dc.contributorCiro Velásquez, Héctor José
dc.contributorChejne Janna, Farid
dc.creatorLargo Avila, Esteban
dc.date.accessioned2021-05-07T21:38:48Z
dc.date.accessioned2022-09-21T15:47:02Z
dc.date.available2021-05-07T21:38:48Z
dc.date.available2022-09-21T15:47:02Z
dc.date.created2021-05-07T21:38:48Z
dc.date.issued2020-03-18
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/79488
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional UN
dc.identifierhttps://repositorio.unal.edu.co/
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3385135
dc.description.abstractLa calidad del café evaluada a partir de su composición química, características físicas y organolépticas se ha convertido en un tema de investigación de importancia nacional e internacional para lograr una mejor comercialización del grano de café pergamino. Se realizó un estudio del efecto del secado solar intermitente (intermitencia provocada por el día y la noche) sobre algunos compuestos químicos de interés en la calidad del café. El efecto del secado se correlacionó con atributos sensoriales para la especie C. arabica variedades Caturra y Castillo®. En la primera etapa experimental se realizó un diseño factorial por bloques con variables independientes: 6 niveles para el proceso de secado (secado mecánico: 40 ° C y 50 ºC con caudal de aire de 60 y 100 m3∙min-1∙t-1cps; secado con exposición al sol directo y secado solar en marquesina) y 2 niveles para la variedad de café (Caturra y Castillo®). Los experimentos de secado con dos repeticiones se realizaron en 3 fincas del departamento de Antioquia. En la segunda etapa experimental se construyó una marquesina para realizar el secado solar de café variedad Castillo® con recomendaciones técnicas del Comité de Cafeteros de Antioquia. Las variables como temperatura, humedad relativa y radiación solar dentro de la Marquesina se registraron con un Datalogger. Las curvas de pérdida de peso del café durante el secado solar y mecánico se construyeron bajo el método Gravimet (Cenicafé). La concentración de varios ácidos grasos y sacarosa se midió con técnicas de HPLC y GC-MS, y se concluyó que el tiempo de secado al sol afecta la evolución de estos compuestos. En este sentido, los procesos de secado al sol durante un período de tiempo más prolongado, como los de los sistemas artesanales (marquesina) condicionados por las condiciones climáticas y sometidos a la energía solar, hacen que los ácidos grasos y la sacarosa en los granos de café disminuyan de manera más significativa. En este estudio, se desarrolló un modelo matemático 1D para predecir la evolución temporal de la pérdida de humedad durante el secado solar, y se validó con éxito con datos experimentales.
dc.description.abstractThe quality of coffee evaluated from its chemical composition, physical and organoleptic characteristics has become a research topic of national and international importance to achieve a better commercialization of parchment coffee bean. A study was carried out of the effect of intermittent solar drying (intermittence caused by day and night) on some chemical compounds of interest in the quality of coffee. The effect of drying was correlated with sensory attributes for the species C. arabica varieties Caturra and Castillo®. In the first experimental stage, a factorial design by blocks was carried out with independent variables: 6 levels for the drying process (mechanical drying: 40 °C and 50 ºC with air flow of 60 and 100 m3/min∙tonCPS; drying with exposure to direct sun and solar drying in marquesina) and 2 levels for a variety of coffee (Caturra and Castillo®). The drying experiments with two repetitions were carried out in 3 farms in the department of Antioquia. In the second experimental stage, a canopy was built to carry out the solar drying of Castillo® variety coffee with technical recommendations from the Comite de Cafeteros de Antioquia. Variables as temperature, relative humidity and solar radiation inside the Marquesina were recorded with a Datalogger. The coffee weight loss curves during solar and mechanical drying were constructed under the Gravimet method (Cenicafé). The concentration of several fatty acids and sucrose was measured with HPLC and GC-MS techniques, and it was concluded that the sun-drying time affects the evolution of these compounds. In this sense, sun-drying processes over a longer period of time, such as those in handcrafted systems (marquesina) conditioned by climate conditions and subjected to sunlight energy, cause the fatty acids and sucrose in the coffee grains to decrease more significantly. In this study, a 1D mathematical model was developed for predicting the time evolution of the moisture loss during solar drying and was successfully validated with experimental data.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia - Sede Medellín
dc.publisherMedellín - Minas - Doctorado en Ingeniería - Sistemas Energéticos
dc.publisherDepartamento de Procesos y Energía
dc.publisherFacultad de Minas
dc.publisherMedellín
dc.publisherUniversidad Nacional de Colombia - Sede Medellín
dc.relationReferencias Introducción general Alcázar, A., Fernandéz, P., Martín, M., Pablos, F., & González. (2003). Ion chromatographic determination of some organic acids, chloride and phosphate in coffee and tea. Talanta, 61(2), 95–101. Andrade, Ednilton T. De, Isabella A. Lemos, Camila De A. Dias, Paula De A. Rios, and Flavio M. Borém. 2019. “Mathematical modelling and immediate and latent quality of natural immature coffee under different drying conditions.” Engenharia Agrícola 39(5):630–38. Aristizábal C y Duque H. (2005). Caracterización del proceso de beneficio de café en cinco departamentos cafeteros de Colombia. Cenicafé, 56(4); 299 – 318. Arnold, U., Ludwig, E., Kiihn, R., & Mschwitzer, U. (1994). Original paper Analysis of free amino acids in green coffee beans. Lebensm Unters Forsch, 199, 22–25. ASIC. 2014. (11 de septiembre de 2014). 25 conferencia sobre ciencia y café. Armenia, Quindio. Avelino, J., Barboza, B., Araya, J. C., Fonseca, C., Davrieux, F., Guyot, B., & Cilas, C. (2005). Effects of slope exposure, altitude and yield on coffee quality in two altitudeterroirs of Costa Rica, Orosi and Santa María de Dota. Journal of the Science of Food and Agriculture, 85(11), 1869–1876. Bacon, C. “Confronting the Coffee Crisis: Can Fair Trade, Organic, and Specialty Coffees Reduce Small-Scale Farmer Vulnerability in Northern Nicaragua?”World Development 33,3(2005):497–511. Banco de la República - Colombia. (2018). BANREP. Recuperado el 20 junio de 2018, de PIB: http://www.banrep.gov.co/ Belessiotis V and Delyannis E. (2011). Solar drying. Solar Energy, 85; 1665–1691. Belitz, D., Grosch, W., and Schieberle,P. (2009). Food Chem., ed. H.-D. Belitz, W. Grosch and P. Schieberle, Springer, Berlin, 4th edn, 2009, vol. 21, pp. 938–951. Bertrand, B., Boulanger, R., Dussert, S., Ribeyre, F., Berthiot, L., Descroix, F., & Joët, T. (2012). Climatic factors directly impact the volatile organic compound fingerprint in green Arabica coffee bean as well as coffee beverage quality. Food Chemistry, 135(4), 2575–83. Borém, F. M., Marques, E. R., & Alves, E. (2008). Ultrastructural analysis of drying damage in parchment Arabica coffee endosperm cells. Biosystems Engineering, 99(1), 62–66. https://doi.org/10.1016/j.biosystemseng.2007.09.027 Borém, Flávio Meira, de Oliveira, P. D., Isquierdo, E. P., Giomo, G. da S., Saath, R., & Cardoso, R. A. (2013). Scanning electron microscopy of coffee beans subjected to different forms of processing and drying. Coffee Science, 8(2), 227–237. https://doi.org/10.25186/cs.v8i2.420 Borém, Flávio Meira, Isquierdo, E. P., Oliveira, P. D., Ribeiro, F. C., Siqueira, V. C., & Taveira, J. H. da S. (2014). Effect of intermittent drying and storage on parchment coffee quality. Bioscience Journal, 30(5), 609–616. Botero, J., & Betancur, W. (2012). Buenas prácticas agrícolas en el beneficio del café en Colombia. Trabajo de grado para optar al título de Agrónomo. Escuela de Ciencias Agrícolas, Pecuarias y del Medio Ambiente. Universidad Nacional de Colombia, Medellín. 85 p. Brooker, D. B., Bakker-Arkema, F.W. & Hall C. W. (1973). Drying Cereal Grain. The AVI Publishing Company. Westport, Connecticut. USA. 265 p. Burmester, K., Eggers, R. (2010). Heat and mass transfer during the coffee drying process. Journal of Food Engineering, 99, 430–436. Cannon, R. J., Trinnaman, L., Grainger, B., & Trail, A. (2010). The key odorants of coffee from various geographical locations. In N. C. Da Costa, & R. J. Cannon (Eds.), Flavors in noncarbonated beverages, Vol. 1036. (pp. 77–90): American Chemical Society. Cano, C. G., Vallejo, C., Caicedo, E., Amador, J. S., & Tique, E. Y. (2012). Borradores de Economía: El mercado mundial del café y su impacto en Colombia. Bogotá - Colombia. 57 p. Caporaso, N., Whitworth, M., Cui, C., & Fisk, I. (Junio de 2018). Variability of single bean coffee volatile compounds of Arabica and robusta roasted coffees analysed by SPME-GC-MS. Food Research International, 108, 628-640. Castillo ZJ. (1990). Mejoramiento genético del café en Colombia. (pp. 46 - 53). Presentado en 50 años de Cenicafé 1938-1958. Conferencias conmemorativas., Chinchiná, Cenicafé: CENTRO NACIONAL DE INVESTIGACIONES DE CAFÉ. Castoldi, G., & Castoldi, G. (2013). Pré-processamento e secagem de café. Revista Varia Scientia Agrárias, 3(2), 175–193. Cenicafé. Centro Nacional de Investigaciones de Café. (2004). Beneficio del café II: Secado del café Pergamino. Recuperado de: http://www.cenicafe.org/es/publications/cartilla_21._Secado_del_cafe.pdf Chacón, E. (2001). Evaluación de los sistemas tradicional y ecológico de beneficio húmedo de café. Trabajo de grado para optar al título de Ingeniero Agrónomo. Zamorano, Honduras. 52p. Cheng, K., Dong, W., Long, Y., Zhao, J., Hu, R., Zhang, Y., & Zhu, K. (2019). Evaluation of the impact of different drying methods on the phenolic compounds, antioxidant activity, and in vitro digestion of green coffee beans. Food Science and Nutrition, 7(3), 1084–1095. https://doi.org/10.1002/fsn3.948 Chung, T.J. (2010). Computational fluid dynamics. Cambridge University Press. New York, USA. 1058 p. Ciro, H.J., Abud L. C. & Perez L.R. (2010). Numerical simulation of thin layer coffee drying by control volumes. Dyna; 77, (163): 270­278. Cruz, D., Lopez, E., Pascual, L. F., & Battaglia, M. (2010). Guía técnica de construcción y funcionamiento de secadoras solares tipo domo. Journal of Agriculture and Environment for International Development, 104(3-4), 125–138. Damatta, F., Avila, R., & Cardoso, A. (Marzo de 2018). Physiological and agronomic performance of the coffee crop in the context of climate change and global warming: A Review. Agricultural and food chemistry. De Almeida Dias, C., Tavares de Andrade, E., Àvila Lemos, I., Meira Borém, F., Nogueira Westerich, D., & Claudia Almeida da Silva, A. (2020). Mathematical modeling of dehydration resistance of pericarp tissues and endosperm in fruits of arabic coffee. Coffee Science, 15(1957), 1–9. https://doi.org/10.25186/.v15i.1670 De Paula Lima, J., & Farah, A. (2019). Chapter 23 Caffeine and Minor Methylxanthines in Coffee. In Coffee: Production, Quality and Chemistry (pp. 543–564). The Royal Society of Chemistry. https://doi.org/10.1039/9781782622437-00543 Dong, W., Hu, R., Long, Y., Li, H., Zhang, Y., Zhu, K., & Chu, Z. (2019). Comparative evaluation of the volatile profiles and taste properties of roasted coffee beans as affected by drying method and detected by electronic nose, electronic tongue, and HS-SPME-GC-MS. Food Chemistry, 272(August 2018), 723–731. https://doi.org/10.1016/j.foodchem.2018.08.068 Dong, W., Cheng, K., Hu, R., Chu, Z., Zhao, J., & Long, Y. (2018). Effect of microwave vacuum drying on the drying characteristics, color, microstructure, and antioxidant activity of green coffee beans. Molecules, 23(5). https://doi.org/10.3390/molecules23051146 Dong, W., Hu, R., Chu, Z., Zhao, J., & Tan, L. (2017). Effect of different drying techniques on bioactive components, fatty acid composition, and volatile profile of robusta coffee beans. Food Chemistry, 234, 121–130. https://doi.org/10.1016/j.foodchem.2017.04.156 Dussert, S., Davey, M. W., Laffargue, A., Doulbeau, S., Swennen, R., & Etienne, H. (2006). Oxidative stress, phospholipid loss and lipid hydrolysis during drying and storage of intermediate seeds. Physiologia Plantarum, 127(2), 192–204. https://doi.org/10.1111/j.1399-3054.2006.00666.x Ekechukwu OV. (1999). Review of solar-energy drying systems I: an overview of drying principles and theory. Energy Conversion and Management, 40; 593–613. Erbay Z and Icier F. (2009). A Review of Thin Layer Drying of Foods: Theory, Modeling, and Experimental Results. Critical Reviews in Food Science and Nutrition, 50; 441–464. Fagan, E. B., Souza, C. H. E., Pereira, N. M. B & Machado, V. J. (2011). Efeito do tempo de formação do grão de café (Coffea sp) na qualidade da bebida. Bioscience Journal, Uberlândia, v. 27, n. 5, p. 729-738. Farah A, Monteiro MC, Calado V, Franca AS and Trugo LC. (2006). Correlation between cup quality and chemical attributes of Brazilian coffee. Food Chemistry, 98; 373-380. Farah, A. (2012). Coffee constituents. Y.-F. Chu (Ed.), Coffee: Emerging health effects and disease prevention, Wiley-Blackwell, Oxford, pp. 21 –58. Farah, A., & Donangelo, C. M. (2006). Phenolic compounds in coffee. Braz. J. Plant Physiol, 18(1), 23–36. Farah, A., Monteiro, M. C., Calado, V., Franca, A. S., & Trugo, L. C. (2006). Correlation between cup quality and chemical attributes of Brazilian coffee. Food Chemistry, 98(2), 373–380. Ferreira, C. (2014). Chapter 11. Microbial Activity during CoffFFee Fermentation. In R. Schwan & G. Fleet (Eds.), Cocoa and Coffee Fermentations (p. 633). CRC Press. Federación Nacional de Cafeteros de Colombia - FNC. (2018). Informe Departamental de la Federación Nacional De Cafeteros. Medellin: Sistema de información cafetera. Federación Nacional de Cafeteros de Colombia - FNC. (2013 a). Cafés especiales: que son. En: http://www.federaciondecafeteros.org/particulares/es/nuestro_cafe/cafes_especiales/que_son Federación Nacional de Cafeteros de Colombia - FNC. (2011). Nuestros cafés especiales. En: http://www.federaciondecafeteros.org/clientes/es/nuestra_propuesta_de_valor/portafolio_de_productos/nuestro_cafe_especial Fonseca, S. F., Rodríguez, J. L. A., Fernández, V. R. F., Enríquez, J. P., & Yen, A. T. (2003). Estudio comparativo del secado solar de café en plazoletas tradicionales y ennegrecidas. Tecnología Química, 23(3), 48-54. Global Coffee Plataform. (2018). Análisis de la equidad de género en el sector de café en Colombia. Bogotá. Goneli A, Corrêa P, Oliveira G and Afonso P. (2013). Water sorption properties of coffee fruits pulped and green coffee. LWT - Food Science and Technology, 50; 386-391. Gonzalez-Rios, O., Suarez-Quiroz, M. L., Boulanger, R., Barel, M., Guyot, B., Guiraud, J.-P., & Schorr-Galindo, S. (2007). Impact of “ecological” post-harvest processing on the volatile fraction of coffee beans: I. Green coffee. Journal of Food Composition and Analysis, 20(3-4), 289–296. Gonzalez-Rios, O., Suarez-Quiroz, M. L., Boulanger, R., Barel, M., Guyot, B., Guiraud, J.-P., & Schorr-Galindo, S. (2007). Impact of “ecological” post-harvest processing on the volatile fraction of coffee beans: I. Green coffee. Journal of Food Composition and Analysis, 20(3-4), 289–296. Guerrero, J. (2007). Estudio de diagnóstico y diseño de beneficios húmedos de café. IICA Nicaragua - Promecafé. Gutiérrez, J. M., & Copete, H. (2009). Hacia la Mejora del Secado Mecánico del Café en Colombia. Revista Tecnológicas, 23, 109–132. Haddis, A., & Devi, R. (2008). Effect of effluent generated from coffee processing plant on the water bodies and human health in its vicinity. Journal of Hazardous Materials, 152(1), 259–62. Hall, C. W. 1957. Drying Farm Crops. AVI Publishing Company. Westport, Connecticut. USA. 336 p. Hečimović, I., Belščak-Cvitanović, A., Horžić, D., & Komes, D. (2011). Comparative study of polyphenols and caffeine in different coffee varieties affected by the degree of roasting. Food Chemistry, 129(3), 991 –1000. Hernández W, Ruiz I, Salgado M, Rodríguez G and García M. (2008). Modeling heat and mass transfer during drying of green coffee beans using prolate spheroidal geometry. Journal of Food Engineering, 86; 1–9. Higdon, J. V, & Frei, B. (2006). Coffee and health: a review of recent human research. Critical Reviews in Food Science and Nutrition, 46(2), 101 –23. Holscher, W., & Steinhart, H. (1995). Aroma Compounds in Green Coffee. Developments in Food Science, 37, 785–803. Hwang, C.-F., Chen, C.-C., & Ho, C.-T. (2012). Contribution of coffee proteins to roasted coffee volatiles in a model system. International Journal of Food Science & Technology, 47(10), 2117–2126. International Coffee Organization. (2018). http://www.ico.org/. Recuperado el Mayo de 2018, de http://www.ico.org/: http://www.ico.org/ Isquierdo, E.P. (2011). Qualidade do café desmucilado submetido ao parcelamento da secagem. Coffee Science, Lavras, 6(1), 83-90. Joët, T., Laffargue, A., Descroix, F., Doulbeau, S., Bertrand, B., Kochko, A. De, & Dussert, S. (2010). Influence of environmental factors, wet processing and their interactions on the biochemical composition of green Arabica coffee beans. Food Chemistry, 118(3), 693–701. Kleinwächter, M., & Selmar, D. (2010). Influence of drying on the content of sugars in wet processed green Arabica coffees. Food Chemistry, 119(2), 500–504. https://doi.org/10.1016/j.foodchem.2009.06.048 Kleinwächter, M., Bytof, G. & Selmar D. (2015). Coffee in health and disease prevention. Coffee Beans and Processing. Chapter 9. Academic Press. London, UK. 73 – 81 p. Kramer, D., Breitenstein, B., Kleinwachter, M., & Selmar, D. (2010). Stress Metabolism in Green Coffee Beans (Coffea arabica L.): Expression of Dehydrins and Accumulation of GABA during Drying. Plant and Cell Physiology, 51(4), 546–553. https://doi.org/10.1093/pcp/pcq019 Kucuk H, Midilli A, Kilic A and Dincer I. (2014). A Review on Thin-Layer Drying-Curve Equations. Drying Technology, 32; 757–773. Kulapichitr, F., Borompichaichartkul, C., Suppavorasatit, I., & Cadwallader, K. R. (2019). Impact of drying process on chemical composition and key aroma components of Arabica coffee. Food Chemistry, 291(April), 49–58. https://doi.org/10.1016/j.foodchem.2019.03.152 Larasati, D. A., Kalandro, G. D., Fibriani, I., Hadi, W., Herdiyanto, D. W., & Sarwono, C. S. (2019). Optimization of Coffee Bean Drying Using Hybrid Solar Systems and Wi-Fi Data Communication. Proceedings of 2018 International Conference on Electrical Engineering and Computer Science, ICECOS 2018, 17, 29–32. https://doi.org/10.1109/ICECOS.2018.8605196 Lee K.G. & Shibamoto T. (2002). Toxicology and antioxidant activities of non-enzymatic browning reaction products: review. Food Rev Inter ;18: 151–75 p. Livramento, K. G. do, Borém, F. M., José, A. C., Santos, A. V., Livramento, D. E. do, Alves, J. D., & Paiva, L. V. (2017). Proteomic analysis of coffee grains exposed to different drying process. Food Chemistry, 221, 1874–1882. https://doi.org/10.1016/j.foodchem.2016.10.069 Lyman D, Benck R and Merle S. (2011). Difference Spectroscopy in the Analysis of the Effects of Coffee Cherry Processing Variables on the Flavor of Brewed Coffee. International Journal of Spectroscopy, 5p. Marín, C., & Puerta, G. I. (2008). Contenido de ácidos clorogénicos en granos de coffea arabica y c. canephora , según el desarrollo del fruto. Cenicafé, 59(1), 7–28. Matei, M. F., Seung-Hun, L., & Kuhnert, N. (2019). Chapter 24 Chlorogenic Acids. In Coffee: Production, Quality and Chemistry (pp. 565–583). The Royal Society of Chemistry. https://doi.org/10.1039/9781782622437-00565 Mendonça, J. C. F., Franca, A. S., & Oliveira, L. S. (2007). A comparative evaluation of methodologies for water content determination in green coffee. LWT - Food Science and Technology, 40(7), 1300–1303. Montoya-ortiz, G., Cristancho-ardila, M., & Moncada-botero, M. (2006). Análisis de secuencias de genes de coffee arabica var. caturra. Cenicafé, 79-87. Murkovic, M., & Derler, K. (2006). Analysis of amino acids and carbohydrates in green coffee. Journal of Biochemical and Biophysical Methods, 69(1 -2), 25–32. Murthy, P. S., & Madhava Naidu, M. (2012). Sustainable management of coffee industry by-products and value addition—A review. Resources, Conservation and Recycling, 66, 45-58. Nilnont W, Thepa S, Janjai S, Kasayapananda, Thamrongmasb C Bala BK. (2012) Finite element simulation for coffee (Coffea arabica) drying Food and Bioproducts Processing 90 (2), 341–350. Oliveros C, Ramirez C y Roa G. (2002). Construya el secador solar parabólico. Cenicafé. Avances Técnicos 305. 8p Oliveros C, Ramirez C, Sanz J y Peñuela A. (2006) Secador solar de túnel para café pergamino. Cenicafé. Avance Técnico 353. 8p. Oliveros, C. E., López, L., Buitrago, C. M., & Moreno, E. L. (2010). Determinación del Contenido de Humedad del Café Durante el Secado en Silos. Cenicafé, 61(2), 108–118. Oliveros, C. E., Peñuela, A., & Jurado, J. M. (2009). Controle la humedad del café en el secado solar, utilizando el método gravimet. Avances Técnicos, Cenicafé, 387. Oliveros-tascón, C. E., Sanz, J. R., Ramírez, C. A., & Peñuela, A. E. (2009). Aprovechamiento eficiente de la energía en el secado mecánico del café. Avances Técnicos, Cenicafé, 380(14). Onwude, D. I., Hashim, N., Janius, R. B., Nawi, N. M., & Abdan, K. (2016). Modeling the Thin-Layer Drying of Fruits and Vegetables: A Review. Comprehensive Reviews in Food Science and Food Safety, 15(3), 599–618. https://doi.org/10.1111/1541-4337.12196 Prada, Álvaro, Cynthia P. Vela, Gabriela Bardález, and Jorge Saavedra. 2019. “Efectividad de Un Proceso de Secado de Café Usando Secadores Solares Con Sistema de Flujo de Aire Continúo Impulsado Por Energía Fotovoltaica, En La Región San Martín, Perú.” Información Tecnológica 30(6):85–92. Parra-Coronado, Alfonso, Roa-Mejia, Gonzalo, Oliveros-Tascón, Carlos E, Sanz-Uribe, Juan R. 2017. Optimización Operacional de Secadores Mecánicos Para Café Pergamino. edited by C. E. Cenicafé. Parra-Coronado, A., Roa-Mejía, G., & Oliveros-Tascón, C. E. (2008b). SECAFÉ Parte I: modelamiento y simulación matemática en el secado mecánico de café pergamino. Revista Brasileira de Engenharia Agrícola e Ambiental, 12(4), 415–427. https://doi.org/10.1590/s1415-43662008000400013 Parra-Coronado, A., Roa-Mejía, G., & Oliveros-Tascón, C. E. (2008a). SECAFÉ Part II: Recommendations for the efficient operation of mechanical dryers for parchment coffee. Revista Brasileira de Engenharia Agricola e Ambiental, 12(4), 428–434. https://doi.org/10.1590/S1415-43662008000400014 Pérez-Alegría, L. R., & Ciro-Velasquez, H. J. (2001). Mathematical simulation of parchment coffee drying in a deep bed with airflow reversal. Transactions of the American Society of Agricultural Engineers, 44(5), 1229–1234. https://doi.org/10.13031/2013.6415 Phitakwinai, S., Thepa, S., & Nilnont, W. (2019). Thin-layer drying of parchment Arabica coffee by controlling temperature and relative humidity. Food Science and Nutrition, 7(9), 2921–2931. https://doi.org/10.1002/fsn3.1144 Piccino S, Boulanger R, Descroix F and Cheong A. (2014). Aromatic composition and potent odorants of the “specialty coffee” brew “Bourbon Pointu” correlated to its three trade classifications. Food Research International, 61; 264–271. Pirasteh G, Saidur R, Rahman S.M.A and Rahim N.A. (2014). A review on development of solar drying applications. Renewable and Sustainable Energy Reviews, 31; 133–148. Plataforma de Comercio Sostenible. Solidaridad. (2016). Comercio Sostenible. Recuperado en mayo de 2018, de http://comerciosostenible.org/es Prakash O and Kumar A. (2014). Solar greenhouse drying: A review. Renewable and Sustainable Energy Reviews, 29; 905–910. Preedy, V. R. (2014). Processing and Impact on Antioxidants in Beverages. Copyright, Elsevier Inc. The Boulevard, Langford Lane, Kidlington, Oxford, 320 p. Puerta, G. I. (2011). Composición química de una taza de café. Avances Técnicos, Cenicafé, 414. Ramírez A, Salgado M, Rodríguez G, García M, Cherblanc F and Bénet J. (2013). Water transport in parchment and endosperm of coffee vean. Journal of Food Engineering, 114; 375–383. Rattanamechaiskul, C., & Junka, N. (2020). Modeling of fragment formation of parchment coffee beans for rapid heat and mass transfer during fluidization drying. Journal of Food Processing and Preservation, April, 1–9. https://doi.org/10.1111/jfpp.14555 Reh, C., Gerber, a, Prodolliet, J., & Vuataz, G. (2006). Water content determination in green coffee – Method comparison to study specificity and accuracy. Food Chemistry, 96(3), 423–430. Roa, G., Oliveros, C. E., Alvarez, J., Ramírez, C. A., Sanz, J. R., Álvarez, J. R., & Rodríguez, N. (1999). Beneficio ecológico del café. Cenicafé. Federación Nacional de Cafeteros de Colombia. Chinchiná (Colombia), 1 -273. Roa-mejía, G., Oliveros-tascón, C. E., & Ramírez-g, C. A. (2000). Utilice la Energía Solar para Secar Correctamente el Café. Cenicafé Avances Técnicos 281, 281, 1–4. Roa, G., (2004). “El secado solar y mecánico del café pergamino en Colombia” Reunión Nacional de Especialistas en Beneficio de Café para Unificación de Criterios sobre el Beneficio Ecológico. Cenicafé, Chinchiná, noviembre 23-26. Rodriguez, Y. F. B., Guzman, N. G., & Hernandez, J. G. (2020). Effect of the postharvest processing method on the biochemical composition and sensory analysis of arabica coffee. Engenharia Agrícola, 40(2), 177–183. https://doi.org/10.1590/1809-4430-eng.agric.v40n2p177-183/2020 Rodrigues, C. H., Meira, F., Angelo, M., & Carvalho, E. (2012). Qualidade do Café Secado em Terreiros com Difertes Pavimentaçoes e Espessuras de Camada. Coffee Science, Lavras, 7(3), 223–237. Rodrigues, C. I., Maia, R., & Máguas, C. (2010). Comparing total Nitrogen and Crude Protein content of Green Coffee Beans from Different Geographical Origins. Coffee Science, Lavras, 5(3), 197–205. Selmar D, Bytof G, Kleinwächter M. Metabolic responses of coffee beans during processing and their impact on coffee flavour. In: Schwan RF, Fleet GH, editors. Cocoa and coffee fermentations. Fermented foods and beverages. CRC Press; 2014, in press. Scholz, M. B. dos S., Prudencio, S. H., Kitzberger, C. S. G., & Silva, R. S. dos S. F. da. (2019). Physico-chemical characteristics and sensory attributes of coffee beans submitted to two post-harvest processes. Journal of Food Measurement and Characterization, 13(1), 831–839. https://doi.org/10.1007/s11694-018-9995-x Sfredo M, Finzer J and Limaverde J. (2005). Heat and mass transfer in coffee fruits drying. Journal of Food Engineering, 70; 15–25. Sharma A, Chen CR and Lan NV. (2009). Solar-energy drying systems: A review. Renewable and Sustainable Energy Reviews, 13; 1185-1210. Shibamoto, T. (2015). Coffee in health and disease prevention. Volatile Chemicals from Thermal Degradation of Less Volatile Coffee Components. Chapter 14. Academic Press. London, UK. 129 – 135 p. Simões, J., Moreira, A., Passos, C., Nunes, F. M., Domingues, M. R., & Coimbra, M. (2019). CHAPTER 19. Polysaccharides and Other Carbohydrates: Production, Quality and Chemistry. In Coffee: Production, Quality and Chemistry (pp. 445–457). https://doi.org/10.1039/9781782622437-00445 Speer, K., & Kölling-speer, I. (2006). The lipid fraction of the coffee bean. Braz. J. Plant Physiol, 18(1965), 201 –216. Specialty Coffee Association. (2017). http://scaa.org/index.php?goto=home. Recuperado el Mayo de 2018, de http://scaa.org/index.php?goto=home: http://scaa.org/index.php?goto=home Suherman, Suherman, Hasri Widuri, Shelyn Patricia, Evan Eduard Susanto, and Raafi Jaya Sutrisna. 2020. “Energy Analysis of a Hybrid Solar Dryer for Drying Coffee Beans.” International Journal of Renewable Energy Development 9(1):131–39. Sunarharum, W. B., Williams, D. J., & Smyth, H. E. (2014). Complexity of coffee flavor: A compositional and sensory perspective. Food Research International, 62, 315–325. Suzihaque, M. U. H., and Robert Driscoll. 2016. “Effects of Solar Radiation, Buoyancy of Air Flow and Optimization Study of Coffee Drying in a Heat Recovery Dryer.” Procedia Engineering 148:812–22. Tai, E.-S., Hsieh, P.-C., & Sheu, S.-C. (2014). Effect of Polygalacturonase and Feruloyl Esterase from Aspergillus tubingensis on Demucilage and Quality of Coffee Beans. Process Biochemistry. Teixiera, A., Brando, C., Thomaziello, R., and Teixeira, R. Espresso Coffee: The Science of Quality, ed. A. Illy and R. Viani, ElsevierAcademic Press, San Diego, 2nd edn, 2005, pp. 91–96. Tello, J., Viguera, M., & Calvo, L. (2011). Extraction of caffeine from Robusta coffee (Coffea canephora var. Robusta) husks using supercritical carbon dioxide. The Journal of Supercritical Fluids, 59, 53–60. Toci, A., & Boldrin, M. (2017). Coffee beverages and their aroma compounds. En Natural and artificial flavoring agents and food dyes (págs. 397-425). London: Academic press. Togo M, T., Norbert, L., & Deacue, F. (Junio de 2018). What explains specialty coffee quality scores and prices: A case study from the cup of excellence program. Journal of Agricultura and Applied Economics, 1 - 20. Tsegaye, B., Mohammed, A., and Getachew, E. (2014). Impact of Sun Drying Methods and Layer Thickness on the Quality of Highland Arabica Coffee Varieties at Limmu, Southwestern Ethiopia. Journal of Horticulture, 01(03), 1–7. https://doi.org/10.4172/2376-0354.1000117 Tripathy P and Kumar S. (2009). A methodology for determination of temperature dependent mass transfer coefficients from drying kinetics: Application to solar drying. Journal of Food Engineering, 90; 212–218. Tunde-Akintunde T.Y. (2011). Mathematic al modelin g of sun and solar drying of chilli pepper. Renewable Energy, 36: 2139-2145 Valencia, F. F. (2007). Cafés especiales. In Editorial Blanecolor Ltda (Ed.), Sistemas de producción de café en Colombia (primera ed., p. 295). Varadharaju, N., Karunanidhi, C. & Kailappan R. (2001). Coffee cherry drying: a two-layer model. Drying Technology, 19(3&4): 709–715. VijayaVenkataRaman S, Iniyan S and Goic R. (2012). A review of solar drying technologies. Renewable and Sustainable Energy Reviews, 16; 2652–2670. Wagemaker, T. A. L., Carvalho, C. R. L., Maia, N. B., Baggio, S. R., & Guerreiro Filho, O. (2011). Sun protection factor, content and composition of lipid fraction of green coffee beans. Industrial Crops and Products, 33(2), 469–473. Wei F, Furihata K, Koda M, Hu F, Kato R, Miyakawa T and Tanokura M. (2012). 13C NMR-Based Metabolomics for the Classification of Green Coffee Beans According to Variety and Origin. Journal of Agricultural and Food Chemistry, 60; 10118 −10125. Wei, F., & Tanokura, M. (2015). Chapter 17 - Organic Compounds in Green Coffee Beans. In V. R. B. T.-C. in H. and D. P. Preedy (Ed.), Coffee: Production, Quality and Chemistry (pp. 149–162). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-409517-5.00017-6 Worku, M., de Meulenaer, B., Duchateau, L., & Boeckx, P. (2018). Effect of altitude on biochemical composition and quality of green arabica coffee beans can be affected by shade and postharvest processing method. Food Research International, 105(March 2017), 278–285. https://doi.org/10.1016/j.foodres.2017.11.016 Zambrano D, López U, Rodriguez V y Ramirez C. (2006). Paseras solares de bajo costo para secar café. Avances Tecnicos 345. 12p. Zamora, A. (2017). Publican la primera secuencia genómica de la variedad comercial de café más cultivada en el mundo. Obtenido de http://fundacion-antama.org. Referencias Capítulos 2, 3 y 4 [1] Federación nacional de cafeteros de Colombia, “Informe del gerente al 87 congreso nacional de cafeteros,” 2019. [Online]. Available: https://federaciondecafeteros.org/app/uploads/2019/12/Informe-del-Gerente-al-87-Congreso-Nacional-de-Cafeteros-2019.pdf. [2] L. Tuccio, P. Pinelli, A. Godina, J. M. Medina, and G. Agati, “The chemical composition and quality of the Parainema coffee cultivar under different shading conditions, as assessed by a leaf flavonol optical index,” Eur. Food Res. Technol., vol. 245, no. 8, pp. 1733–1741, 2019, doi: 10.1007/s00217-019-03285-1. [3] L. Bravo-Monroy, S. G. Potts, and J. Tzanopoulos, “Drivers influencing farmer decisions for adopting organic or conventional coffee management practices,” Food Policy, vol. 58, pp. 49–61, 2016, doi: 10.1016/j.foodpol.2015.11.003. [4] G. Puerta, “Influencia del proceso de beneficio en la calidad del cafe,” Cenicafe, vol. 50, no. 1, pp. 78–88, 1999. [5] L. T. Lim, M. Zwicker, and X. Wang, Coffee: One of the most consumed beverages in the world, Third Edit., vol. 4. Oxford: Elsevier, 2019. [6] F. M. Borém, E. R. Marques, and E. Alves, “Ultrastructural analysis of drying damage in parchment Arabica coffee endosperm cells,” Biosyst. Eng., vol. 99, no. 1, pp. 62–66, Jan. 2008, doi: 10.1016/j.biosystemseng.2007.09.027. [7] R. F. Schwan and G. H. Fleet, Cocoa and Coffee Fermentations. Taylor & Francis Group, 2014. [8] J. . Jurado, E. . Montoya, C. . Oliveros, and J. García, “Método para medir el contenido de humedad del café pergamino en el secado solar del café,” Rev. Cenicafé, vol. 60, no. 2, pp. 135–147, 2009. [9] R. Osorio Hernandez, L. M. Guerra-Garcia, I. de F. Ferreira-Tinôco, J. A. Osorio-Saraz, and I. D. Aristizábal-Torres, “Simulation of a thermal environment in two buildings for the wet processing of coffee,” DYNA, vol. 82, no. 194, pp. 214–220, Dec. 2015, doi: 10.15446/dyna.v82n194.49526. [10] FNC-Cenicafé, Manual del Cafetero Colombiano (Tomo III), no. 3. 2013. [11] G. I. Puerta, “Composición química de una taza de café,” Av. Técnicos, Cenicafé, vol. 414, 2011. [12] M. Murkovic and K. Derler, “Analysis of amino acids and carbohydrates in green coffee.,” J. Biochem. Biophys. Methods, vol. 69, no. 1–2, pp. 25–32, Nov. 2006. [13] M. Kleinwächter and D. Selmar, “Influence of drying on the content of sugars in wet processed green Arabica coffees,” Food Chem., vol. 119, no. 2, pp. 500–504, 2010, doi: 10.1016/j.foodchem.2009.06.048. [14] S. Knopp, G. Bytof, and D. Selmar, “Influence of processing on the content of sugars in green Arabica coffee beans,” Eur. Food Res. Technol., vol. 223, no. 2, pp. 195–201, Jun. 2006, doi: 10.1007/s00217-005-0172-1. [15] D. Selmar, “Influence of processing on the content of sugars in green Arabica coffee beans,” no. July, 2014, doi: 10.1007/s00217-005-0172-1. [16] D. Villarreal, L. Baena, and H. Posada, “Análisis de lípidos y ácidos grasos en café verde de líneas avanzadas de coffea arabica cultivadas en Colombia,” Cenicafé, vol. 63, no. 1, pp. 19–40, 2012. [17] T. Joët et al., “Influence of environmental factors, wet processing and their interactions on the biochemical composition of green Arabica coffee beans,” Food Chem., vol. 118, no. 3, pp. 693–701, Feb. 2010, doi: 10.1016/j.foodchem.2009.05.048. [18] K. Speer and I. Kölling-Speer, “The lipid fraction of the coffee bean,” Brazilian Journal of Plant Physiology, vol. 18, no. 1. pp. 201–216, 2006, doi: 10.1590/S1677-04202006000100014. [19] N. Caporaso, M. B. Whitworth, S. Grebby, and I. D. Fisk, “Rapid prediction of single green coffee bean moisture and lipid content by hyperspectral imaging,” J. Food Eng., vol. 227, pp. 18–29, 2018, doi: 10.1016/j.jfoodeng.2018.01.009. [20] F. Borém, E. R. Marques, and E. Alves, “Ultrastructural analysis of drying damage in parchment Arabica coffee endosperm cells,” Biosyst. Eng., vol. 99, no. 1, pp. 62–66, Jan. 2008, doi: 10.1016/j.biosystemseng.2007.09.027. [21] C. I. Rodrigues, R. Maia, and C. Máguas, “Comparing total Nitrogen and Crude Protein content of Green Coffee Beans from Different Geographical Origins,” Coffee Sci. Lavras, vol. 5, no. 3, pp. 197–205, 2010. [22] K. G. do Livramento et al., “Proteomic analysis of coffee grains exposed to different drying process,” Food Chem., vol. 221, pp. 1874–1882, 2017, doi: 10.1016/j.foodchem.2016.10.069. [23] M. de S. G. Barbosa, M. B. dos S. Scholz, C. S. G. Kitzberger, and M. de T. Benassi, “Correlation between the composition of green Arabica coffee beans and the sensory quality of coffee brews,” Food Chem., vol. 292, no. April, pp. 275–280, 2019, doi: 10.1016/j.foodchem.2019.04.072. [24] I. Hečimović, A. Belščak-Cvitanović, D. Horžić, and D. Komes, “Comparative study of polyphenols and caffeine in different coffee varieties affected by the degree of roasting,” Food Chem., vol. 129, no. 3, pp. 991–1000, Dec. 2011. [25] J. Avelino et al., “Effects of slope exposure, altitude and yield on coffee quality in two altitudeterroirs of Costa Rica, Orosi and Santa María de Dota,” J. Sci. Food Agric., vol. 85, no. 11, pp. 1869–1876, Aug. 2005, doi: 10.1002/jsfa.2188. [26] B. Cheng, A. Furtado, H. E. Smyth, and R. J. Henry, “Influence of genotype and environment on coffee quality,” Trends Food Sci. Technol., vol. 57, pp. 20–30, 2016, doi: 10.1016/j.tifs.2016.09.003. [27] A. B. A. De Azevedo, T. G. Kieckbush, A. K. Tashima, and R. S. Mohamed, “Extraction of green coffee oil using supercritical carbon dioxide,” vol. 44, pp. 186–192, 2008, doi: 10.1016/j.supflu.2007.11.004. [28] M. C. Monteiro and A. Farah, “Chlorogenic acids in Brazilian Coffea arabica cultivars from various consecutive crops,” Food Chem., vol. 134, no. 1, pp. 611–614, 2012, doi: 10.1016/j.foodchem.2012.02.118. [29] W. Dong, R. Hu, Z. Chu, J. Zhao, and L. Tan, “Effect of different drying techniques on bioactive components, fatty acid composition, and volatile profile of robusta coffee beans,” Food Chem., vol. 234, pp. 121–130, Nov. 2017, doi: 10.1016/j.foodchem.2017.04.156. [30] F. Kulapichitr, C. Borompichaichartkul, I. Suppavorasatit, and K. R. Cadwallader, “Impact of drying process on chemical composition and key aroma components of Arabica coffee,” Food Chem., vol. 291, no. April, pp. 49–58, 2019, doi: 10.1016/j.foodchem.2019.03.152. [31] A. Escarramán et al., “Determinación de los Atributos de Calidad del Café en Zonas Productoras de la República Dominicana,” Santo domingo, 2007. [32] A. E. Peñuela Martinez, J. P. Pábon Usaquén, and J. R. Sanz Uribe, “MÉTODO FERMAESTRO: Para determinar la finalización de la Fermentación del mucílago de café,” Cenicafé Av. Técnicos 431, pp. 1–8, 2013. [33] J. R. Parra-Coronado, Alfonso, Roa-Mejia, Gonzalo, Oliveros-Tascón, Carlos E, Sanz-Uribe, Optimización operacional de secadores mecánicos para café pergamino. 2017. [34] B. Bertrand, D. Villarreal, A. Laffargue, H. Posada, P. Lashermes, and S. Dussert, “Comparison of the effectiveness of fatty acids, chlorogenic acids, and elements for the chemometric discrimination of coffee (Coffea arabica L.) varieties and growing origins,” J. Agric. Food Chem., vol. 56, no. 6, pp. 2273–2280, 2008, doi: 10.1021/jf073314f. [35] W. J. Mullin and D. B. Emmons, “Determination of organic acids and sugars in cheese, milk and whey by high performance liquid chromatography,” Food Res. Int., vol. 30, no. 2, pp. 147–151, 1997, doi: 10.1016/S0963-9969(97)00026-4. [36] C. Liu, N. Yang, Q. Yang, C. Ayed, R. Linforth, and I. D. Fisk, “Enhancing Robusta coffee aroma by modifying flavour precursors in the green coffee bean,” Food Chem., vol. 281, no. November 2018, pp. 8–17, 2019, doi: 10.1016/j.foodchem.2018.12.080. [37] C. Marín and G. I. Puerta, “Contenido de Ácidos Clorogénicos en Granos de Coffea Arabica y C. Canephora, según el desarrollo del fruto,” Cenicafé, vol. 59, no. 1, pp. 7–28, 2008. [38] International Organization for Standardization, Coffee and coffee products. Determination of the Caffeine Content using High Performance Liquid Chromatography (HPLC)-Reference method, ISO. Geneve: ISO:20481, 2008. [39] Specialty Coffee Association, “Coffee Standards,” p. 14, 2018, [Online]. Available: https://static1.squarespace.com/static/584f6bbef5e23149e5522201/t/5bd985c1352f53cb4cc1be48/1540982325719/Coffee+Standards-Digital.pdf. [40] S. Lê, J. Josse, and F. Husson, “FactoMineR : An R Package for Multivariate Analysis,” J. Stat. Softw., vol. 25, no. 1, pp. 253–258, 2008, doi: 10.18637/jss.v025.i01. [41] R Development Core Team, R: a Language and Environment for Statistical Computing. 2004. [42] G. S. Duarte, A. A. Pereira, and A. Farah, “Chlorogenic acids and other relevant compounds in Brazilian coffees processed by semi-dry and wet post-harvesting methods,” Food Chem., vol. 118, no. 3, pp. 851–855, 2010, doi: 10.1016/j.foodchem.2009.05.042. [43] N. Caporaso, M. B. Whitworth, S. Grebby, and I. D. Fisk, “Non-destructive analysis of sucrose, caffeine and trigonelline on single green coffee beans by hyperspectral imaging,” Food Res. Int., vol. 106, no. September 2017, pp. 193–203, 2018, doi: 10.1016/j.foodres.2017.12.031. [44] C.-L. Ky, J. Louarn, S. Dussert, B. Guyot, S. Hamon, and M. Noirot, “Caffeine, trigonelline, chlorogenic acids and sucrose diversity in wild Coffea arabica L. and C. canephora P. accessions,” Food Chem., vol. 75, no. 2, pp. 223–230, Nov. 2001, doi: 10.1016/S0308-8146(01)00204-7. [45] S. Dussert, M. W. Davey, A. Laffargue, S. Doulbeau, R. Swennen, and H. Etienne, “Oxidative stress, phospholipid loss and lipid hydrolysis during drying and storage of intermediate seeds,” Physiol. Plant., vol. 127, no. 2, pp. 192–204, 2006, doi: 10.1111/j.1399-3054.2006.00666.x. [46] I. Tejero, A. González-Lafont, J. M. Lluch, and L. A. Eriksson, “Photo-oxidation of lipids by singlet oxygen: A theoretical study,” Chem. Phys. Lett., vol. 398, no. 4–6, pp. 336–342, 2004, doi: 10.1016/j.cplett.2004.09.093. [47] M. Y. Rendón, T. De Jesus Garcia Salva, and N. Bragagnolo, “Impact of chemical changes on the sensory characteristics of coffee beans during storage,” Food Chem., vol. 147, pp. 279–286, 2014, doi: 10.1016/j.foodchem.2013.09.123. [48] M. B. dos S. Scholz, S. H. Prudencio, C. S. G. Kitzberger, and R. S. dos S. F. da Silva, “Physico-chemical characteristics and sensory attributes of coffee beans submitted to two post-harvest processes,” J. Food Meas. Charact., vol. 13, no. 1, pp. 831–839, Mar. 2019, doi: 10.1007/s11694-018-9995-x. [49] D. J. Kwon et al., “Assessment of green coffee bean metabolites dependent on coffee quality using a 1H NMR-based metabolomics approach,” Food Res. Int., vol. 67, pp. 175–182, 2015, doi: 10.1016/j.foodres.2014.11.010. [50] D. Kramer, B. Breitenstein, M. Kleinwachter, and D. Selmar, “Stress Metabolism in Green Coffee Beans (Coffea arabica L.): Expression of Dehydrins and Accumulation of GABA during Drying,” Plant Cell Physiol., vol. 51, no. 4, pp. 546–553, Apr. 2010, doi: 10.1093/pcp/pcq019. [51] G. Bytof, S. E. Knopp, P. Schieberle, I. Teutsch, and D. Selmar, “Influence of processing on the generation of γ-aminobutyric acid in green coffee beans,” Eur. Food Res. Technol., vol. 220, no. 3–4, pp. 245–250, 2005, doi: 10.1007/s00217-004-1033-z. [52] K. Cheng et al., “Evaluation of the impact of different drying methods on the phenolic compounds, antioxidant activity, and in vitro digestion of green coffee beans,” Food Sci. Nutr., vol. 7, no. 3, pp. 1084–1095, 2019, doi: 10.1002/fsn3.948. [53] R. J. Clarke and R. Macrae, COFFEE CHEMISTRY, vol. 1. Elsevier Science Publishers LTD, 1989. [54] D. Habtamu and A. Belay, “First order derivative spectra to determine caffeine and chlorogenic acids in defective and nondefective coffee beans,” Food Sci. Nutr., vol. 8, no. 9, pp. 4757–4762, 2020, doi: 10.1002/fsn3.1723. [55] K. Ramalakshmi, I. R. Kubra, and L. J. M. Rao, “Physicochemical Characteristics of Green Coffee: Comparison of Graded and Defective Beans,” J. Food Sci., vol. 72, no. 5, pp. S333–S337, Jun. 2007, doi: 10.1111/j.1750-3841.2007.00379.x. [56] W. Nilnont, S. Thepa, S. Janjai, N. Kasayapanand, C. Thamrongmas, and B. K. Bala, “Finite element simulation for coffee (Coffea arabica) drying,” Food Bioprod. Process., vol. 90, no. 2, pp. 341–350, 2012, doi: 10.1016/j.fbp.2011.06.007. [57] B. Bertrand, P. Vaast, Edgardo Alpizar, E. Hervé, D. Fabrice, and C. Pierre, “Comparison of bean biochemical composition and beverage quality of Arabica hybrids involving Sudanese-Ethiopian origins with traditional varieties at various elevations in Central America,” Tree Physiol., vol. 26, no. 9, pp. 1239–1248, Sep. 2006. [58] G. Alvarado-Alvarado, E. Moreno-González, E. C. Montoya-Restrepo, and R. Alarcón-Suárez, “Calidad física y en taza de los componentes de la variedad Castillo y sus derivadas regionales,” Rev. Cenicafé, vol. 60, no. 3, pp. 210–228, 2009. [59] C. Silva, P. Correa, and J. Martins, “Qualidade da bebida do café (Coffea arabica L.) em função da proporção de frutos verdes e da temperatura do ar de secagem,” Rev. Bras. Armazenamento, vol. 23, no. 1, pp. 45–48, 1998. [60] E. P. Isquierdo, “Cinética de secagem de café natural e suas relações com a qualidade para diferentes temperaturas e umidades relativas do ar,” LAVRAS, Minas Gerais - BRASIL, 2011. [61] P. Carteri, “Alterações na qualidade do café cereja natural e despolpado submetidos a diferentes condições de secagem e armazenamento.,” LAVRAS, Minas Gerais - BRASIL, 2006. [62] J. Da Silva, “Aspectos fisiológicos e bioquímicos associados à qualidade da bebida de café submetido a diferentes métodos de processamento e secagem,” LAVRAS, Minas Gerais - BRASIL, 2009. [63] S. A. Abrahão, R. G. F. A. Pereira, S. M. da S. Duarte, A. R. Lima, D. J. Alvarenga, and E. B. Ferreira, “Compostos bioativos e atividade antioxidante do café (Coffea arabica L.),” Ciência e Agrotecnologia, vol. 34, no. 2, pp. 414–420, 2010, doi: 10.1590/s1413-70542010000200020. [64] D. E. Ribeiro, “Interação genótipo e ambiente na composição química e qualidade sensorial de cafés especiais em diferentes formas de processamento,” LAVRAS, Minas Gerais - BRASIL, 2013. [65] F. Federación Nacional de Cafeteros, “Estadísticas Cafeteras,” 2020. https://federaciondecafeteros.org/wp/estadisticas-cafeteras/ (accessed Feb. 08, 2000). [66] F. L. F. Silva et al., “The concentration of polyphenolic compounds and trace elements in the Coffea arabica leaves: Potential chemometric pattern recognition of coffee leaf rust resistance,” Food Res. Int., vol. 134, no. October 2019, p. 109221, 2020, doi: 10.1016/j.foodres.2020.109221. [67] S. Sittipod, E. Schwartz, L. Paravisini, and D. G. Peterson, “Identification of flavor modulating compounds that positively impact coffee quality,” Food Chem., vol. 301, no. March, 2019, doi: 10.1016/j.foodchem.2019.125250. [68] E. P. Isquierdo, F. M. Borém, E. T. De Andrade, J. L. G. Corrêa, P. D. De Oliveira, and G. E. Alves, “Drying kinetics and quality of natural coffee,” Trans. ASABE, vol. 56, no. 3, pp. 1003–1010, 2013, doi: 10.13031/trans.56.9794. [69] G. E. Alves, F. M. Borém, E. T. Andrade, É. P. Isquierdo, V. C. Siqueira, and C. D. A. Dias, “INFLUENCE OF DIFFERENT TEMPERATURES AND AIRFLOWS ON DRYING OF NATURAL AND PULPED COFFEE Coffea arabica L ., This study aimed to evaluate drying kinetics for natural and pulped coffee , using different temperatures and drying airflows . For the conduction ,” vol. 4430, pp. 192–200, 2020. [70] W. B. Sunarharum, D. J. Williams, and H. E. Smyth, “Complexity of coffee flavor: A compositional and sensory perspective,” Food Res. Int., vol. 62, pp. 315–325, 2014, doi: 10.1016/j.foodres.2014.02.030. [71] D. L. Kalschne, T. Biasuz, A. J. De Conti, M. C. Viegas, M. P. Corso, and M. de T. Benassi, “Sensory characterization and acceptance of coffee brews of C. arabica and C. canephora blended with steamed defective coffee,” Food Res. Int., vol. 124, no. March 2018, pp. 234–238, 2019, doi: 10.1016/j.foodres.2018.03.038. [72] A. Parra, G. Roa, and C. Oliveros, “SECAFÉ Parte I: modelamiento y simulación matemática en el secado mecánico de café pergamino,” Rev. Bras. Eng. Agrícola e Ambient., vol. 12, no. 4, pp. 415–427, 2008, doi: 10.1590/s1415-43662008000400013. [73] A. Parra-Coronado, G. Roa-Mejía, and C. E. Oliveros-Tascón, “SECAFÉ Part II: Recommendations for the efficient operation of mechanical dryers for parchment coffee,” Rev. Bras. Eng. Agric. e Ambient., vol. 12, no. 4, pp. 428–434, 2008, doi: 10.1590/S1415-43662008000400014. [74] S. Deeto, S. Thepa, V. Monyakul, and R. Songprakorp, “The experimental new hybrid solar dryer and hot water storage system of thin layer coffee bean dehumidification,” Renew. Energy, vol. 115, pp. 954–968, 2018, doi: 10.1016/j.renene.2017.09.009. [75] Carlos E. Oliveros Tascón; Juan R. Sanz Uribe; Cesar A. Ramírez Gómez; Aída E. Peñuela Martínez, “Aprovechamiento eficiente de la energía en el secado mecánico del café,” Cenicafé Av. Técnicos 380, vol. 380, no. 14, p. 2, 2009, [Online]. Available: http://biblioteca.cenicafe.org/bitstream/10778/370/1/avt0380.pdf. [76] G. Roa-mejía, C. E. Oliveros-tascón, and C. A. Ramírez-g, “Utilice la Energía Solar para Secar Correctamente el Café,” Cenicafé Av. Técnicos 281, no. 281, pp. 1–4, 2000. [77] C. Oliveros, C. Ramírez, J. Sanz, and A. Peñuela, “Secador parabólico mejorado,” 2008. [Online]. Available: https://www.cenicafe.org/es/publications/avt0376.pdf. [78] M. GUTIERREZ, J. SANZ, C. OLIVEROS, and C. OROZCO, Ventiladores para secadores de café. 2012. [79] W. Dong, K. Cheng, R. Hu, Z. Chu, J. Zhao, and Y. Long, “Effect of microwave vacuum drying on the drying characteristics, color, microstructure, and antioxidant activity of green coffee beans,” Molecules, vol. 23, no. 5, 2018, doi: 10.3390/molecules23051146. [80] D. Beverly, P. J. Fryer, S. Bakalis, E. Lopez-Quiroga, and R. Farr, “Mathematical modelling of the steam stripping of aroma from roast and ground coffee,” Energy Procedia, vol. 161, pp. 157–164, 2019, doi: 10.1016/j.egypro.2019.02.075. [81] I. A. Kouadio, L. B. Koffi, J. G. Nemlin, and M. B. Dosso, “Effect of Robusta (Coffea canephora P.) coffee cherries quantity put out for sun drying on contamination by fungi and Ochratoxin A (OTA) under tropical humid zone (Côte d‘Ivoire),” Food Chem. Toxicol., vol. 50, no. 6, pp. 1969–1979, Jun. 2012, doi: 10.1016/j.fct.2012.03.042. [82] A. Hameed, S. A. Hussain, M. U. Ijaz, S. Ullah, I. Pasha, and H. A. R. Suleria, “Farm to Consumer: Factors Affecting the Organoleptic Characteristics of Coffee. II: Postharvest Processing Factors,” Compr. Rev. Food Sci. Food Saf., vol. 17, no. 5, pp. 1184–1237, 2018, doi: 10.1111/1541-4337.12365. [83] P. Poltronieri and F. Rossi, “Challenges in Specialty Coffee Processing and Quality Assurance,” Challenges, vol. 7, no. 2, p. 19, 2016, doi: 10.3390/challe7020019. [84] J. N. Hernandez-Aguilera et al., “Quality as a Driver of Sustainable Agricultural Value Chains: The Case of the Relationship Coffee Model,” Bus. Strateg. Environ., vol. 27, no. 2, pp. 179–198, Feb. 2018, doi: 10.1002/bse.2009. [85] C. Oliveros, A. Peñuela, and J. Jurado, “Controle la Humedad del Cafe en el Secado Solar, Utilizando el Metodo Gravimet,” Cenicafe Av. Técnicos 387, vol. 387, pp. 1–8, 2009, [Online]. Available: http://biblioteca.cenicafe.org/bitstream/10778/385/1/avt0387.pdf. [86] S. J. Zhang et al., “Following Coffee Production from Cherries to Cup: Microbiological and Metabolomic Analysis of Wet Processing of Coffea arabica,” Appl. Environ. Microbiol., vol. 85, no. 6, pp. 1–22, Feb. 2019, doi: 10.1128/AEM.02635-18. [87] S. J. Zhang et al., “Influence of Various Processing Parameters on the Microbial Community Dynamics, Metabolomic Profiles, and Cup Quality During Wet Coffee Processing,” Front. Microbiol., vol. 10, no. November, pp. 1–24, Nov. 2019, doi: 10.3389/fmicb.2019.02621. [88] D. Selmar, G. Bytof, and S.-E. Knopp, “New Aspects of Coffee Processing: The Relation Between Seed Germination and Coffee Quality,” Dix-neuvième Colloq. Sci. Int. sur le Café, pp. 19–25, 2002. [89] S. Knopp, G. Bytof, and D. Selmar, “Influence of processing on the content of sugars in green Arabica coffee beans,” Eur. Food Res. Technol., vol. 223, no. 2, pp. 195–201, 2006, doi: 10.1007/s00217-005-0172-1. [90] D. Selmar, G. Bytof, and S.-E. Knopp, “The Storage of Green Coffee (Coffea arabica): Decrease of Viability and Changes of Potential Aroma Precursors,” Ann. Bot., vol. 101, no. 1, pp. 31–38, Jan. 2008, doi: 10.1093/aob/mcm277. [91] L. Manzocco and M. C. Nicoli, “Modeling the Effect of Water Activity and Storage Temperature on Chemical Stability of Coffee Brews,” J. Agric. Food Chem., vol. 55, no. 16, pp. 6521–6526, Aug. 2007, doi: 10.1021/jf070166k. [92] E. Iaccheri et al., “Different analytical approaches for the study of water features in green and roasted coffee beans,” J. Food Eng., vol. 146, pp. 28–35, 2015, doi: 10.1016/j.jfoodeng.2014.08.016. [93] D. B. Min and J. M. Boff, “Chemistry and reaction of singlet oxygen in foods,” Compr. Rev. Food Sci. Food Saf., vol. 1, no. 2, pp. 58–72, 2002, doi: 10.1111/j.1541-4337.2002.tb00007.x. [94] T. Ferreira, J. Shuler, R. Guimarães, and A. Farah, “CHAPTER 1 Introduction to Coffee Plant and Genetics,” in Coffee: Production, Quality and Chemistry, The Royal Society of Chemistry, 2019, pp. 1–25. [95] DANE, “Boletín Técnico PIB IV Trimestre 2019,” Bogotá - Colombia, 2020. [Online]. Available: https://www.dane.gov.co/files/investigaciones/boletines/pib/bol_PIB_IVtrim19_producion_y_gasto.pdf. [96] O. Guerreiro and M. Perez, “CHAPTER 3 Breeding Strategies,” in Coffee: Production, Quality and Chemistry, The Royal Society of Chemistry, 2019, pp. 89–99. [97] F. Borém et al., “CHAPTER 16. Influence of Genetics, Environmental Aspects and Post-harvesting Processing on Coffee Cup Quality,” in Coffee, Cambridge: Royal Society of Chemistry, 2019, pp. 387–417. [98] C. Ramírez, C. Oliveros, and G. Roa, “Construya El Secador Solar Parabólico,” 2002. [Online]. Available: https://www.cenicafe.org/es/index.php/nuestras_publicaciones/avances_tecnicos/avance_tecnico_0305. [99] M. U. H. Suzihaque and R. Driscoll, “Effects of Solar Radiation, Buoyancy of Air Flow and Optimization Study of Coffee Drying in a Heat Recovery Dryer,” Procedia Eng., vol. 148, pp. 812–822, 2016, doi: 10.1016/j.proeng.2016.06.617. [100] G. V. de Melo et al., “Exploring the impacts of postharvest processing on the aroma formation of coffee beans – A review,” Food Chem., vol. 272, no. August 2018, pp. 441–452, Jan. 2019, doi: 10.1016/j.foodchem.2018.08.061. [101] R. F. Schwan, G. H. Fleet, and E. O. Afoakwa, “Cocoa and coffee fermentations.” 2015, [Online]. Available: http://www.crcnetbase.com/isbn/9781439847930. [102] E. P. Isquierdo, F. M. Borém, E. T. De Andrade, J. L. G. Corrêa, P. D. De Oliveira, and G. E. Alves, “Drying Kinetics and Quality of Natural Coffee,” Trans. ASABE, vol. 56, no. 3, pp. 995–1001, Jul. 2013, doi: 10.13031/trans.56.9794. [103] A. Ramírez-Martínez, M. A. Salgado-Cervantes, G. C. Rodríguez-Jimenes, M. A. García-Alvarado, F. Cherblanc, and J. C. Bénet, “Water transport in parchment and endosperm of coffee bean,” J. Food Eng., vol. 114, no. 3, pp. 375–383, Feb. 2013, doi: 10.1016/j.jfoodeng.2012.08.028. [104] W. Hernández, I. Ruiz, M. Salgado, G. Rodríguez, and M. García, “Modeling heat and mass transfer during drying of green coffee beans using prolate spheroidal geometry,” J. Food Eng., vol. 86, no. 1, pp. 1–9, 2008, doi: 10.1016/j.jfoodeng.2007.08.025. [105] H. Ciro, L. Abud, and L. Pérez, “Numerical simulation of thin layer coffee drying by control volumes,” Dyna, vol. 163, pp. 270–278, 2010. [106] J. Bathiebo, M. Daguenet, B. Zeghmati, and C. M’Bow, “Numerical study of natural convection drying of coffee grains contained in a vertical channel with constant heat flux on walls,” Int. J. Ambient Energy, vol. 24, no. 4, pp. 171–188, Oct. 2003, doi: 10.1080/01430750.2003.9674921. [107] A. Putranto, X. D. Chen, Z. Xiao, and P. A. Webley, “Mathematical modeling of intermittent and convective drying of rice and coffee using the reaction engineering approach (REA),” J. Food Eng., vol. 105, no. 4, pp. 638–646, 2011, doi: 10.1016/j.jfoodeng.2011.03.036. [108] K. Burmester and R. Eggers, “Heat and mass transfer during the coffee drying process,” J. Food Eng., vol. 99, no. 4, pp. 430–436, 2010, doi: 10.1016/j.jfoodeng.2009.12.021. [109] Č. Mizera, D. Herák, P. Hrabě, A. Kabutey, M. Wasserbauer, and H. Pouzarová, “Describing of drying curves of green coffee beans using mathematical model,” IOP Conf. Ser. Mater. Sci. Eng., vol. 420, no. 1, p. 012075, Oct. 2018, doi: 10.1088/1757-899X/420/1/012075. [110] S. Suherman, H. Widuri, S. Patricia, E. E. Susanto, and R. J. Sutrisna, “Energy Analysis of a Hybrid Solar Dryer for Drying Coffee Beans,” Int. J. Renew. Energy Dev., vol. 9, no. 1, pp. 131–139, Feb. 2020, doi: 10.14710/ijred.9.1.131-139. [111] S. Vélez-Piedrahita, H. J. Ciro-Velásquez, J. A. Osorio-Saraz, and E. Largo-Avila, “Study of the Effect of the Geometry of a Typical Solar Dryer for Coffee Using CFD Abstract,” Rev. Ing. Univ. Medellín, vol. 18, no. 35, pp. 149–161, Dec. 2019, doi: 10.22395/rium.v18n35a9. [112] E. Menya and A. Komakech, “Investigating the effect of different loading densities on selected properties of dried coffee using a GHE dryer,” Agric. Eng. Int. CIGR J., vol. 15, no. 3, pp. 231–237, 2013. [113] B. Briceño, J. Castillo, R. Carrión, and D. Díaz, “Propuesta de implantación de invernadero de secado de café con cubierta parabólica y estructura modular adaptada,” Ingenius, no. 24, pp. 36–48, Jun. 2020, doi: 10.17163/ings.n24.2020.04. [114] M. Kumar, S. K. Sansaniwal, and P. Khatak, “Progress in solar dryers for drying various commodities,” Renew. Sustain. Energy Rev., vol. 55, pp. 346–360, 2016, doi: 10.1016/j.rser.2015.10.158. [115] M. F. Lemos et al., “Chemical and sensory profile of new genotypes of Brazilian Coffea canephora,” Food Chem., vol. 310, no. October 2019, p. 125850, Apr. 2020, doi: 10.1016/j.foodchem.2019.125850. [116] L. L. Pereira et al., “New propositions about coffee wet processing: Chemical and sensory perspectives,” Food Chem., vol. 310, no. October 2019, p. 125943, 2020, doi: 10.1016/j.foodchem.2019.125943. [117] W. Dong et al., “Comparative evaluation of the volatile profiles and taste properties of roasted coffee beans as affected by drying method and detected by electronic nose, electronic tongue, and HS-SPME-GC-MS,” Food Chem., vol. 272, no. August 2018, pp. 723–731, 2019, doi: 10.1016/j.foodchem.2018.08.068. [118] G. Tong, D. M. Christopher, and B. Li, “Numerical modelling of temperature variations in a Chinese solar greenhouse,” Comput. Electron. Agric., vol. 68, no. 1, pp. 129–139, Aug. 2009, doi: 10.1016/j.compag.2009.05.004. [119] V. P. Sethi, K. Sumathy, C. Lee, and D. S. Pal, “Thermal modeling aspects of solar greenhouse microclimate control: A review on heating technologies,” Sol. Energy, vol. 96, pp. 56–82, Oct. 2013, doi: 10.1016/j.solener.2013.06.034. [120] T. Tunde, “Mathematical modeling of sun and solar drying of chilli pepper,” Renew. Energy, vol. 36, no. 8, pp. 2139–2145, 2011, doi: 10.1016/j.renene.2011.01.017. [121] I. T. Togrul and D. Pehlivan, “Mathematical modelling of solar drying of apricots in thin layers,” J. Food Eng., vol. 55, no. 3, pp. 209–216, 2002, doi: 10.1016/S0260-8774(02)00065-1. [122] I. N. Ramos, T. R. S. Brandão, and C. L. M. Silva, “Simulation of solar drying of grapes using an integrated heat and mass transfer model,” Renew. Energy, vol. 81, pp. 896–902, Sep. 2015, doi: 10.1016/j.renene.2015.04.011. [123] S. Vijayan, T. V Arjunan, and A. Kumar, “Fundamental Concepts of Drying BT - Solar Drying Technology: Concept, Design, Testing, Modeling, Economics, and Environment,” O. Prakash and A. Kumar, Eds. Singapore: Springer Singapore, 2017, pp. 3–38. [124] Z. Erbay and F. Icier, “A Review of Thin Layer Drying of Foods: Theory, Modeling, and Experimental Results,” Crit. Rev. Food Sci. Nutr., vol. 50, no. 5, pp. 441–464, May 2010, doi: 10.1080/10408390802437063. [125] S. Phitakwinai, S. Thepa, and W. Nilnont, “Thin-layer drying of parchment Arabica coffee by controlling temperature and relative humidity,” Food Sci. Nutr., vol. 7, no. 9, pp. 2921–2931, 2019, doi: 10.1002/fsn3.1144. [126] L. R. Pérez, H. J. Ciro, and L. C. Abud, “Physical and thermal properties of parchment coffee bean,” Trans. Am. Soc. Agric. Eng., vol. 44, no. 6, pp. 1721–1726, 2001, doi: 10.13031/2013.6983. [127] C. J. Geankoplis, Transport Processes and Unit Operations. Allyn and Bacon, 1978. [128] I. Campbell Scientific, “CR1000 Measurement and Control System.” Campbell Scientific, Logan, Utah, p. 678, 2015, [Online]. Available: https://shop.profec-ventus.com/images/Datasheets/Data_loggers/SCI/CR1000/cr1000-manual-2015.pdf. [129] C. Oliveros, J. Sanz, C. Ramírez, and A. Peñuela, “Secador solar de túnel para café pergamino,” 2006. [130] T. A. L. Wagemaker, C. R. L. Carvalho, N. B. Maia, S. R. Baggio, and O. Guerreiro Filho, “Sun protection factor, content and composition of lipid fraction of green coffee beans,” Ind. Crops Prod., vol. 33, no. 2, pp. 469–473, 2011, doi: 10.1016/j.indcrop.2010.10.026. [131] A. Farah, M. C. Monteiro, V. Calado, A. S. Franca, and L. C. Trugo, “Correlation between cup quality and chemical attributes of Brazilian coffee,” Food Chem., vol. 98, no. 2, pp. 373–380, 2006, doi: 10.1016/j.foodchem.2005.07.032.
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleEfecto del secado solar intermitente en la composición química del café
dc.typeTesis


Este ítem pertenece a la siguiente institución