células B16F1 expuestas a BrdU 2.5 µg.mL-1 o a L-Tyr 5 mM. Usando DEseq2, se analizaron los conteos obtenidos por small RNAseq y se determinó la expresión diferencial de 35 miRNAs en células expuestas a L-Tyr, 22 sub-expresados y 14 sobre-expresados; y de 33 miRNAs por exposición a BrdU, 11 sobre-expresados y 21 sub-expresados. El análisis bioinformático, facilitó la construcción de modelos en red de co-expresión y de regulación de miRNAs junto a dianas asociadas por enriquecimiento funcional KEGG, con el control del ciclo celular, senescencia y pigmentación. Los niveles de expresión de los microRNAs 211-5p, 129-5p, 148b-3p, 470-5p, 470-3p, 27b-3p y 30d-5p y de los mRNAs Mitf, Tyr, Tyrp1, Dct, Ccnd1, Cdk4 Cdk2 y p21, se confirmaron por RT-qPCR. Los resultados obtenidos, mejoran nuestra comprensión de las potenciales asociaciones funcionales entre conjuntos de miRNAs y genes durante la melanogénesis, el control del ciclo celular y la senescencia y propone nuevos escenarios para el estudio del melanoma.
dc.languagespa
dc.publisherBogotá - Medicina - Doctorado en Ciencias Biomédicas
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationAbdel-Malek, Z. A., Swope, V. B., Trinkle, L. S., Ferroni, E. N., Boissy, R. E., & Nordlund, J. J. (1988). Alteration of the Cloudman melanoma cell cycle by prostaglandins E1 and E2 determined by using a 5-bromo-2'-deoxyuridine method of DNA analysis. J Cell Physiol, 136(2), 247-256. doi:10.1002/jcp.1041360206
dc.relationAftab, M. N., Dinger, M. E., & Perera, R. J. (2014). The role of microRNAs and long non-coding RNAs in the pathology, diagnosis, and management of melanoma. Arch Biochem Biophys, 563, 60-70. doi:10.1016/j.abb.2014.07.022
dc.relationAgarwal, V., Bell, G. W., Nam, J. W., & Bartel, D. P. (2015). Predicting effective microRNA target sites in mammalian mRNAs. Elife, 4. doi:10.7554/eLife.05005
dc.relationAlvarez Gaviria, W. (2007). Cilios, melanocitos y bases moleculares de los sentidos. Acta otorrinolaringol. cir. cabeza cuello, 35(2), 45-57. Retrieved from http://bases.bireme.br/cgi-bin/wxislind.exe/iah/online/?IsisScript=iah/iah.xis&src=google&base=LILACS&lang=p&nextAction=lnk&exprSearch=497495&indexSearch=ID
dc.relationAmaral, L. A., Scala, A., Barthelemy, M., & Stanley, H. E. (2000). Classes of small-world networks. Proc Natl Acad Sci U S A, 97(21), 11149-11152. doi:10.1073/pnas.200327197
dc.relationAmeres, S. L., & Zamore, P. D. (2013). Diversifying microRNA sequence and function. Nat Rev Mol Cell Biol, 14(8), 475-488. doi:10.1038/nrm3611
dc.relationAnders, S., & Huber, W. (2010). Differential expression analysis for sequence count data. Genome Biol, 11(10), R106. doi:10.1186/gb-2010-11-10-r106
dc.relationAsangani, I. A., Harms, P. W., Dodson, L., Pandhi, M., Kunju, L. P., Maher, C. A., . . . Chinnaiyan, A. M. (2012). Genetic and epigenetic loss of microRNA-31 leads to feed-forward expression of EZH2 in melanoma. Oncotarget, 3(9), 1011-1025. doi:10.18632/oncotarget.622
dc.relationBabapoor, S., Fleming, E., Wu, R., & Dadras, S. S. (2014). A novel miR-451a isomiR, associated with amelanotypic phenotype, acts as a tumor suppressor in melanoma by retarding cell migration and invasion. PLoS One, 9(9), e107502. doi:10.1371/journal.pone.0107502
dc.relationBalch, C. M., Gershenwald, J. E., Soong, S. J., Thompson, J. F., Atkins, M. B., Byrd, D. R., . . . Sondak, V. K. (2009). Final version of 2009 AJCC melanoma staging and classification. J Clin Oncol, 27(36), 6199-6206. doi:10.1200/JCO.2009.23.4799
dc.relationBald, T., Quast, T., Landsberg, J., Rogava, M., Glodde, N., Lopez-Ramos, D., . . . Tuting, T. (2014). Ultraviolet-radiation-induced inflammation promotes angiotropism and metastasis in melanoma. Nature, 507(7490), 109-113. doi:10.1038/nature13111
dc.relationBandyopadhyay, D., & Medrano, E. E. (2000). Melanin accumulation accelerates melanocyte senescence by a mechanism involving p16INK4a/CDK4/pRB and E2F1. Ann N Y Acad Sci, 908, 71-84. doi:10.1111/j.1749-6632.2000.tb06637.x
dc.relationBates, S., Bonetta, L., MacAllan, D., Parry, D., Holder, A., Dickson, C., & Peters, G. (1994). CDK6 (PLSTIRE) and CDK4 (PSK-J3) are a distinct subset of the cyclin-dependent kinases that associate with cyclin D1. Oncogene, 9(1), 71-79. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8302605
dc.relationBemis, L. T., Chen, R., Amato, C. M., Classen, E. H., Robinson, S. E., Coffey, D. G., . . . Robinson, W. A. (2008). MicroRNA-137 targets microphthalmia-associated transcription factor in melanoma cell lines. Cancer Res, 68(5), 1362-1368. doi:10.1158/0008-5472.CAN-07-2912
dc.relationBennett, D. C. (2015). Genetics of melanoma progression: the rise and fall of cell senescence. Pigment Cell Melanoma Res. doi:10.1111/pcmr.12422
dc.relationBennett, P. E., Bemis, L., Norris, D. A., & Shellman, Y. G. (2013). miR in melanoma development: miRNAs and acquired hallmarks of cancer in melanoma. Physiol Genomics, 45(22), 1049-1059. doi:10.1152/physiolgenomics.00116.2013
dc.relationBhattacharya, A., Schmitz, U., Raatz, Y., Schonherr, M., Kottek, T., Schauer, M., . . . Kunz, M. (2015). miR-638 promotes melanoma metastasis and protects melanoma cells from apoptosis and autophagy. Oncotarget, 6(5), 2966-2980. doi:10.18632/oncotarget.3070
dc.relationBleazard, T., Lamb, J. A., & Griffiths-Jones, S. (2015). Bias in microRNA functional enrichment analysis. Bioinformatics, 31(10), 1592-1598. doi:10.1093/bioinformatics/btv023
dc.relationBonazzi, V. F., Stark, M. S., & Hayward, N. K. (2012). MicroRNA regulation of melanoma progression. Melanoma Res, 22(2), 101-113. doi:10.1097/CMR.0b013e32834f6fbb
dc.relationBoyle, G. M., Woods, S. L., Bonazzi, V. F., Stark, M. S., Hacker, E., Aoude, L. G., . . . Hayward, N. K. (2011). Melanoma cell invasiveness is regulated by miR-211 suppression of the BRN2 transcription factor. Pigment Cell Melanoma Res, 24(3), 525-537. doi:10.1111/j.1755-148X.2011.00849.x
dc.relationBrenner, M., & Hearing, V. J. (2008). The protective role of melanin against UV damage in human skin. Photochem Photobiol, 84(3), 539-549. doi:10.1111/j.1751-1097.2007.00226.x
dc.relationBrohee, S., Faust, K., Lima-Mendez, G., Sand, O., Janky, R., Vanderstocken, G., . . . van Helden, J. (2008). NeAT: a toolbox for the analysis of biological networks, clusters, classes and pathways. Nucleic Acids Res, 36(Web Server issue), W444-451. doi:10.1093/nar/gkn336
dc.relationBrohee, S., Faust, K., Lima-Mendez, G., Vanderstocken, G., & van Helden, J. (2008). Network Analysis Tools: from biological networks to clusters and pathways. Nat Protoc, 3(10), 1616-1629. doi:10.1038/nprot.2008.100
dc.relationBunz, F., Dutriaux, A., Lengauer, C., Waldman, T., Zhou, S., Brown, J. P., . . . Vogelstein, B. (1998). Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science, 282(5393), 1497-1501. doi:10.1126/science.282.5393.1497
dc.relationCampisi, J., & d'Adda di Fagagna, F. (2007). Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol, 8(9), 729-740. doi:10.1038/nrm2233
dc.relationCao, Y., DePinho, R. A., Ernst, M., & Vousden, K. (2011). Cancer research: past, present and future. Nat Rev Cancer, 11(10), 749-754. doi:10.1038/nrc3138
dc.relationCaramuta, S., Egyhazi, S., Rodolfo, M., Witten, D., Hansson, J., Larsson, C., & Lui, W. O. (2010). MicroRNA expression profiles associated with mutational status and survival in malignant melanoma. J Invest Dermatol, 130(8), 2062-2070. doi:10.1038/jid.2010.63
dc.relationCosta, L. D. F. R., F. A.; Travieso, G.; Villas Boas, P. R. (2007). Characterization of complex networks: A survey of measurements. Advances in Physics, 56( 1), 167-242. doi:10.1080/00018730601170527
dc.relationCouts, K. L., Anderson, E. M., Gross, M. M., Sullivan, K., & Ahn, N. G. (2013). Oncogenic B-Raf signaling in melanoma cells controls a network of microRNAs with combinatorial functions. Oncogene, 32(15), 1959-1970. doi:10.1038/onc.2012.209
dc.relationCui, S., Zhang, K., Li, C., Chen, J., Pan, Y., Feng, B., . . . Chen, L. (2016). Methylation-associated silencing of microRNA-129-3p promotes epithelial-mesenchymal transition, invasion and metastasis of hepatocelluar cancer by targeting Aurora-A. Oncotarget, 7(47), 78009-78028. doi:10.18632/oncotarget.12870
dc.relationCunha, E. S., Kawahara, R., Kadowaki, M. K., Amstalden, H. G., Noleto, G. R., Cadena, S. M., . . . Martinez, G. R. (2012). Melanogenesis stimulation in B16-F10 melanoma cells induces cell cycle alterations, increased ROS levels and a differential expression of proteins as revealed by proteomic analysis. Exp Cell Res, 318(15), 1913-1925. doi:10.1016/j.yexcr.2012.05.019
dc.relationChang, X., Zhang, H., Lian, S., & Zhu, W. (2016). miR-137 suppresses tumor growth of malignant melanoma by targeting aurora kinase A. Biochem Biophys Res Commun, 475(3), 251-256. doi:10.1016/j.bbrc.2016.05.090
dc.relationCharrier-Savournin, F. B., Chateau, M. T., Gire, V., Sedivy, J., Piette, J., & Dulic, V. (2004). p21-Mediated nuclear retention of cyclin B1-Cdk1 in response to genotoxic stress. Mol Biol Cell, 15(9), 3965-3976. doi:10.1091/mbc.e03-12-0871
dc.relationChen, C., Ridzon, D. A., Broomer, A. J., Zhou, Z., Lee, D. H., Nguyen, J. T., . . . Guegler, K. J. (2005). Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res, 33(20), e179. doi:10.1093/nar/gni178
dc.relationChen, J., Feilotter, H. E., Pare, G. C., Zhang, X., Pemberton, J. G., Garady, C., . . . Tron, V. A. (2010). MicroRNA-193b represses cell proliferation and regulates cyclin D1 in melanoma. Am J Pathol, 176(5), 2520-2529. doi:10.2353/ajpath.2010.091061
dc.relationChen, X., Wang, J., Shen, H., Lu, J., Li, C., Hu, D. N., . . . Tu, L. (2011). Epigenetics, microRNAs, and carcinogenesis: functional role of microRNA-137 in uveal melanoma. Invest Ophthalmol Vis Sci, 52(3), 1193-1199. doi:10.1167/iovs.10-5272
dc.relationChen, X. Y., Zhang, J., Hou, L. D., Zhang, R., Chen, W., Fan, H. N., . . . Zhu, J. S. (2018). Upregulation of PD-L1 predicts poor prognosis and is associated with miR-191-5p dysregulation in colon adenocarcinoma. Int J Immunopathol Pharmacol, 32, 2058738418790318. doi:10.1177/2058738418790318
dc.relationChen, Y., Cao, K. E., Wang, S., Chen, J., He, B., He, G. U., . . . Zhou, J. (2016). MicroRNA-138 suppresses proliferation, invasion and glycolysis in malignant melanoma cells by targeting HIF-1alpha. Exp Ther Med, 11(6), 2513-2518. doi:10.3892/etm.2016.3220
dc.relationCheun, W. L. (2004). The chemical structure of melanin. Pigment Cell Res, 17(4), 422-423; discussion 423-424. doi:10.1111/j.1600-0749.2004.00165_1.x
dc.relationd'Ischia, M., Wakamatsu, K., Cicoira, F., Di Mauro, E., Garcia-Borron, J. C., Commo, S., . . . Ito, S. (2015). Melanins and Melanogenesis: From Pigment Cells to Human Health and Technological Applications. Pigment Cell Melanoma Res. doi:10.1111/pcmr.12393
dc.relationDai, X., Rao, C., Li, H., Chen, Y., Fan, L., Geng, H., . . . Hou, L. (2015). Regulation of pigmentation by microRNAs: MITF-dependent microRNA-211 targets TGF-beta receptor 2. Pigment Cell Melanoma Res, 28(2), 217-222. doi:10.1111/pcmr.12334
dc.relationDamsky, W. E., Theodosakis, N., & Bosenberg, M. (2014). Melanoma metastasis: new concepts and evolving paradigms. Oncogene, 33(19), 2413-2422. doi:10.1038/onc.2013.194
dc.relationDar, A. A., Majid, S., de Semir, D., Nosrati, M., Bezrookove, V., & Kashani-Sabet, M. (2011). miRNA-205 suppresses melanoma cell proliferation and induces senescence via regulation of E2F1 protein. J Biol Chem, 286(19), 16606-16614. doi:10.1074/jbc.M111.227611
dc.relationDar, A. A., Majid, S., Rittsteuer, C., de Semir, D., Bezrookove, V., Tong, S., . . . Kashani-Sabet, M. (2013). The role of miR-18b in MDM2-p53 pathway signaling and melanoma progression. J Natl Cancer Inst, 105(6), 433-442. doi:10.1093/jnci/djt003
dc.relationDebacq-Chainiaux, F., Erusalimsky, J. D., Campisi, J., & Toussaint, O. (2009). Protocols to detect senescence-associated beta-galactosidase (SA-betagal) activity, a biomarker of senescent cells in culture and in vivo. Nat Protoc, 4(12), 1798-1806. doi:10.1038/nprot.2009.191
dc.relationDecker, H., & Tuczek, F. (2000). Tyrosinase/catecholoxidase activity of hemocyanins: structural basis and molecular mechanism. Trends Biochem Sci, 25(8), 392-397. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10916160
dc.relationDiao, Y., Jin, B., Huang, L., & Zhou, W. (2018). MiR-129-5p inhibits glioma cell progression in vitro and in vivo by targeting TGIF2. J Cell Mol Med, 22(4), 2357-2367. doi:10.1111/jcmm.13529
dc.relationDiermeier, S., Schmidt-Bruecken, E., Kubbies, M., Kunz-Schughart, L. A., & Brockhoff, G. (2004). Exposure to continuous bromodeoxyuridine (BrdU) differentially affects cell cycle progression of human breast and bladder cancer cell lines. Cell Prolif, 37(2), 195-206. doi:10.1111/j.1365-2184.2004.00296.x
dc.relationDing, J., Huang, S., Wu, S., Zhao, Y., Liang, L., Yan, M., . . . He, X. (2010). Gain of miR-151 on chromosome 8q24.3 facilitates tumour cell migration and spreading through downregulating RhoGDIA. Nat Cell Biol, 12(4), 390-399. doi:10.1038/ncb2039
dc.relationDing, N., Wang, S., Yang, Q., Li, Y., Cheng, H., Wang, J., . . . Fang, X. (2015). Deep sequencing analysis of microRNA expression in human melanocyte and melanoma cell lines. Gene, 572(1), 135-145. doi:10.1016/j.gene.2015.07.013
dc.relationDing, Z., Jian, S., Peng, X., Liu, Y., Wang, J., Zheng, L., . . . Zhou, M. (2015). Loss of MiR-664 Expression Enhances Cutaneous Malignant Melanoma Proliferation by Upregulating PLP2. Medicine (Baltimore), 94(33), e1327. doi:10.1097/MD.0000000000001327
dc.relationDu, J., Widlund, H. R., Horstmann, M. A., Ramaswamy, S., Ross, K., Huber, W. E., . . . Fisher, D. E. (2004). Critical role of CDK2 for melanoma growth linked to its melanocyte-specific transcriptional regulation by MITF. Cancer Cell, 6(6), 565-576. doi:10.1016/j.ccr.2004.10.014
dc.relationDweep, H., & Gretz, N. (2015). miRWalk2.0: a comprehensive atlas of microRNA-target interactions. Nat Methods, 12(8), 697. doi:10.1038/nmeth.3485
dc.relationEkimler, S., & Sahin, K. (2014). Computational Methods for MicroRNA Target Prediction. Genes (Basel), 5(3), 671-683. doi:10.3390/genes5030671
dc.relationEpstein, W. L., Fukuyama, K., & Drake, T. E. (1973). Ultrastructural effects of thymidine analogs in melanosomes and virus activation in cloned hamster melanoma cells in culture. Yale J Biol Med, 46(5), 471-481. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/4798393
dc.relationFan, Y., Siklenka, K., Arora, S. K., Ribeiro, P., Kimmins, S., & Xia, J. (2016). miRNet - dissecting miRNA-target interactions and functional associations through network-based visual analysis. Nucleic Acids Res, 44(W1), W135-141. doi:10.1093/nar/gkw288
dc.relationFan, Y., & Xia, J. (2018). miRNet-Functional Analysis and Visual Exploration of miRNA-Target Interactions in a Network Context. Methods Mol Biol, 1819, 215-233. doi:10.1007/978-1-4939-8618-7_10
dc.relationFattore, L., Ruggiero, C. F., Pisanu, M. E., Liguoro, D., Cerri, A., Costantini, S., . . . Ciliberto, G. (2019). Reprogramming miRNAs global expression orchestrates development of drug resistance in BRAF mutated melanoma. Cell Death Differ, 26(7), 1267-1282. doi:10.1038/s41418-018-0205-5
dc.relationFawcett, D. W. (1966). An atlas of fine structure: the cell, its organelles, and inclusions. Philadelphia,: W. B. Saunders Co.
dc.relationFelli, N., Felicetti, F., Lustri, A. M., Errico, M. C., Bottero, L., Cannistraci, A., . . . Care, A. (2013). miR-126&126* restored expressions play a tumor suppressor role by directly regulating ADAM9 and MMP7 in melanoma. PLoS One, 8(2), e56824. doi:10.1371/journal.pone.0056824
dc.relationFernandes, B., Matama, T., Guimaraes, D., Gomes, A., & Cavaco-Paulo, A. (2016). Fluorescent quantification of melanin. Pigment Cell Melanoma Res, 29(6), 707-712. doi:10.1111/pcmr.12535
dc.relationFlórez Vargas, Ó. R. (2008). Expresión diferencial de ARNs pequeños en células de melanoma inducidas a supresión de crecimiento in vitro. (Maestría), Universidad Nacional de Colombia. Retrieved from http://eds.a.ebscohost.com.ezproxy.unal.edu.co/eds/detail/detail?vid=2&sid=e81e3236-0391-48e3-b816-49637e9373b2%40sessionmgr4001&hid=4213&bdata=Jmxhbmc9ZXMmc2l0ZT1lZHMtbGl2ZQ%3d%3d#AN=unc.000385548&db=cat02704a
dc.relationFlórez Vargas, Ó. R., & Gomez, L. A. (2008). Expresión diferencial de dos microRNAs asociados con el silenciamiento de la ciclina D1 en células de melanoma B16 en senescencia inducida por la 5-bromo-2-desoxiuridina. Revista de la Asociación Colombiana de Ciencias Biológicas. Retrieved from http://ezproxy.unal.edu.co/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=cat02704a&AN=unc.000385548&lang=es&site=eds-live
dc.relationFu, T. Y., Chang, C. C., Lin, C. T., Lai, C. H., Peng, S. Y., Ko, Y. J., & Tang, P. C. (2011). Let-7b-mediated suppression of basigin expression and metastasis in mouse melanoma cells. Exp Cell Res, 317(4), 445-451. doi:10.1016/j.yexcr.2010.11.004
dc.relationGanesan, A. K., Ho, H., Bodemann, B., Petersen, S., Aruri, J., Koshy, S., . . . White, M. A. (2008). Genome-wide siRNA-based functional genomics of pigmentation identifies novel genes and pathways that impact melanogenesis in human cells. PLoS Genet, 4(12), e1000298. doi:10.1371/journal.pgen.1000298
dc.relationGarcía, M. (2017). Mortalidad por melanoma cutáneo en Colombia: estudio de tendencias. Asociación Colombiana de Dermatologpia y cirugía dermatológica, 25(1), 8-15. Retrieved from https://revistasocolderma.org/articulo-revista/mortalidad-por-melanoma-cutaneo-en-colombia-estudio-de-tendencias
dc.relationGarcia, R. I., Werner, I., & Szabo, G. (1979). Effect of 5-bromo-2'-deoxyuridine on growth and differentiation of cultured embryonic retinal pigment cells. In Vitro, 15(10), 779-788. doi:10.1007/bf02618304
dc.relationGaziel-Sovran, A., Segura, M. F., Di Micco, R., Collins, M. K., Hanniford, D., Vega-Saenz de Miera, E., . . . Hernando, E. (2011). miR-30b/30d regulation of GalNAc transferases enhances invasion and immunosuppression during metastasis. Cancer Cell, 20(1), 104-118. doi:10.1016/j.ccr.2011.05.027
dc.relationGencia, I., Baderca, F., Avram, S., Gogulescu, A., Marcu, A., Seclaman, E., . . . Solovan, C. (2020). A preliminary study of microRNA expression in different types of primary melanoma. Bosn J Basic Med Sci, 20(2), 197-208. doi:10.17305/bjbms.2019.4271
dc.relationGit, A., Dvinge, H., Salmon-Divon, M., Osborne, M., Kutter, C., Hadfield, J., . . . Caldas, C. (2010). Systematic comparison of microarray profiling, real-time PCR, and next-generation sequencing technologies for measuring differential microRNA expression. RNA, 16(5), 991-1006. doi:10.1261/rna.1947110
dc.relationGlovanella, B. C., Stehlin, J. S., Santamaria, C., Yim, S. O., Morgan, A. C., Williams, L. J., Jr., . . . Mumford, D. M. (1976). Human neoplastic and normal cells in tissue culture. I. Cell lines derived from malignant melanomas and normal melanocytes. J Natl Cancer Inst, 56(6), 1131-1142. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/994214
dc.relationGlud, M., & Gniadecki, R. (2013). MicroRNAs in the pathogenesis of malignant melanoma. J Eur Acad Dermatol Venereol, 27(2), 142-150. doi:10.1111/j.1468-3083.2012.04579.x
dc.relationGlud, M., Manfe, V., Biskup, E., Holst, L., Dirksen, A. M., Hastrup, N., . . . Gniadecki, R. (2011). MicroRNA miR-125b induces senescence in human melanoma cells. Melanoma Res, 21(3), 253-256. doi:10.1097/CMR.0b013e328345333b
dc.relationGlud, M., Rossing, M., Hother, C., Holst, L., Hastrup, N., Nielsen, F. C., . . . Drzewiecki, K. T. (2010). Downregulation of miR-125b in metastatic cutaneous malignant melanoma. Melanoma Res, 20(6), 479-484. doi:10.1097/CMR.0b013e32833e32a1
dc.relationGomez, L. A. (2009). Aplicación de microarreglos de cADN para estudiar algunos determinantes moleculares de la supresión del crecimiento celular en cáncer. Biomedica, 29(1).
dc.relationGomez, L. A., Strasberg Rieber, M., & Rieber, M. (1995). Decrease in actin gene expression in melanoma cells compared to melanocytes is partly counteracted by BrdU-induced cell adhesion and antagonized by L-tyrosine induction of terminal differentiation. Biochem Biophys Res Commun, 216(1), 84-89. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/7488128
dc.relationGomez, L. A., Strasberg Rieber, M., & Rieber, M. (1996). PCR-mediated differential display and cloning of a melanocyte gene decreased in malignant melanoma and up-regulated with sensitization to DNA damage. DNA Cell Biol, 15(5), 423-427. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8924217
dc.relationGoppner, D., & Leverkus, M. (2011). Prognostic parameters for the primary care of melanoma patients: what is really risky in melanoma? J Skin Cancer, 2011, 521947. doi:10.1155/2011/521947
dc.relationGrant, G. R., Manduchi, E., & Stoeckert, C. J., Jr. (2007). Analysis and management of microarray gene expression data. Curr Protoc Mol Biol, Chapter 19, Unit 19 16. doi:10.1002/0471142727.mb1906s77
dc.relationGuerra, L., Bover, L., & Mordoh, J. (1990). Differentiating effect of L-tyrosine on the human melanoma cell line IIB-MEL-J. Exp Cell Res, 188(1), 61-65. doi:10.1016/0014-4827(90)90278-i
dc.relationGuzzi, P. H., Di Martino, M. T., Tagliaferri, P., Tassone, P., & Cannataro, M. (2015). Analysis of miRNA, mRNA, and TF interactions through network-based methods. EURASIP Journal on Bioinformatics and Systems Biology, 2015(1). doi:10.1186/s13637-015-0023-8
dc.relationHaass, N. K., Smalley, K. S., Li, L., & Herlyn, M. (2005). Adhesion, migration and communication in melanocytes and melanoma. Pigment Cell Res, 18(3), 150-159. doi:10.1111/j.1600-0749.2005.00235.x
dc.relationHaddad, M. M., Xu, W., Schwahn, D. J., Liao, F., & Medrano, E. E. (1999). Activation of a cAMP pathway and induction of melanogenesis correlate with association of p16(INK4) and p27(KIP1) to CDKs, loss of E2F-binding activity, and premature senescence of human melanocytes. Exp Cell Res, 253(2), 561-572. doi:10.1006/excr.1999.4688
dc.relationHaflidadottir, B. S., Bergsteinsdottir, K., Praetorius, C., & Steingrimsson, E. (2010). miR-148 regulates Mitf in melanoma cells. PLoS One, 5(7), e11574. doi:10.1371/journal.pone.0011574
dc.relationHamzeiy, H., Allmer, J., & Yousef, M. (2014). Computational methods for microRNA target prediction. Methods Mol Biol, 1107, 207-221. doi:10.1007/978-1-62703-748-8_12
dc.relationHanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144(5), 646-674. doi:10.1016/j.cell.2011.02.013
dc.relationHanniford, D., Segura, M. F., Zhong, J., Philips, E., Jirau-Serrano, X., Darvishian, F., . . . Hernando, E. (2015). Identification of metastasis-suppressive microRNAs in primary melanoma. J Natl Cancer Inst, 107(3). doi:10.1093/jnci/dju494
dc.relationHao, S., Luo, C., Abukiwan, A., Wang, G., He, J., Huang, L., . . . He, D. (2015). miR-137 inhibits proliferation of melanoma cells by targeting PAK2. Exp Dermatol, 24(12), 947-952. doi:10.1111/exd.12812
dc.relationHaycock, J. W. (1993). Polyvinylpyrrolidone as a blocking agent in immunochemical studies. Anal Biochem, 208(2), 397-399. doi:10.1006/abio.1993.1068
dc.relationHayflick, L. (1965). The Limited in Vitro Lifetime of Human Diploid Cell Strains. Exp Cell Res, 37, 614-636. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/14315085
dc.relationHenao JD, L.-K. L., Pinzon-Velasco A. (2019). coexnet: An R package to build CO-EXpression NETworks from Microarray Data (Version version 1.8.0.) [R package].
dc.relationHoffmann, I., Draetta, G., & Karsenti, E. (1994). Activation of the phosphatase activity of human cdc25A by a cdk2-cyclin E dependent phosphorylation at the G1/S transition. EMBO J, 13(18), 4302-4310. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/7523110
dc.relationHsiao, J. J., & Fisher, D. E. (2014). The roles of microphthalmia-associated transcription factor and pigmentation in melanoma. Arch Biochem Biophys, 563, 28-34. doi:10.1016/j.abb.2014.07.019
dc.relationInui, M., Martello, G., & Piccolo, S. (2010). MicroRNA control of signal transduction. Nat Rev Mol Cell Biol, 11(4), 252-263. doi:10.1038/nrm2868
dc.relationJiang, Z., Zhang, Y., Chen, X., Wu, P., & Chen, D. (2019). Inactivation of the Wnt/beta-catenin signaling pathway underlies inhibitory role of microRNA-129-5p in epithelial-mesenchymal transition and angiogenesis of prostate cancer by targeting ZIC2. Cancer Cell Int, 19, 271. doi:10.1186/s12935-019-0977-9
dc.relationJolliffe, I. (2014). Principal Component Analysis Wiley StatsRef: Statistics Reference Online.
dc.relationJolliffe, I. T., & Cadima, J. (2016). Principal component analysis: a review and recent developments. Philos Trans A Math Phys Eng Sci, 374(2065), 20150202. doi:10.1098/rsta.2015.0202
dc.relationKanitz, A., & Gerber, A. P. (2010). Circuitry of mRNA regulation. Wiley Interdiscip Rev Syst Biol Med, 2(2), 245-251. doi:10.1002/wsbm.55
dc.relationKappelmann, M., Kuphal, S., Meister, G., Vardimon, L., & Bosserhoff, A. K. (2013). MicroRNA miR-125b controls melanoma progression by direct regulation of c-Jun protein expression. Oncogene, 32(24), 2984-2991. doi:10.1038/onc.2012.307
dc.relationKapranov, P., Willingham, A. T., & Gingeras, T. R. (2007). Genome-wide transcription and the implications for genomic organization. Nat Rev Genet, 8(6), 413-423. doi:10.1038/nrg2083
dc.relationKatase, N., Terada, K., Suzuki, T., Nishimatsu, S., & Nohno, T. (2015). miR-487b, miR-3963 and miR-6412 delay myogenic differentiation in mouse myoblast-derived C2C12 cells. BMC Cell Biol, 16, 13. doi:10.1186/s12860-015-0061-9
dc.relationKatayama, S., Tomaru, Y., Kasukawa, T., Waki, K., Nakanishi, M., Nakamura, M., . . . Wahlestedt, C. (2005). Antisense transcription in the mammalian transcriptome. Science, 309(5740), 1564-1566. doi:10.1126/science.1112009
dc.relationKato, J., Matsushime, H., Hiebert, S. W., Ewen, M. E., & Sherr, C. J. (1993). Direct binding of cyclin D to the retinoblastoma gene product (pRb) and pRb phosphorylation by the cyclin D-dependent kinase CDK4. Genes Dev, 7(3), 331-342. doi:10.1101/gad.7.3.331
dc.relationKim, K. H., Bin, B. H., Kim, J., Dong, S. E., Park, P. J., Choi, H., . . . Lee, T. R. (2014). Novel inhibitory function of miR-125b in melanogenesis. Pigment Cell Melanoma Res, 27(1), 140-144. doi:10.1111/pcmr.12179
dc.relationKornfeld, J. W., & Bruning, J. C. (2014). Regulation of metabolism by long, non-coding RNAs. Front Genet, 5, 57. doi:10.3389/fgene.2014.00057
dc.relationKozomara, A., Birgaoanu, M., & Griffiths-Jones, S. (2019). miRBase: from microRNA sequences to function. Nucleic Acids Res, 47(D1), D155-D162. doi:10.1093/nar/gky1141
dc.relationKozubek, J., Ma, Z., Fleming, E., Duggan, T., Wu, R., Shin, D. G., & Dadras, S. S. (2013). In-depth characterization of microRNA transcriptome in melanoma. PLoS One, 8(9), e72699. doi:10.1371/journal.pone.0072699
dc.relationKuilman, T., Michaloglou, C., Mooi, W. J., & Peeper, D. S. (2010). The essence of senescence. Genes Dev, 24(22), 2463-2479. doi:10.1101/gad.1971610
dc.relationKunz, M. (2013). MicroRNAs in melanoma biology. Adv Exp Med Biol, 774, 103-120. doi:10.1007/978-94-007-5590-1_6
dc.relationKyrgidis, A., Tzellos, T. G., & Triaridis, S. (2010). Melanoma: Stem cells, sun exposure and hallmarks for carcinogenesis, molecular concepts and future clinical implications. J Carcinog, 9, 3. doi:10.4103/1477-3163.62141
dc.relationLagunas, M. V. (2004). Estudio paramétrico para la producción de melanina en Escherichia coli recombinante. INSTITUTO TECNOLÓGICO DE CELAYA. Retrieved from http://www.ibt.unam.mx/alfredo/VictorHugoLagunas.pdf
dc.relationLatchana, N., Abrams, Z. B., Howard, J. H., Regan, K., Jacob, N., Fadda, P., . . . Carson, W. E., 3rd. (2017). Plasma MicroRNA Levels Following Resection of Metastatic Melanoma. Bioinform Biol Insights, 11, 1177932217694837. doi:10.1177/1177932217694837
dc.relationLeal, L. G., Lopez, C., & Lopez-Kleine, L. (2014). Construction and comparison of gene co-expression networks shows complex plant immune responses. PeerJ, 2, e610. doi:10.7717/peerj.610
dc.relationLee, H. E., Kim, E. H., Choi, H. R., Sohn, U. D., Yun, H. Y., Baek, K. J., . . . Kim, D. S. (2012). Dipeptides Inhibit Melanin Synthesis in Mel-Ab Cells through Down-Regulation of Tyrosinase. Korean J Physiol Pharmacol, 16(4), 287-291. doi:10.4196/kjpp.2012.16.4.287
dc.relationLee, J. T. (2012). Epigenetic regulation by long noncoding RNAs. Science, 338(6113), 1435-1439. doi:10.1126/science.1231776
dc.relationLeitao, A. L., Costa, M. C., & Enguita, F. J. (2014). A guide for miRNA target prediction and analysis using web-based applications. Methods Mol Biol, 1182, 265-277. doi:10.1007/978-1-4939-1062-5_23
dc.relationLevkoff, L. H., Marshall, G. P., 2nd, Ross, H. H., Caldeira, M., Reynolds, B. A., Cakiroglu, M., . . . Laywell, E. D. (2008). Bromodeoxyuridine inhibits cancer cell proliferation in vitro and in vivo. Neoplasia, 10(8), 804-816. doi:10.1593/neo.08382
dc.relationLi, J., Donath, S., Li, Y., Qin, D., Prabhakar, B. S., & Li, P. (2010). miR-30 regulates mitochondrial fission through targeting p53 and the dynamin-related protein-1 pathway. PLoS Genet, 6(1), e1000795. doi:10.1371/journal.pgen.1000795
dc.relationLi, J., Li, C., Han, J., Zhang, C., Shang, D., Yao, Q., . . . Li, X. (2014). The detection of risk pathways, regulated by miRNAs, via the integration of sample-matched miRNA-mRNA profiles and pathway structure. J Biomed Inform, 49, 187-197. doi:10.1016/j.jbi.2014.02.004
dc.relationLi, J. Y., Zheng, L. L., Wang, T. T., & Hu, M. (2016). Functional Annotation of Metastasis-associated MicroRNAs of Melanoma: A Meta-analysis of Expression Profiles. Chin Med J (Engl), 129(20), 2484-2490. doi:10.4103/0366-6999.191793
dc.relationLi, M., Long, C., Yang, G., Luo, Y., & Du, H. (2016). MiR-26b inhibits melanoma cell proliferation and enhances apoptosis by suppressing TRAF5-mediated MAPK activation. Biochem Biophys Res Commun, 471(3), 361-367. doi:10.1016/j.bbrc.2016.02.021
dc.relationLi, R., Qian, N., Tao, K., You, N., Wang, X., & Dou, K. (2010). MicroRNAs involved in neoplastic transformation of liver cancer stem cells. J Exp Clin Cancer Res, 29, 169. doi:10.1186/1756-9966-29-169
dc.relationLi, R., Zhang, L., Jia, L., Duan, Y., Li, Y., Wang, J., . . . Sha, N. (2014). MicroRNA-143 targets Syndecan-1 to repress cell growth in melanoma. PLoS One, 9(4), e94855. doi:10.1371/journal.pone.0094855
dc.relationLi, W., Chang, J., Wang, S., Liu, X., Peng, J., Huang, D., . . . Li, J. (2015). miRNA-99b-5p suppresses liver metastasis of colorectal cancer by down-regulating mTOR. Oncotarget, 6(27), 24448-24462. doi:10.18632/oncotarget.4423
dc.relationLi, X., Wu, Z., Fu, X., & Han, W. (2014). lncRNAs: insights into their function and mechanics in underlying disorders. Mutat Res Rev Mutat Res, 762, 1-21. doi:10.1016/j.mrrev.2014.04.002
dc.relationLindgren, J., Uvdal, P., Sjovall, P., Nilsson, D. E., Engdahl, A., Schultz, B. P., & Thiel, V. (2012). Molecular preservation of the pigment melanin in fossil melanosomes. Nat Commun, 3, 824. doi:10.1038/ncomms1819
dc.relationLing, Y. H., Sui, M. H., Zheng, Q., Wang, K. Y., Wu, H., Li, W. Y., . . . Xu, L. N. (2018). miR-27b regulates myogenic proliferation and differentiation by targeting Pax3 in goat. Sci Rep, 8(1), 3909. doi:10.1038/s41598-018-22262-4
dc.relationLiu, S., Tetzlaff, M. T., Liu, A., Liegl-Atzwanger, B., Guo, J., & Xu, X. (2012). Loss of microRNA-205 expression is associated with melanoma progression. Lab Invest, 92(7), 1084-1096. doi:10.1038/labinvest.2012.62
dc.relationLiu, S. M., Lu, J., Lee, H. C., Chung, F. H., & Ma, N. (2014). miR-524-5p suppresses the growth of oncogenic BRAF melanoma by targeting BRAF and ERK2. Oncotarget, 5(19), 9444-9459. doi:10.18632/oncotarget.2452
dc.relationLiu, Y., & Simon, J. D. (2005). Metal-ion interactions and the structural organization of Sepia eumelanin. Pigment Cell Res, 18(1), 42-48. doi:10.1111/j.1600-0749.2004.00197.x
dc.relationLong, J., Menggen, Q., Wuren, Q., Shi, Q., & Pi, X. (2018). Long Noncoding RNA Taurine-Upregulated Gene1 (TUG1) Promotes Tumor Growth and Metastasis Through TUG1/Mir-129-5p/Astrocyte-Elevated Gene-1 (AEG-1) Axis in Malignant Melanoma. Med Sci Monit, 24, 1547-1559. doi:10.12659/msm.906616
dc.relationLopez-Kleine, L., Leal, L., & Lopez, C. (2013). Biostatistical approaches for the reconstruction of gene co-expression networks based on transcriptomic data. Brief Funct Genomics, 12(5), 457-467. doi:10.1093/bfgp/elt003
dc.relationLove, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol, 15(12), 550. doi:10.1186/s13059-014-0550-8
dc.relationLudwig, A., Rehberg, S., & Wegner, M. (2004). Melanocyte-specific expression of dopachrome tautomerase is dependent on synergistic gene activation by the Sox10 and Mitf transcription factors. FEBS Lett, 556(1-3), 236-244. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/14706856
dc.relationLuo, C., Tetteh, P. W., Merz, P. R., Dickes, E., Abukiwan, A., Hotz-Wagenblatt, A., . . . Eichmuller, S. B. (2013). miR-137 inhibits the invasion of melanoma cells through downregulation of multiple oncogenic target genes. J Invest Dermatol, 133(3), 768-775. doi:10.1038/jid.2012.357
dc.relationLuo, L., Xia, L., Zha, B., Zuo, C., Deng, D., Chen, M., . . . Zhang, Q. (2018). miR-335-5p targeting ICAM-1 inhibits invasion and metastasis of thyroid cancer cells. Biomed Pharmacother, 106, 983-990. doi:10.1016/j.biopha.2018.07.046
dc.relationMa, X., Zheng, Q., Zhao, G., Yuan, W., & Liu, W. (2020). Regulation of cellular senescence by microRNAs. Mech Ageing Dev, 189, 111264. doi:10.1016/j.mad.2020.111264
dc.relationMa, Z., Swede, H., Cassarino, D., Fleming, E., Fire, A., & Dadras, S. S. (2011). Up-regulated Dicer expression in patients with cutaneous melanoma. PLoS One, 6(6), e20494. doi:10.1371/journal.pone.0020494
dc.relationMargue, C., Philippidou, D., Reinsbach, S. E., Schmitt, M., Behrmann, I., & Kreis, S. (2013). New target genes of MITF-induced microRNA-211 contribute to melanoma cell invasion. PLoS One, 8(9), e73473. doi:10.1371/journal.pone.0073473
dc.relationMarin, M. B., Ghenea, S., Spiridon, L. N., Chiritoiu, G. N., Petrescu, A. J., & Petrescu, S. M. (2012). Tyrosinase degradation is prevented when EDEM1 lacks the intrinsically disordered region. PLoS One, 7(8), e42998. doi:10.1371/journal.pone.0042998
dc.relationMartin del Campo, S. E., Latchana, N., Levine, K. M., Grignol, V. P., Fairchild, E. T., Jaime-Ramirez, A. C., . . . Carson, W. E., 3rd. (2015). MiR-21 enhances melanoma invasiveness via inhibition of tissue inhibitor of metalloproteinases 3 expression: in vivo effects of MiR-21 inhibitor. PLoS One, 10(1), e0115919. doi:10.1371/journal.pone.0115919
dc.relationMartinez, I., Cazalla, D., Almstead, L. L., Steitz, J. A., & DiMaio, D. (2011). miR-29 and miR-30 regulate B-Myb expression during cellular senescence. Proc Natl Acad Sci U S A, 108(2), 522-527. doi:10.1073/pnas.1017346108
dc.relationMartinez, N. J., & Walhout, A. J. (2009). The interplay between transcription factors and microRNAs in genome-scale regulatory networks. Bioessays, 31(4), 435-445. doi:10.1002/bies.200800212
dc.relationMasterson, J. C., & O'Dea, S. (2007). 5-Bromo-2-deoxyuridine activates DNA damage signalling responses and induces a senescence-like phenotype in p16-null lung cancer cells. Anticancer Drugs, 18(9), 1053-1068. doi:10.1097/CAD.0b013e32825209f6
dc.relationMc Auley, M. T., Choi, H., Mooney, K., Paul, E., & Miller, V. M. (2015). Systems Biology and Synthetic Biology: A New Epoch for Toxicology Research. Advances in Toxicology, 2015, 14. doi:10.1155/2015/575403
dc.relationMelnikova, V. O., Bolshakov, S. V., Walker, C., & Ananthaswamy, H. N. (2004). Genomic alterations in spontaneous and carcinogen-induced murine melanoma cell lines. Oncogene, 23(13), 2347-2356. doi:10.1038/sj.onc.1207405
dc.relationMendes, A. D. R. M. D. A. (2003). Mutual information: a dependence measure for nonlinear time series. Econometrics. Retrieved from https://www.researchgate.net/publication/23742865_Mutual_information_a_dependence_measure_for_nonlinear_time_series
dc.relationMercer, T. R., Gerhardt, D. J., Dinger, M. E., Crawford, J., Trapnell, C., Jeddeloh, J. A., . . . Rinn, J. L. (2012). Targeted RNA sequencing reveals the deep complexity of the human transcriptome. Nat Biotechnol, 30(1), 99-104. doi:10.1038/nbt.2024
dc.relationMeyer, P. E., Lafitte, F., & Bontempi, G. (2008). minet: A R/Bioconductor package for inferring large transcriptional networks using mutual information. BMC Bioinformatics, 9, 461. doi:10.1186/1471-2105-9-461
dc.relationMichishita, E., Nakabayashi, K., Suzuki, T., Kaul, S. C., Ogino, H., Fujii, M., . . . Ayusawa, D. (1999). 5-Bromodeoxyuridine induces senescence-like phenomena in mammalian cells regardless of cell type or species. J Biochem, 126(6), 1052-1059. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10578056
dc.relationMiller, A. J., & Mihm, M. C., Jr. (2006). Melanoma. N Engl J Med, 355(1), 51-65. doi:10.1056/NEJMra052166
dc.relationMin, H., & Yoon, S. (2010). Got target? Computational methods for microRNA target prediction and their extension. Exp Mol Med, 42(4), 233-244. doi:10.3858/emm.2010.42.4.032
dc.relationMione, M., & Bosserhoff, A. (2015). MicroRNAs in melanocyte and melanoma biology. Pigment Cell Melanoma Res, 28(3), 340-354. doi:10.1111/pcmr.12346
dc.relationMiyamura, Y., Coelho, S. G., Wolber, R., Miller, S. A., Wakamatsu, K., Zmudzka, B. Z., . . . Hearing, V. J. (2007). Regulation of human skin pigmentation and responses to ultraviolet radiation. Pigment Cell Res, 20(1), 2-13. doi:10.1111/j.1600-0749.2006.00358.x
dc.relationMontañez, R., Rodríguez-Caso, C., & Bellés, X. (2013). MicroRNA-mRNA Regulation Networks. In W. Dubitzky, O. Wolkenhauer, K.-H. Cho, & H. Yokota (Eds.), Encyclopedia of Systems Biology (pp. 1354-1357). New York, NY: Springer New York.
dc.relationMueller, D. W., Rehli, M., & Bosserhoff, A. K. (2009). miRNA expression profiling in melanocytes and melanoma cell lines reveals miRNAs associated with formation and progression of malignant melanoma. J Invest Dermatol, 129(7), 1740-1751. doi:10.1038/jid.2008.452
dc.relationMuller, D. W., & Bosserhoff, A. K. (2008). Integrin beta 3 expression is regulated by let-7a miRNA in malignant melanoma. Oncogene, 27(52), 6698-6706. doi:10.1038/onc.2008.282
dc.relationMurray, B. S., Choe, S. E., Woods, M., Ryan, T. E., & Liu, W. (2010). An in silico analysis of microRNAs: mining the miRNAome. Mol Biosyst, 6(10), 1853-1862. doi:10.1039/c003961f
dc.relationNarita, M., Nunez, S., Heard, E., Narita, M., Lin, A. W., Hearn, S. A., . . . Lowe, S. W. (2003). Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell, 113(6), 703-716. doi:10.1016/s0092-8674(03)00401-x
dc.relationNicetto, D., & Zaret, K. S. (2019). Role of H3K9me3 heterochromatin in cell identity establishment and maintenance. Curr Opin Genet Dev, 55, 1-10. doi:10.1016/j.gde.2019.04.013
dc.relationNiles, R. M., & Makarski, J. S. (1978). Control of melanogenesis in mouse melanoma cells of varying metastatic potential. J Natl Cancer Inst, 61(2), 523-526. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/210294
dc.relationNishioka, E., Funasaka, Y., Kondoh, H., Chakraborty, A. K., Mishima, Y., & Ichihashi, M. (1999). Expression of tyrosinase, TRP-1 and TRP-2 in ultraviolet-irradiated human melanomas and melanocytes: TRP-2 protects melanoma cells from ultraviolet B induced apoptosis. Melanoma Res, 9(5), 433-443. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10596909
dc.relationNoguchi, S., Kumazaki, M., Yasui, Y., Mori, T., Yamada, N., & Akao, Y. (2014). MicroRNA-203 regulates melanosome transport and tyrosinase expression in melanoma cells by targeting kinesin superfamily protein 5b. J Invest Dermatol, 134(2), 461-469. doi:10.1038/jid.2013.310
dc.relationNoguchi, S., Mori, T., Otsuka, Y., Yamada, N., Yasui, Y., Iwasaki, J., . . . Akao, Y. (2012). Anti-oncogenic microRNA-203 induces senescence by targeting E2F3 protein in human melanoma cells. J Biol Chem, 287(15), 11769-11777. doi:10.1074/jbc.M111.325027
dc.relationNoren Hooten, N., & Evans, M. K. (2017). Techniques to Induce and Quantify Cellular Senescence. J Vis Exp(123). doi:10.3791/55533
dc.relationNumata, J., Ebenhoh, O., & Knapp, E. W. (2008). Measuring correlations in metabolomic networks with mutual information. Genome Inform, 20, 112-122. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/19425127
dc.relationNyholm, A. M., Lerche, C. M., Manfe, V., Biskup, E., Johansen, P., Morling, N., . . . Gniadecki, R. (2014). miR-125b induces cellular senescence in malignant melanoma. BMC Dermatol, 14, 8. doi:10.1186/1471-5945-14-8
dc.relationOmer, A., Singh, P., Yadav, N. K., & Singh, R. K. (2015). microRNAs: role in leukemia and their computational perspective. Wiley Interdiscip Rev RNA, 6(1), 65-78. doi:10.1002/wrna.1256
dc.relationOuzounova, M., Vuong, T., Ancey, P. B., Ferrand, M., Durand, G., Le-Calvez Kelm, F., . . . Hernandez-Vargas, H. (2013). MicroRNA miR-30 family regulates non-attachment growth of breast cancer cells. BMC Genomics, 14, 139. doi:10.1186/1471-2164-14-139
dc.relationPasztor, L. M., & Hu, F. (1972). An amelanotic variant of B16 malignant melanoma. Cancer Res, 32(8), 1769-1774. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/5044135
dc.relationPatterson, M. K. (1979). Measurement of growth and viability of cells in culture. Methods in Enzymology, 11, 141-152. doi:doi:10.1016/s0076-6879(79)58132-4
dc.relationPei, B., & Shin, D. G. (2012). Reconstruction of biological networks by incorporating prior knowledge into Bayesian network models. J Comput Biol, 19(12), 1324-1334. doi:10.1089/cmb.2011.0194
dc.relationPeng, D. F., Sugihara, H., & Hattori, T. (2001). Bromodeoxyuridine induces p53-dependent and -independent cell cycle arrests in human gastric carcinoma cell lines. Pathobiology, 69(2), 77-85. doi:10.1159/000048760
dc.relationPenna, E., Orso, F., Cimino, D., Tenaglia, E., Lembo, A., Quaglino, E., . . . Taverna, D. (2011). microRNA-214 contributes to melanoma tumour progression through suppression of TFAP2C. EMBO J, 30(10), 1990-2007. doi:10.1038/emboj.2011.102
dc.relationPeñaloza, L. N., & Gomez, L. A. (2000). Expresión del Gen PRL-1 en Células de Melanoma Murino B-16 Inducidas a Supresión del Crecimiento con el Sensibilizador a la Radiación Ultravioleta: Bromodeoxiuridina (Maestria), Pontificia Universidad Javeriana. Bogotá-Colombia.
dc.relationPeterson, S. M., Thompson, J. A., Ufkin, M. L., Sathyanarayana, P., Liaw, L., & Congdon, C. B. (2014). Common features of microRNA target prediction tools. Frontiers in Genetics, 5. doi:10.3389/fgene.2014.00023
dc.relationPoenitzsch Strong, A. M., Setaluri, V., & Spiegelman, V. S. (2014). microRNA-340 as a modulator of RAS–RAF–MAPK signaling in melanoma. Archives of Biochemistry and Biophysics, 563, 118-124. doi:http://dx.doi.org/10.1016/j.abb.2014.07.012
dc.relationPozarowski, P., & Darzynkiewicz, Z. (2004). Analysis of cell cycle by flow cytometry. Methods Mol Biol, 281, 301-311. doi:10.1385/1-59259-811-0:301
dc.relationPrezioso, J. A., Wang, N., Duty, L., Bloomer, W. D., & Gorelik, E. (1993). Enhancement of pulmonary metastasis formation and gamma-glutamyltranspeptidase activity in B16 melanoma induced by differentiation in vitro. Clin Exp Metastasis, 11(3), 263-274. doi:10.1007/BF00121169
dc.relationPrice, C., & Chen, J. (2014). MicroRNAs in Cancer Biology and Therapy: Current Status and Perspectives. Genes Dis, 1(1), 53-63. doi:10.1016/j.gendis.2014.06.004
dc.relationPrice, P. M. (1976). The effect of 5-bromodeoxyuridine on messenger RNA production in cultured cells. Biochim Biophys Acta, 447(3), 304-311. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/987803
dc.relationPritchard, C. C., Cheng, H. H., & Tewari, M. (2012). MicroRNA profiling: approaches and considerations. Nat Rev Genet, 13(5), 358-369. doi:10.1038/nrg3198
dc.relationQi, M., Huang, X., Zhou, L., & Zhang, J. (2014). Identification of differentially expressed microRNAs in metastatic melanoma using next-generation sequencing technology. Int J Mol Med, 33(5), 1117-1121. doi:10.3892/ijmm.2014.1668
dc.relationQiu, H. J., Lu, X. H., Yang, S. S., Weng, C. Y., Zhang, E. K., & Chen, F. C. (2016). MiR-769 promoted cell proliferation in human melanoma by suppressing GSK3B expression. Biomed Pharmacother, 82, 117-123. doi:10.1016/j.biopha.2016.04.052
dc.relationRambow, F., Bechadergue, A., Luciani, F., Gros, G., Domingues, M., Bonaventure, J., . . . Larue, L. (2016). Regulation of Melanoma Progression through the TCF4/miR-125b/NEDD9 Cascade. J Invest Dermatol, 136(6), 1229-1237. doi:10.1016/j.jid.2016.02.803
dc.relationRamirez, C. A., & Gomez, L. A. (2005). Extracción y solubilidad de la melanina total producida por células de melanoma murino B16 expuestas al aminoácido L-tirosina. Laboratorio de Fisiología Molecular. Instituto Nacional de Salud.
dc.relationRauth, S., & Davidson, R. L. (1993). Suppression of tyrosinase gene expression by bromodeoxyuridine in Syrian hamster melanoma cells is not due to its incorporation into upstream or coding sequences of the tyrosinase gene. Somat Cell Mol Genet, 19(3), 285-293. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8332936
dc.relationRauth, S., Hoganson, G. E., & Davidson, R. L. (1990). Bromodeoxyuridine- and cyclic AMP-mediated regulation of tyrosinase in Syrian hamster melanoma cells. Somat Cell Mol Genet, 16(6), 583-592. doi:10.1007/BF01233099
dc.relationRen, J. W., Li, Z. J., & Tu, C. (2015). MiR-135 post-transcriptionally regulates FOXO1 expression and promotes cell proliferation in human malignant melanoma cells. Int J Clin Exp Pathol, 8(6), 6356-6366. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/26261511
dc.relationRieber, M., & Rieber, M. S. (1994). Cyclin-dependent kinase 2 and cyclin A interaction with E2F are targets for tyrosine induction of B16 melanoma terminal differentiation. Cell Growth Differ, 5(12), 1339-1346. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/7696182
dc.relationRieber, M., & Strasberg-Rieber, M. (1998). Induction of p53 and melanoma cell death is reciprocal with down-regulation of E2F, cyclin D1 and pRB. Int J Cancer, 76(5), 757-760. doi:10.1002/(sici)1097-0215(19980529)76:5<757::aid-ijc22>3.0.co;2-#
dc.relationRieber, M., & Strasberg Rieber, M. (1998). Induction of p53 without increase in p21WAF1 in betulinic acid-mediated cell death is preferential for human metastatic melanoma. DNA Cell Biol, 17(5), 399-406. doi:10.1089/dna.1998.17.399
dc.relationRodier, F., & Campisi, J. (2011). Four faces of cellular senescence. J Cell Biol, 192(4), 547-556. doi:10.1083/jcb.201009094
dc.relationRothhammer, T., & Bosserhoff, A. K. (2007). Epigenetic events in malignant melanoma. Pigment Cell Res, 20(2), 92-111. doi:10.1111/j.1600-0749.2007.00367.x
dc.relationRyu, B., Kim, D. S., Deluca, A. M., & Alani, R. M. (2007). Comprehensive expression profiling of tumor cell lines identifies molecular signatures of melanoma progression. PLoS One, 2(7), e594. doi:10.1371/journal.pone.0000594
dc.relationSalama, R., Sadaie, M., Hoare, M., & Narita, M. (2014). Cellular senescence and its effector programs. Genes Dev, 28(2), 99-114. doi:10.1101/gad.235184.113
dc.relationSand, M., Skrygan, M., Sand, D., Georgas, D., Gambichler, T., Hahn, S. A., . . . Bechara, F. G. (2013). Comparative microarray analysis of microRNA expression profiles in primary cutaneous malignant melanoma, cutaneous malignant melanoma metastases, and benign melanocytic nevi. Cell Tissue Res, 351(1), 85-98. doi:10.1007/s00441-012-1514-5
dc.relationSantiesteban, R. J., C (2012). Redes Bayesianas. Revista Vinculando. Retrieved from http://vinculando.org/articulos/redes-bayesianas.html
dc.relationSarangarajan, R., & Apte, S. P. (2006). The polymerization of melanin: a poorly understood phenomenon with egregious biological implications. Melanoma Res, 16(1), 3-10. doi:10.1097/01.cmr.0000195699.35143.df
dc.relationSarkar, D., Leung, E. Y., Baguley, B. C., Finlay, G. J., & Askarian-Amiri, M. E. (2015). Epigenetic regulation in human melanoma: past and future. Epigenetics, 10(2), 103-121. doi:10.1080/15592294.2014.1003746
dc.relationSchefe, J. H., Lehmann, K. E., Buschmann, I. R., Unger, T., & Funke-Kaiser, H. (2006). Quantitative real-time RT-PCR data analysis: current concepts and the novel "gene expression's CT difference" formula. J Mol Med (Berl), 84(11), 901-910. doi:10.1007/s00109-006-0097-6
dc.relationSchultz, J., Lorenz, P., Gross, G., Ibrahim, S., & Kunz, M. (2008). MicroRNA let-7b targets important cell cycle molecules in malignant melanoma cells and interferes with anchorage-independent growth. Cell Res, 18(5), 549-557. doi:10.1038/cr.2008.45
dc.relationSegura, M. F., Hanniford, D., Menendez, S., Reavie, L., Zou, X., Alvarez-Diaz, S., . . . Hernando, E. (2009). Aberrant miR-182 expression promotes melanoma metastasis by repressing FOXO3 and microphthalmia-associated transcription factor. Proc Natl Acad Sci U S A, 106(6), 1814-1819. doi:10.1073/pnas.0808263106
dc.relationSerguienko, A., Grad, I., Wennerstrom, A. B., Meza-Zepeda, L. A., Thiede, B., Stratford, E. W., . . . Munthe, E. (2015). Metabolic reprogramming of metastatic breast cancer and melanoma by let-7a microRNA. Oncotarget, 6(4), 2451-2465. doi:10.18632/oncotarget.3235
dc.relationSerrano, M., Lin, A. W., McCurrach, M. E., Beach, D., & Lowe, S. W. (1997). Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell, 88(5), 593-602. doi:10.1016/s0092-8674(00)81902-9
dc.relationSestakova, B., Ondrusova, L., & Vachtenheim, J. (2010). Cell cycle inhibitor p21/ WAF1/ CIP1 as a cofactor of MITF expression in melanoma cells. Pigment Cell Melanoma Res, 23(2), 238-251. doi:10.1111/j.1755-148X.2010.00670.x
dc.relationSetijono, S. R., Park, M., Kim, G., Kim, Y., Cho, K. W., & Song, S. J. (2018). miR-218 and miR-129 regulate breast cancer progression by targeting Lamins. Biochem Biophys Res Commun, 496(3), 826-833. doi:10.1016/j.bbrc.2018.01.146
dc.relationShain, A. H., Yeh, I., Kovalyshyn, I., Sriharan, A., Talevich, E., Gagnon, A., . . . Bastian, B. C. (2015). The Genetic Evolution of Melanoma from Precursor Lesions. N Engl J Med, 373(20), 1926-1936. doi:10.1056/NEJMoa1502583
dc.relationShain, A. H., Yeh, I., Kovalyshyn, I., Sriharan, A., Talevich, E., Gagnon, A., . . . Bastian, B. C. (2015). The Genetic Evolution of Melanoma from Precursor Lesions. New England Journal of Medicine, 373(20), 1926-1936. doi:doi:10.1056/NEJMoa1502583
dc.relationShen, X., Kong, S., Yang, Q., Yin, Q., Cong, H., Wang, X., & Ju, S. (2020). PCAT-1 promotes cell growth by sponging miR-129 via MAP3K7/NF-kappaB pathway in multiple myeloma. J Cell Mol Med. doi:10.1111/jcmm.15035
dc.relationSheppard, K. E., & McArthur, G. A. (2013). The cell-cycle regulator CDK4: an emerging therapeutic target in melanoma. Clin Cancer Res, 19(19), 5320-5328. doi:10.1158/1078-0432.CCR-13-0259
dc.relationShin, S. Y., Kim, C. G., Lim, Y., & Lee, Y. H. (2011). The ETS family transcription factor ELK-1 regulates induction of the cell cycle-regulatory gene p21(Waf1/Cip1) and the BAX gene in sodium arsenite-exposed human keratinocyte HaCaT cells. J Biol Chem, 286(30), 26860-26872. doi:10.1074/jbc.M110.216721
dc.relationSiegel, R. L., Miller, K. D., & Jemal, A. (2020). Cancer statistics, 2020. CA Cancer J Clin, 70(1), 7-30. doi:10.3322/caac.21590
dc.relationSilagi, S. (1976). Effects of 5-bromodeoxyuridine on tumorigenicity, immunogenicity, virus production, plasminogen activator, and melanogenesis of mouse melanoma cells. Int Rev Cytol, 45, 65-111. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/821894
dc.relationSilagi, S., & Bruce, S. A. (1970). Suppression of malignancy and differentiation in melanotic melanoma cells. Proc Natl Acad Sci U S A, 66(1), 72-78. doi:10.1073/pnas.66.1.72
dc.relationSlominski, A. (1989). L-tyrosine induces synthesis of melanogenesis related proteins. Life Sci, 45(19), 1799-1803. doi:10.1016/0024-3205(89)90520-1
dc.relationSlominski, A., & Paus, R. (1990). Are L-tyrosine and L-dopa hormone-like bioregulators? J Theor Biol, 143(1), 123-138. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/2359315
dc.relationSlominski, A., Tobin, D. J., Shibahara, S., & Wortsman, J. (2004). Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol Rev, 84(4), 1155-1228. doi:10.1152/physrev.00044.2003
dc.relationSlominski, A., Zmijewski, M. A., & Pawelek, J. (2012). L-tyrosine and L-dihydroxyphenylalanine as hormone-like regulators of melanocyte functions. Pigment Cell Melanoma Res, 25(1), 14-27. doi:10.1111/j.1755-148X.2011.00898.x
dc.relationSmith, V. A., Yu, J., Smulders, T. V., Hartemink, A. J., & Jarvis, E. D. (2006). Computational inference of neural information flow networks. PLoS Comput Biol, 2(11), e161. doi:10.1371/journal.pcbi.0020161
dc.relationSolano, F. (2014). Melanins: Skin Pigments and Much More—Types, Structural Models, Biological Functions, and Formation Routes. New Journal of Science, 2014. doi:http://dx.doi.org/10.1155/2014/498276
dc.relationStead, E., White, J., Faast, R., Conn, S., Goldstone, S., Rathjen, J., . . . Dalton, S. (2002). Pluripotent cell division cycles are driven by ectopic Cdk2, cyclin A/E and E2F activities. Oncogene, 21(54), 8320-8333. doi:10.1038/sj.onc.1206015
dc.relationStrasberg Rieber, M., & Rieber, M. (1995). Suppression of cyclin D1 but not cdk4 or cyclin A with induction of melanoma terminal differentiation. Biochem Biophys Res Commun, 216(1), 422-427. doi:10.1006/bbrc.1995.2640
dc.relationStreicher, K. L., Zhu, W., Lehmann, K. P., Georgantas, R. W., Morehouse, C. A., Brohawn, P., . . . Yao, Y. (2012). A novel oncogenic role for the miRNA-506-514 cluster in initiating melanocyte transformation and promoting melanoma growth. Oncogene, 31(12), 1558-1570. doi:10.1038/onc.2011.345
dc.relationSu, W., Hong, L., Xu, X., Huang, S., Herpai, D., Li, L., . . . Sun, P. (2018). miR-30 disrupts senescence and promotes cancer by targeting both p16(INK4A) and DNA damage pathways. Oncogene, 37(42), 5618-5632. doi:10.1038/s41388-018-0358-1
dc.relationSuh, N. (2018). MicroRNA controls of cellular senescence. BMB Rep, 51(10), 493-499. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/30269742
dc.relationSun, V., Zhou, W. B., Majid, S., Kashani-Sabet, M., & Dar, A. A. (2014). MicroRNA-mediated regulation of melanoma. Br J Dermatol, 171(2), 234-241. doi:10.1111/bjd.12989
dc.relationSun, V., Zhou, W. B., Nosrati, M., Majid, S., Thummala, S., de Semir, D., . . . Dar, A. A. (2015). Antitumor activity of miR-1280 in melanoma by regulation of Src. Mol Ther, 23(1), 71-78. doi:10.1038/mt.2014.176
dc.relationSuzuki, T., Michishita, E., Ogino, H., Fujii, M., & Ayusawa, D. (2002). Synergistic induction of the senescence-associated genes by 5-bromodeoxyuridine and AT-binding ligands in HeLa cells. Exp Cell Res, 276(2), 174-184. doi:10.1006/excr.2002.5524
dc.relationSuzuki, T., Minagawa, S., Michishita, E., Ogino, H., Fujii, M., Mitsui, Y., & Ayusawa, D. (2001). Induction of senescence-associated genes by 5-bromodeoxyuridine in HeLa cells. Exp Gerontol, 36(3), 465-474. doi:10.1016/s0531-5565(00)00223-0
dc.relationSwoboda, R. K., & Herlyn, M. (2013). There is a world beyond protein mutations: the role of non-coding RNAs in melanomagenesis. Exp Dermatol, 22(5), 303-306. doi:10.1111/exd.12117
dc.relationTam, S. W., Theodoras, A. M., Shay, J. W., Draetta, G. F., & Pagano, M. (1994). Differential expression and regulation of Cyclin D1 protein in normal and tumor human cells: association with Cdk4 is required for Cyclin D1 function in G1 progression. Oncogene, 9(9), 2663-2674. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8058330
dc.relationTang, H., Zhu, J., Du, W., Liu, S., Zeng, Y., Ding, Z., . . . Huang, J. (2018). CPNE1 is a target of miR-335-5p and plays an important role in the pathogenesis of non-small cell lung cancer. J Exp Clin Cancer Res, 37(1), 131. doi:10.1186/s13046-018-0811-6
dc.relationTay, Y., Zhang, J., Thomson, A. M., Lim, B., & Rigoutsos, I. (2008). MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature, 455(7216), 1124-1128. doi:10.1038/nature07299
dc.relationTerry, N. H., & White, R. A. (2006). Flow cytometry after bromodeoxyuridine labeling to measure S and G2+M phase durations plus doubling times in vitro and in vivo. Nat Protoc, 1(2), 859-869. doi:10.1038/nprot.2006.113
dc.relationThomas, L., Chan, P. W., Chang, S., & Damsky, C. (1993). 5-Bromo-2-deoxyuridine regulates invasiveness and expression of integrins and matrix-degrading proteinases in a differentiated hamster melanoma cell. J Cell Sci, 105 ( Pt 1), 191-201. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8360273
dc.relationThomson, D. W., Bracken, C. P., & Goodall, G. J. (2011). Experimental strategies for microRNA target identification. Nucleic Acids Res, 39(16), 6845-6853. doi:10.1093/nar/gkr330
dc.relationTreiber, T., Treiber, N., & Meister, G. (2019). Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nat Rev Mol Cell Biol, 20(1), 5-20. doi:10.1038/s41580-018-0059-1
dc.relationTucker, M. A., & Goldstein, A. M. (2003). Melanoma etiology: where are we? Oncogene, 22(20), 3042-3052. doi:10.1038/sj.onc.1206444
dc.relationTuncbag, N., Braunstein, A., Pagnani, A., Huang, S. S., Chayes, J., Borgs, C., . . . Fraenkel, E. (2013). Simultaneous reconstruction of multiple signaling pathways via the prize-collecting steiner forest problem. J Comput Biol, 20(2), 124-136. doi:10.1089/cmb.2012.0092
dc.relationUlrich, K., Tritsch, G. L., & Moore, G. E. (1968). Tyrosine utilization by pigmented hamster melanoma cells cultured in vitro. Int J Cancer, 3(4), 446-453. doi:10.1002/ijc.2910030405
dc.relationUrán, M. E., & Cano, L. E. (2008). Melanina: implicaciones en la patogénesis de algunas enfermedades y su capacidad de evadir la respuesta inmune del hospedero. Infectio, 12, 128-148. Retrieved from http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0123-93922008000200007&nrm=iso
dc.relationVelazquez-Torres, G., Shoshan, E., Ivan, C., Huang, L., Fuentes-Mattei, E., Paret, H., . . . Bar-Eli, M. (2018). A-to-I miR-378a-3p editing can prevent melanoma progression via regulation of PARVA expression. Nat Commun, 9(1), 461. doi:10.1038/s41467-018-02851-7
dc.relationVitiello, M., Tuccoli, A., D'Aurizio, R., Sarti, S., Giannecchini, L., Lubrano, S., . . . Poliseno, L. (2017). Context-dependent miR-204 and miR-211 affect the biological properties of amelanotic and melanotic melanoma cells. Oncotarget, 8(15), 25395-25417. doi:10.18632/oncotarget.15915
dc.relationVolinia, S., Galasso, M., Costinean, S., Tagliavini, L., Gamberoni, G., Drusco, A., . . . Croce, C. M. (2010). Reprogramming of miRNA networks in cancer and leukemia. Genome Res, 20(5), 589-599. doi:10.1101/gr.098046.109
dc.relationWang, D., Qiu, C., Zhang, H., Wang, J., Cui, Q., & Yin, Y. (2010). Human microRNA oncogenes and tumor suppressors show significantly different biological patterns: from functions to targets. PLoS One, 5(9). doi:10.1371/journal.pone.0013067
dc.relationWang, H. F., Chen, H., Ma, M. W., Wang, J. A., Tang, T. T., Ni, L. S., . . . Bai, B. X. (2013). miR-573 regulates melanoma progression by targeting the melanoma cell adhesion molecule. Oncol Rep, 30(1), 520-526. doi:10.3892/or.2013.2451
dc.relationWang, P., Zhao, Y., Fan, R., Chen, T., & Dong, C. (2016). MicroRNA-21a-5p Functions on the Regulation of Melanogenesis by Targeting Sox5 in Mouse Skin Melanocytes. Int J Mol Sci, 17(7). doi:10.3390/ijms17070959
dc.relationWang, T., & Xu, Z. (2010). miR-27 promotes osteoblast differentiation by modulating Wnt signaling. Biochem Biophys Res Commun, 402(2), 186-189. doi:10.1016/j.bbrc.2010.08.031
dc.relationWang, Z., Zhao, Z., Yang, Y., Luo, M., Zhang, M., Wang, X., . . . Huang, C. (2018). MiR-99b-5p and miR-203a-3p Function as Tumor Suppressors by Targeting IGF-1R in Gastric Cancer. Sci Rep, 8(1), 10119. doi:10.1038/s41598-018-27583-y
dc.relationWatanabe, Y., Tomita, M., & Kanai, A. (2007). Computational methods for microRNA target prediction. Methods Enzymol, 427, 65-86. doi:10.1016/S0076-6879(07)27004-1
dc.relationWeller, E. M., Dietrich, I., Viaggi, S., Beisker, W., & Nusse, M. (1993). Flow cytometric analysis of bromodeoxyuridine-induced micronuclei. Mutagenesis, 8(5), 437-444. doi:10.1093/mutage/8.5.437
dc.relationWrathall, J. R., Oliver, C., Silagi, S., & Essner, E. (1973). Suppression of pigmentation in mouse melanoma cells by 5-bromodeoxyuridine: effects on tyrosinase activity and melanosome formation. J Cell Biol, 57(2), 406-423. doi:10.1083/jcb.57.2.406
dc.relationWu, C., Jin, B., Chen, L., Zhuo, D., Zhang, Z., Gong, K., & Mao, Z. (2013). MiR-30d induces apoptosis and is regulated by the Akt/FOXO pathway in renal cell carcinoma. Cell Signal, 25(5), 1212-1221. doi:10.1016/j.cellsig.2013.01.028
dc.relationWu, Q., Guo, L., Jiang, F., Li, L., Li, Z., & Chen, F. (2015). Analysis of the miRNA-mRNA-lncRNA networks in ER+ and ER- breast cancer cell lines. J Cell Mol Med, 19(12), 2874-2887. doi:10.1111/jcmm.12681
dc.relationXu, J., Li, C. X., Li, Y. S., Lv, J. Y., Ma, Y., Shao, T. T., . . . Li, X. (2011). MiRNA-miRNA synergistic network: construction via co-regulating functional modules and disease miRNA topological features. Nucleic Acids Res, 39(3), 825-836. doi:10.1093/nar/gkq832
dc.relationXu, J., & Wong, C. W. (2013). Enrichment analysis of miRNA targets. Methods Mol Biol, 936, 91-103. doi:10.1007/978-1-62703-083-0_8
dc.relationXu, S., Ge, J., Zhang, Z., & Zhou, W. (2017). MiR-129 inhibits cell proliferation and metastasis by targeting ETS1 via PI3K/AKT/mTOR pathway in prostate cancer. Biomed Pharmacother, 96, 634-641. doi:10.1016/j.biopha.2017.10.037
dc.relationXu, S., Yi, X. M., Zhang, Z. Y., Ge, J. P., & Zhou, W. Q. (2016). miR-129 predicts prognosis and inhibits cell growth in human prostate carcinoma. Mol Med Rep, 14(6), 5025-5032. doi:10.3892/mmr.2016.5859
dc.relationXu, Y., Brenn, T., Brown, E. R., Doherty, V., & Melton, D. W. (2012). Differential expression of microRNAs during melanoma progression: miR-200c, miR-205 and miR-211 are downregulated in melanoma and act as tumour suppressors. Br J Cancer, 106(3), 553-561. doi:10.1038/bjc.2011.568
dc.relationYa, G., Wang, H., Ma, Y., Hu, A., Ma, Y., Hu, J., & Yu, Y. (2017). Serum miR-129 functions as a biomarker for colorectal cancer by targeting estrogen receptor (ER) beta. Pharmazie, 72(2), 107-112. doi:10.1691/ph.2017.6718
dc.relationYang, C. H., Yue, J., Pfeffer, S. R., Handorf, C. R., & Pfeffer, L. M. (2011). MicroRNA miR-21 regulates the metastatic behavior of B16 melanoma cells. J Biol Chem, 286(45), 39172-39178. doi:10.1074/jbc.M111.285098
dc.relationYao, B., La, L. B., Chen, Y. C., Chang, L. J., & Chan, E. K. (2012). Defining a new role of GW182 in maintaining miRNA stability. EMBO Rep, 13(12), 1102-1108. doi:10.1038/embor.2012.160
dc.relationYao, S. (2016). MicroRNA biogenesis and their functions in regulating stem cell potency and differentiation. Biol Proced Online, 18, 8. doi:10.1186/s12575-016-0037-y
dc.relationYepes, S., Lopez, R., Andrade, R. E., Rodriguez-Urrego, P. A., Lopez-Kleine, L., & Torres, M. M. (2016). Co-expressed miRNAs in gastric adenocarcinoma. Genomics, 108(2), 93-101. doi:10.1016/j.ygeno.2016.07.002
dc.relationYu, X., Lin, J., Zack, D. J., Mendell, J. T., & Qian, J. (2008). Analysis of regulatory network topology reveals functionally distinct classes of microRNAs. Nucleic Acids Res, 36(20), 6494-6503. doi:10.1093/nar/gkn712
dc.relationYu, Y., Schleich, K., Yue, B., Ji, S., Lohneis, P., Kemper, K., . . . Lee, S. (2018). Targeting the Senescence-Overriding Cooperative Activity of Structurally Unrelated H3K9 Demethylases in Melanoma. Cancer Cell, 33(2), 322-336 e328. doi:10.1016/j.ccell.2018.01.002
dc.relationZeng, A., Yin, J., Li, Y., Li, R., Wang, Z., Zhou, X., . . . You, Y. (2018). miR-129-5p targets Wnt5a to block PKC/ERK/NF-kappaB and JNK pathways in glioblastoma. Cell Death Dis, 9(3), 394. doi:10.1038/s41419-018-0343-1
dc.relationZhang, D., & Yang, N. (2019). MiR-335-5p Inhibits Cell Proliferation, Migration and Invasion in Colorectal Cancer through Downregulating LDHB. J BUON, 24(3), 1128-1136. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/31424671
dc.relationZhang, L. L., Zhang, L. F., Guo, X. H., Zhang, D. Z., Yang, F., & Fan, Y. Y. (2018). Downregulation of miR-335-5p by Long Noncoding RNA ZEB1-AS1 in Gastric Cancer Promotes Tumor Proliferation and Invasion. DNA Cell Biol, 37(1), 46-52. doi:10.1089/dna.2017.3926
dc.relationZhang, P., Li, J., Song, Y., & Wang, X. (2017). MiR-129-5p Inhibits Proliferation and Invasion of Chondrosarcoma Cells by Regulating SOX4/Wnt/beta-Catenin Signaling Pathway. Cell Physiol Biochem, 42(1), 242-253. doi:10.1159/000477323
dc.relationZhang, R., Xu, J., Zhao, J., & Bai, J. (2017). Mir-30d suppresses cell proliferation of colon cancer cells by inhibiting cell autophagy and promoting cell apoptosis. Tumour Biol, 39(6), 1010428317703984. doi:10.1177/1010428317703984
dc.relationZhang, X., Lin, D., Lin, Y., Chen, H., Zou, M., Zhong, S., . . . Han, S. (2017). Proteasome beta-4 subunit contributes to the development of melanoma and is regulated by miR-148b. Tumour Biol, 39(6), 1010428317705767. doi:10.1177/1010428317705767
dc.relationZhang, Z., Zhang, S., Ma, P., Jing, Y., Peng, H., Gao, W.-Q., & Zhuang, G. (2015). Lin28B promotes melanoma growth by mediating a microRNA regulatory circuit. Carcinogenesis, 36(9), 937-945. doi:10.1093/carcin/bgv085
dc.relationZhao, J. J., Lin, J., Zhu, D., Wang, X., Brooks, D., Chen, M., . . . Carrasco, R. (2014). miR-30-5p functions as a tumor suppressor and novel therapeutic tool by targeting the oncogenic Wnt/beta-catenin/BCL9 pathway. Cancer Res, 74(6), 1801-1813. doi:10.1158/0008-5472.CAN-13-3311-T
dc.relationZhou, J., Xu, D., Xie, H., Tang, J., Liu, R., Li, J., . . . Cao, K. (2015). miR-33a functions as a tumor suppressor in melanoma by targeting HIF-1alpha. Cancer Biol Ther, 16(6), 846-855. doi:10.1080/15384047.2015.1030545
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleEvaluación de miRNAs en la línea celular de melanoma B16 inducida a pigmentación diferencial y disminución del crecimiento celular por la L-Tirosina y la 5-bromo-2´-deoxiuridina
dc.typeOtro


Este ítem pertenece a la siguiente institución