dc.contributorBaena Aristizábal, Yolima
dc.contributorPérez, León Darío
dc.contributorSistemas Para Liberación Controlada de Moléculas Biológicamente Activas
dc.creatorCarrascal Sánchez, Juan José
dc.date.accessioned2022-07-18T23:59:14Z
dc.date.available2022-07-18T23:59:14Z
dc.date.created2022-07-18T23:59:14Z
dc.date.issued2021
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/81703
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.description.abstractLas interacciones electrostáticas entre un polielectrolito y una molécula ionizable conducen a la formación de un complejo polielectrolítico (CPE), cuyas propiedades fisicoquímicas se diferencian de los materiales de partida. Estas propiedades han sido aprovechadas en el campo farmacéutico y cosmético, con propósitos como la estabilización de moléculas y la mejora de la actividad. El objetivo de este estudio fue caracterizar las propiedades fisicoquímicas y antimicrobianas de CPEs obtenidos entre el Eudragit E100 (Eu) y los ácidos benzoico, salicílico y 4-hidroxibenzoico, con diferentes proporciones estequiométricas de neutralización y producidos mediante extrusión por fusión (HME) y secado por aspersión (SD). Con base en diagramas de fases y un diseño estadístico experimental, se establecieron las condiciones operacionales de las dos metodologías. Las interacciones intermoleculares fueron evidenciadas mediante espectroscopía infrarroja por transformada de Fourier (FTIR), espectroscopía de fotoelectrones de rayos X (XPS) y difracción de rayos X en polvo (XRPD). Las propiedades fisicoquímicas temperatura de transición vítrea, desplazamiento químico del N1s, solubilidad cualitativa, pseudo potencial zeta (F-ζ) y el comportamiento de liberación, fueron dependientes de la constitución del CPE y de la metodología de obtención. La actividad antimicrobiana de los CPEs sobre E.coli, S.aureus y C.albicans fue superior en comparación con los materiales de partida, a pH 6.0 y 6.9. La correlación entre el F-ζ y la actividad antimicrobiana demostró relación directa, independiente del pH y la metodología de obtención. Dicha relación es atribuida a la interacción entre la carga de los CPEs y los componentes de la superficie de la membrana celular, que corresponde al principal mecanismo de acción que fue determinado para estos sistemas. El mayor espectro de acción y su mayor actividad en un rango más amplio de pH, hace que estos complejos puedan ser considerados como una nueva alternativa frente a los preservantes existentes, con aplicación en el campo farmacéutico y cosmético. (Texto tomado de la fuente).
dc.description.abstractElectrostatic interactions between a polyelectrolyte and an ionizable molecule led to the formation of a polyelectrolyte complex (PEC), whose physicochemical properties differ from the starting materials. These properties have been applied in the pharmaceutical and cosmetic fields, for purposes such as stabilizing molecules and improving activity. The objective of this study was to characterize the physicochemical and antimicrobial properties of PECs obtained between Eudragit E100 and benzoic, salicylic, and 4-hydroxybenzoic acids, with different stoichiometric proportions of neutralization and produced by hot-melt extrusion (HME) and spray drying (SD). Based on phase diagrams and an experimental statistical design, the operational conditions of the two methodologies were established. Intermolecular interactions were evidenced by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and X-ray powder diffraction (XRPD). The physicochemical properties, glass transition temperature, N1s chemical shift, qualitative solubility, pseudo zeta potential (F-ζ), and release behavior were dependent on the constitution of the PEC and the production methodology. The antimicrobial activity of the PECs on E.coli, S.aureus, and C.albicans was superior compared to the starting materials, at pH 6.0 and 6.9. The correlation between F-ζ and antimicrobial activity showed a direct relationship, independent of pH and the methodology of obtaining. This relationship is attributed to the interaction between the charge of the PECs and the components of the cell membrane surface, which corresponds to the main mechanism of action that was determined for these systems. The greater spectrum of action and their greater activity in a wider range of pH make that these complexes could be considered as a new alternative to existing preservatives, with application in the pharmaceutical and cosmetic fields.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ciencias - Doctorado en Ciencias Farmacéuticas
dc.publisherDepartamento de Farmacia
dc.publisherFacultad de Ciencias
dc.publisherBogotá, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationManiruzzaman M, Morgan DJ, Mendham AP, Pang J, Snowden MJ, Douroumis D. Drug-polymer intermolecular interactions in hot-melt extruded solid dispersions. Int J Pharm [Internet]. 2013 Feb 25 [cited 2018 Oct 16];443(1–2):199–208. Available from: https://www.sciencedirect.com/science/article/pii/S0378517312010642
dc.relationMahmah O, Tabbakh R, Kelly A, Paradkar A. A comparative study of the effect of spray drying and hot-melt extrusion on the properties of amorphous solid dispersions containing felodipine. J Pharm Pharmacol [Internet]. 2014 Feb [cited 2020 Jun 23];66(2):275–84. Available from: https://pubmed.ncbi.nlm.nih.gov/24433426/
dc.relationSóti PL, Bocz K, Pataki H, Eke Z, Farkas A, Verreck G, et al. Comparison of spray drying, electroblowing and electrospinning for preparation of Eudragit E and itraconazole solid dispersions. Int J Pharm [Internet]. 2015;494(1):23–30. Available from: http://dx.doi.org/10.1016/j.ijpharm.2015.07.076
dc.relationCarey FA, Sundberg RJ. Chemical Bonding and Molecular Structure. In: Advanced Organic Chemistry [Internet]. Boston, MA: Springer US; 2007 [cited 2021 Aug 15]. p. 1–117. Available from: http://link.springer.com/10.1007/978-0-387-44899-2_1
dc.relationBruce C, Fegely KA, Rajabi-Siahboomi AR, McGinity JW. Crystal growth formation in melt extrudates. Int J Pharm [Internet]. 2007 Aug 16 [cited 2020 Oct 12];341(1–2):162–72. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0378517307003201
dc.relationMartinez-Marcos L, Lamprou DA, McBurney RT, Halbert GW. A novel hot-melt extrusion formulation of albendazole for increasing dissolution properties. Int J Pharm [Internet]. 2016 Feb 29 [cited 2021 Nov 15];499(1–2):175–85. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0378517316300059
dc.relationMichael E. Aulton. Pharmaceuticals The design and manufacture of medicine. 3era ed. Edinburgh, New York: Churchill Livingstone; 2007. 763 p.
dc.relationEkdahl A, Mudie D, Malewski D, Amidon G, Goodwin A. Pharmaceutics, Drug Delivery and Pharmaceutical Technology Effect of Spray-Dried Particle Morphology on Mechanical and Flow Properties of Felodipine in PVP VA Amorphous Solid Dispersions. J Pharm Sci [Internet]. 2019 [cited 2021 Aug 16];108:3657–66. Available from: https://doi.org/10.1016/j.xphs.2019.08.008
dc.relationSester C, Ofridam F, Lebaz N, Gagnière E, Mangin D, Elaissari A. pH-Sensitive methacrylic acid–methyl methacrylate copolymer Eudragit L100 and dimethylaminoethyl methacrylate, butyl methacrylate, and methyl methacrylate tri-copolymer Eudragit E100. Polym Adv Technol [Internet]. 2020 Mar 1 [cited 2021 Aug 17];31(3):440–50. Available from: https://hal.archives-ouvertes.fr/hal-02342633
dc.relationVehring R. Pharmaceutical particle engineering via spray drying. Pharm Res [Internet]. 2008 May [cited 2017 Nov 25];25(5):999–1022. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18040761
dc.relationIyer R, Hegde S, Zhang YE, Dinunzio J, Singhal D, Malick A, et al. The impact of hot melt extrusion and spray drying on mechanical properties and tableting indices of materials used in pharmaceutical development. J Pharm Sci. 2013;102(10):3604–13.
dc.relationElversson J, Millqvist-Fureby A, Alderborn G, Elofsson U. Droplet and particle size relationship and shell thickness of inhalable lactose particles during spray drying. J Pharm Sci [Internet]. 2003 Apr 1 [cited 2020 Oct 26];92(4):900–10. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0022354916312187
dc.relationMönckedieck M, Kamplade J, Fakner P, Urbanetz NA, Walzel P, Steckel H, et al. Spray drying of mannitol carrier particles with defined morphology and flow characteristics for dry powder inhalation. https://doi-org.ezproxy.unal.edu.co/101080/0737393720171281291 [Internet]. 2017 Nov 18 [cited 2021 Aug 18];35(15):1843–57. Available from: https://www-tandfonline-com.ezproxy.unal.edu.co/doi/abs/10.1080/07373937.2017.1281291
dc.relationViswanathan P, Muralidaran Y, Ragavan G. Challenges in oral drug delivery: a nano-based strategy to overcome. In: Nanostructures for Oral Medicine [Internet]. Elsevier; 2017. p. 173–201. Available from: http://dx.doi.org/10.1016/B978-0-323-47720-8/00008-0
dc.relationSun YE, Tao J, Zhang GGZ, Yu L. Solubilities of crystalline drugs in polymers: An improved analytical method and comparison of solubilities of indomethacin and nifedipine in PVP, PVP/VA, and PVAc. J Pharm Sci [Internet]. 2010 Sep 1 [cited 2019 Apr 23];99(9):4023–31. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/jps.22251
dc.relationDong B, Hadinoto K. Carboxymethyl cellulose is a superior polyanion to dextran sulfate in stabilizing and enhancing the solubility of amorphous drug-polyelectrolyte nanoparticle complex. Int J Biol Macromol [Internet]. 2019 [cited 2021 Feb 25];139:500–8. Available from: https://doi.org/10.1016/j.ijbiomac.2019.08.023
dc.relationDanda LJ de A, Batista L de M, Melo VCS, Soares Sobrinho JL, Soares MF de LR. Combining amorphous solid dispersions for improved kinetic solubility of posaconazole simultaneously released from soluble PVP/VA64 and an insoluble ammonio methacrylate copolymer. Eur J Pharm Sci [Internet]. 2019 [cited 2021 Feb 25];133:79–85. Available from: https://doi.org/10.1016/j.ejps.2019.03.012
dc.relationJayasuriya AC. Production of micro- and nanoscale chitosan particles for biomedical applications. In: Chitosan Based Biomaterials [Internet]. Elsevier; 2017. p. 185–209. Available from: http://dx.doi.org/10.1016/B978-0-08-100230-8.00008-X
dc.relationSundaramurthy A. Responsive polyelectrolyte multilayer nanofilms for drug delivery applications. In: Stimuli Responsive Polymeric Nanocarriers for Drug Delivery Applications, Volume 1 [Internet]. Elsevier; 2018. p. 247–66. Available from: https://doi.org/10.1016/B978-0-08-101997-9.00013-8
dc.relationRowe RC, Sheskey PJ, Owen SC, Association AP. Handbook of Pharmaceutical Excipients [Internet]. Pharmaceut. Pharmaceutical Press; 2006. 918 p. Available from: https://books.google.com.co/books?id=BGJqAAAAMAAJ
dc.relationBrouwers J, Brewster ME, Augustijns P. Supersaturating drug delivery systems: The answer to solubility-limited oral bioavailability? Vol. 98, Journal of Pharmaceutical Sciences. John Wiley and Sons Inc.; 2009. p. 2549–72
dc.relationWu D, Delair T. Stabilization of chitosan/hyaluronan colloidal polyelectrolyte complexes in physiological conditions. Carbohydr Polym. 2015 Mar 30;119:149–58.
dc.relationMechtaeva EV, Zorin IM, Gavrilova DA, Fetin PA, Zorina NA, Bilibin AY. Polyelectrolyte complexes of polyacrylic acid with oligovalent organic counterions. J Mol Liq [Internet]. 2019 Nov [cited 2021 Aug 19];293:111418. Available from: https://doi.org/10.1016/j.molliq.2019.111418
dc.relationTan DK, Davis DA, Miller DA, Williams RO, Nokhodchi A. Innovations in Thermal Processing: Hot-Melt Extrusion and KinetiSol® Dispersing. AAPS PharmSciTech [Internet]. 2020 Nov 8 [cited 2021 Jan 29];21(8):312. Available from: http://www.ncbi.nlm.nih.gov/pubmed/33161479
dc.relationSaboo S, Mugheirbi NA, Zemlyanov DY, Kestur US, Taylor LS. Congruent release of drug and polymer: A “sweet spot” in the dissolution of amorphous solid dispersions. J Control Release [Internet]. 2019 Mar 28 [cited 2020 Oct 14];298:68–82. Available from: https://doi.org/10.1016/j.jconrel.2019.01.039
dc.relationBarbosa JAC, Abdelsadig MSE, Conway BR, Merchant HA. Using zeta potential to study the ionisation behaviour of polymers employed in modified-release dosage forms and estimating their pKa. Int J Pharm X [Internet]. 2019 Dec 1 [cited 2020 Sep 27];1:100024. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2590156719300386
dc.relationAnandan K, Kolandaivel P, Kumaresan R. Molecular structural conformations and hydration of internally hydrogen-bonded salicylic acid: Ab initio and DFT studies. Int J Quantum Chem. 2005;103(2):127–39.
dc.relationCatalán J, Ignacio Fernández-Alonso J. A theoretical study of the stereochemistry of the intramolecular hydrogen bond of salicylic acid. J Mol Struct. 1975;27(1):59–65.
dc.relationDenisov GS, Golubev NS, Schreiber VM, Shajakhmedov SS, Shurukhina A V. Effect of intermolecular hydrogen bonding and proton transfer on fluorescence of salicylic acid. J Mol Struct. 1997;436–437(97):153–60.
dc.relationPubChem. Phosphate | O4P-3 - PubChem [Internet]. PubChem. 2020 [cited 2021 Nov 16]. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/1061#section=Computed-Properties
dc.relationPubChem. Hydroxide | HO- - PubChem [Internet]. PubChem. 2020 [cited 2021 Nov 16]. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/961#section=Computed-Properties
dc.relationOrienti I, Zuccari G, Carosio R, G. Montaldo P. Improvement of aqueous solubility of fenretinide and other hydrophobic anti-tumor drugs by complexation with amphiphilic dextrins. Drug Deliv. 2009;16(7):389–98.
dc.relationLim LM, Hadinoto K. Enhancing the stability of amorphous drug-polyelectrolyte nanoparticle complex using a secondary small-molecule drug as the stabilizer: A case study of ibuprofen-stabilized curcumin-chitosan nanoplex. Int J Pharm [Internet]. 2020 Feb [cited 2021 Mar 5];575:119007. Available from: https://doi.org/10.1016/j.ijpharm.2019.119007
dc.relationBeneš M, Pekárek T, Beránek J, Havlíček J, Krejčík L, Šimek M, et al. Methods for the preparation of amorphous solid dispersions – A comparative study. J Drug Deliv Sci Technol [Internet]. 2017 [cited 2020 Aug 21];38:125–34. Available from: http://dx.doi.org/10.1016/j.jddst.2017.02.005
dc.relationLinares V, Yarce CJ, Echeverri JD, Galeano E, Salamanca CH. Relationship between Degree of Polymeric Ionisation and Hydrolytic Degradation of Eudragit® E Polymers under Extreme Acid Conditions. Polymers (Basel) [Internet]. 2019 Jun 7 [cited 2021 Feb 22];11(6):1010. Available from: www.mdpi.com/journal/polymers
dc.relationAngel V. Delgado FJA. Electrokinetic Phenomena and Their Experimental Determination: An Overview. In: Interfacial Electrokinetics and Electrophoresis [Internet]. CRC Press; 2001 [cited 2021 Feb 17]. p. 21–74. Available from: https://www.taylorfrancis.com/chapters/electrokinetic-phenomena-experimental-determination-overview-angel-delgado-francisco-arroyo/e/10.1201/9781482294668-3
dc.relationDukhin AS, Xu R. Zeta-potential measurements. In: Characterization of Nanoparticles [Internet]. Elsevier; 2020 [cited 2021 Feb 16]. p. 213–24. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128141823000146
dc.relationISO. ISO 13099-1:2012 - Colloidal systems -- Methods for zeta-potential determination -- Part 1: Electroacoustic and electrokinetic phenomena [Internet]. 2102 [cited 2021 Feb 17]. Available from: https://www.iso.org/standard/52807.html
dc.relationDelgado A V, González-Caballero F, Hunter RJ, Koopal LK, Lyklema J, International Union of Pure and Applied Chemistry P and BCDITR. Measurement and interpretation of electrokinetic phenomena. J Colloid Interface Sci [Internet]. 2007 May 15 [cited 2021 Feb 17];309(2):194–224. Available from: www.elsevier.com/locate/jcis
dc.relationOhshima H. Electrophoresis of soft particles. Adv Colloid Interface Sci [Internet]. 1995 Dec [cited 2021 Feb 17];62(2–3):189–235. Available from: https://www.researchgate.net/publication/222159197
dc.relationOhshima H. Electrophoresis of soft particles: Analytic approximations. Electrophoresis. 2006;27(3):526–33.
dc.relationMalvern Instruments. Manual: Zetasizer Nano user manual (English) MAN0485. 1st ed. Malvern, editor. Worcestershire: Malvern Instruments Ltd; 2013. 250 p.
dc.relationAlarcón Ramirez LP. Estudio de la Interacción entre los Grupos Fosfato del Ácido Desoxirribonucleico y Fármacos modelo que poseen Grupos Básicos [Internet]. Universidad Nacional de Córdoba; 2017 [cited 2021 Jan 15]. Available from: https://rdu.unc.edu.ar/handle/11086/15644
dc.relationPalena MC, García MC, Manzo RH, Jimenez-Kairuz AF. Self-organized drug-interpolyelectrolyte nanocomplexes loaded with anionic drugs. Characterization and in vitro release evaluation. J Drug Deliv Sci Technol [Internet]. 2015 Dec 1 [cited 2020 Jul 22];30:45–53. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1773224715300265
dc.relationSalamanca CH, Castillo DF, Villada JD, Rivera GR. Physicochemical characterization of in situ drug-polymer nanocomplex formed between zwitterionic drug and ionomeric material in aqueous solution. Mater Sci Eng C [Internet]. 2017;72:405–14. Available from: http://dx.doi.org/10.1016/j.msec.2016.11.097
dc.relationMontaña JA, Perez LD, Baena Y. A pH-responsive drug delivery matrix from an interpolyelectrolyte complex: preparation and pharmacotechnical properties. Brazilian J Pharm Sci [Internet]. 2018 Jul 26 [cited 2021 Feb 19];54(2):17183. Available from: http://dx.doi.org/10.1590/s2175-97902018000217183
dc.relationOfridam F, Lebaz N, Gagnière É, Mangin D, Elaissari A. Polymethylmethacrylate derivatives Eudragit E100 and L100: Interactions and complexation with surfactants. Polym Adv Technol. 2021;32(1):379–90.
dc.relationOfridam F, Lebaz N, Gagnière É, Mangin D, Elaissari A. Polymethylmethacrylate derivatives Eudragit E100 and L100: Interactions and complexation with surfactants. Polym Adv Technol. 2021;32(1):379–90.
dc.relationQuinteros DA. Desarrollo de nuevas estrategias de formulación de fármacos mediante el acomplejamiento con polielectrolitos. [s.n.],; 2010.
dc.relationDillen K, Vandervoort J, Van den Mooter G, Ludwig A. Evaluation of ciprofloxacin-loaded Eudragit® RS100 or RL100/PLGA nanoparticles. Int J Pharm [Internet]. 2006 Jan [cited 2017 May 5];314(1):72–82. Available from: http://www.sciencedirect.com/science/article/pii/S0378517303005076
dc.relationBijukumar D, Choonara YE, Murugan K, Choonara BF, Kumar P, du Toit LC, et al. Design of an Inflammation-Sensitive Polyelectrolyte-Based Topical Drug Delivery System for Arthritis. AAPS PharmSciTech [Internet]. 2016 Oct 30 [cited 2021 Jan 14];17(5):1075–85. Available from: http://link.springer.com/10.1208/s12249-015-0434-6
dc.relationLi J, Lee IW, Shin GH, Chen X, Park HJ. Curcumin-Eudragit® E PO solid dispersion: A simple and potent method to solve the problems of curcumin. Eur J Pharm Biopharm [Internet]. 2015 Aug [cited 2021 Feb 23];94:322–32. Available from: http://dx.doi.org/10.1016/j.ejpb.2015.06.002
dc.relationMontero N, Alhajj MJ, Sierra M, Oñate-Garzon J, Yarce CJ, Salamanca CH. Development of Polyelectrolyte Complex Nanoparticles-PECNs Loaded with Ampicillin by Means of Polyelectrolyte Complexation and Ultra-High Pressure Homogenization (UHPH). Polymers (Basel) [Internet]. 2020 May 20;12(5):1168. Available from: https://www.mdpi.com/2073-4360/12/5/1168
dc.relationSimon A, Amaro MI, Healy AM, Cabral LM, de Sousa VP. Comparative evaluation of rivastigmine permeation from a transdermal system in the Franz cell using synthetic membranes and pig ear skin with in vivo-in vitro correlation. Int J Pharm [Internet]. 2016 Oct;512(1):234–41. Available from: http://dx.doi.org/10.1016/j.ijpharm.2016.08.052
dc.relationNg SF, Rouse JJ, Sanderson FD, Meidan V, Eccleston GM. Validation of a static Franz diffusion cell system for in vitro permeation studies. AAPS PharmSciTech [Internet]. 2010 Sep 15 [cited 2021 Jan 13];11(3):1432–41. Available from: http://link.springer.com/10.1208/s12249-010-9522-9
dc.relationMattiasson J. Method development of an in vitro vertical Franz diffusion cell system to assess permeation of cosmetic active ingredients [Internet]. 2020 [cited 2021 Jan 13]. Available from: http://www.teknat.uu.se/student
dc.relationPeppas NA, Narasimhan B. Mathematical models in drug delivery: How modeling has shaped the way we design new drug delivery systems. J Control Release [Internet]. 2014 Sep 28 [cited 2021 Jan 13];190:75–81. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0168365914004507
dc.relationSiepmann J, Peppas NA. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv Drug Deliv Rev [Internet]. 2012 Dec 1 [cited 2021 Jan 13];64(SUPPL.):163–74. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0169409X12002888
dc.relationBruschi ML. Mathematical models of drug release. Strateg to Modify Drug Release from Pharm Syst [Internet]. 2015;63–86. Available from: http://www.sciencedirect.com/science/article/pii/B9780081000922000059
dc.relationHiguchi T. Mechanism of sustained‐action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J Pharm Sci [Internet]. 1963 Dec 1 [cited 2020 Jul 11];52(12):1145–9. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/jps.2600521210
dc.relationHixson AW, Crowell JH. Dependence of Reaction Velocity upon surface and Agitation: I—Theoretical Consideration. Ind Eng Chem [Internet]. 1931 Aug 1 [cited 2021 Jan 14];23(8):923–31. Available from: https://pubs.acs.org/doi/abs/10.1021/ie50260a018
dc.relationKorsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA. Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm [Internet]. 1983 May 1 [cited 2020 Jul 11];15(1):25–35. Available from: https://linkinghub.elsevier.com/retrieve/pii/0378517383900649
dc.relationSeki T, Kawaguchi T, Endoh H, Ishikawa K, Juni K, Nakano M. Controlled release of 3′, 5′‐diester prodrugs of 5‐fluoro‐2′‐deoxyuridine from poly‐L‐lactic acid microspheres. J Pharm Sci [Internet]. 1990 Nov 1 [cited 2021 Jan 14];79(11):985–7. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0022354915483819
dc.relationKatzhendler I, Hoffman A, Goldberger A, Friedman M. Modeling of Drug Release from Erodible Tablets. J Pharm Sci. 1997 Jan 1;86(1):110–5.
dc.relationLangenbucher F. Letters to the Editor: Linearization of dissolution rate curves by the Weibull distribution [Internet]. Vol. 24, Journal of Pharmacy and Pharmacology. John Wiley & Sons, Ltd; 1972 [cited 2021 Jan 14]. p. 979–81. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/j.2042-7158.1972.tb08930.x
dc.relationKharat A.R. Mathematical Models of Drug Dissolution: A Review. Sch Acad J PharmacyOnline) Sch Acad J Pharm [Internet]. 2014 [cited 2021 Jan 14];3(5):2320–4206. Available from: www.saspublisher.com
dc.relationPalena MC, Manzo RH, Jimenez-Kairuz AF. Self-organized nanoparticles based on drug-interpolyelectrolyte complexes as drug carriers. J Nanoparticle Res [Internet]. 2012 Jun 3 [cited 2021 Jan 14];14(6):867. Available from: http://link.springer.com/10.1007/s11051-012-0867-8
dc.relationQuinteros DA, Allemandi DA, Manzo RH. Equilibrium and release properties of aqueous dispersions of non-steroidal anti-inflammatory drugs complexed with polyelectrolyte eudragit E 100. Sci Pharm [Internet]. 2012 Apr 30 [cited 2021 Jan 14];80(2):487–96. Available from: http://www.mdpi.com/2218-0532/80/2/487
dc.relationBattistini FD, Olivera ME, Manzo RH. Equilibrium and release properties of hyaluronic acid-drug complexes. Eur J Pharm Sci [Internet]. 2013 Jul 16 [cited 2021 Jan 14];49(4):588–94. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0928098713001619
dc.relationCerchiara T, Abruzzo A, Parolin C, Vitali B, Bigucci F, Gallucci MC, et al. Microparticles based on chitosan/carboxymethylcellulose polyelectrolyte complexes for colon delivery of vancomycin. Carbohydr Polym [Internet]. 2016 Jun 5 [cited 2018 May 7];143:124–30. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27083351
dc.relationSonje AG, Mahajan HS. Nasal inserts containing ondansetron hydrochloride based on Chitosan-gellan gum polyelectrolyte complex: In vitro-in vivo studies. Mater Sci Eng C Mater Biol Appl [Internet]. 2016 Jul 1 [cited 2021 Jan 14];64:329–35. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0928493116302673
dc.relationGarcía MC, Cuggino JC, Rosset CI, Páez PL, Strumia MC, Manzo RH, et al. A novel gel based on an ionic complex from a dendronized polymer and ciprofloxacin: Evaluation of its use for controlled topical drug release. Mater Sci Eng C [Internet]. 2016;69:236–46. Available from: http://dx.doi.org/10.1016/j.msec.2016.06.071
dc.relationLefnaoui S, Moulai-Mostefa N, Yahoum MM, Gasmi SN. Design of antihistaminic transdermal films based on alginate-chitosan polyelectrolyte complexes: characterization and permeation studies. Drug Dev Ind Pharm [Internet]. 2018 Mar 4 [cited 2021 Jan 14];44(3):432–43. Available from: https://www.tandfonline.com/doi/abs/10.1080/03639045.2017.1395461
dc.relationCarton F, Chevalier Y, Nicoletti L, Tarnowska M, Stella B, Arpicco S, et al. Rationally designed hyaluronic acid-based nano-complexes for pentamidine delivery. Int J Pharm [Internet]. 2019 Sep 10 [cited 2021 Jan 14];568:118526. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0378517319305708
dc.relationSumaila M, Ramburrun P, Kumar P, Choonara YE, Pillay V. Lipopolysaccharide Polyelectrolyte Complex for Oral Delivery of an Anti-tubercular Drug. AAPS PharmSciTech [Internet]. 2019 Apr 1 [cited 2021 Jan 14];20(3):1–16. Available from: https://link-springer-com.ezproxy.unal.edu.co/article/10.1208/s12249-019-1310-6
dc.relationDubey V, Mohan P, Dangi JS, Kesavan K. Brinzolamide loaded chitosan-pectin mucoadhesive nanocapsules for management of glaucoma: Formulation, characterization and pharmacodynamic study. Int J Biol Macromol [Internet]. 2020 Jun 1 [cited 2021 Jan 14];152:1224–32. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0141813019371673
dc.relationPhillips DJ, Pygall SR, Cooper VB, Mann JC. Overcoming sink limitations in dissolution testing: a review of traditional methods and the potential utility of biphasic systems. J Pharm Pharmacol [Internet]. 2012 Oct 12 [cited 2021 Aug 25];64(11):1549–59. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/j.2042-7158.2012.01523.x
dc.relationLiu P, De Wulf O, Laru J, Heikkilä T, Van Veen B, Kiesvaara J, et al. Dissolution studies of poorly soluble drug nanosuspensions in non-sink conditions. AAPS PharmSciTech [Internet]. 2013 Jun [cited 2021 Aug 25];14(2):748–56. Available from: /pmc/articles/PMC3666001/
dc.relationJassim ZE, Hussein AA. DISSOLUTION METHOD DEVELOPMENT AND ENHANCEMENT OF SOLUBILITY OF CLOPIDOGREL BISULFATE. Int Res J Pharm [Internet]. 2017 [cited 2021 Aug 25];8(6):25–9. Available from: https://www.researchgate.net/publication/325854313
dc.relationSiepmann J, Siepmann F. Sink conditions do not guarantee the absence of saturation effects. Int J Pharm [Internet]. 2020 Mar 15 [cited 2021 Jan 21];577:119009. Available from: https://doi.org/10.1016/j.ijpharm.2019.119009
dc.relationHuang J, Wigent RJ, Schwartz JB. Drug-polymer interaction and its significance on the physical stability of nifedipine amorphous dispersion in microparticles of an ammonio methacrylate copolymer and ethylcellulose binary blend. J Pharm Sci [Internet]. 2008 Jan 1 [cited 2021 Aug 27];97(1):251–62. Available from: http://jpharmsci.org/article/S0022354916324406/fulltext
dc.relationHurley D, Carter D, Foong Ng LY, Davis M, Walker GM, Lyons JG, et al. An investigation of the inter-molecular interaction, solid-state properties and dissolution properties of mixed copovidone hot-melt extruded solid dispersions. J Drug Deliv Sci Technol [Internet]. 2019 Oct 1 [cited 2020 Jun 5];53:101132. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1773224719305556
dc.relationGarcía MC, Martinelli M, Ponce NE, Sanmarco LM, Aoki MP, Manzo RH, et al. Multi-kinetic release of benznidazole-loaded multiparticulate drug delivery systems based on polymethacrylate interpolyelectrolyte complexes. Eur J Pharm Sci [Internet]. 2018 Jul;120(January):107–22. Available from: https://doi.org/10.1016/j.ejps.2018.04.034
dc.relationChandra Basak S, Senthil Kumar K, Ramalingam M, Basak SC. Design and release characteristics of sustained release tablet containing metformin HCl. Vol. 44, Revista Brasileira de Ciências Farmacêuticas Brazilian Journal of Pharmaceutical Sciences. 2008.
dc.relationHu X, Wang Y, Zhang L, Xu M. Formation of self-assembled polyelectrolyte complex hydrogel derived from salecan and chitosan for sustained release of Vitamin C. Carbohydr Polym [Internet]. 2020 Apr 15 [cited 2020 Sep 7];234:115920. Available from: https://doi.org/10.1016/j.carbpol.2020.115920
dc.relationYan JK, Qiu WY, Wang YY, Wu LX, Cheung PCK. Formation and characterization of polyelectrolyte complex synthesized by chitosan and carboxylic curdlan for 5-fluorouracil delivery. Int J Biol Macromol [Internet]. 2018 [cited 2021 Sep 3];107(PartA):397–405. Available from: https://doi.org/10.1016/j.ijbiomac.2017.09.004
dc.relationMugoyela V, Mugoyela V, Mwambete K.D. Microbial contamination of nonsterile pharmaceuticals in public hospital settings. Ther Clin Risk Manag [Internet]. 2010 Sep [cited 2021 Nov 17];6:443. Available from: /pmc/articles/PMC2952482/
dc.relationJairoun AA, Al-Hemyari SS, Shahwan M, Zyoud SH. An investigation into incidences of microbial contamination in cosmeceuticals in the uae: Imbalances between preservation and microbial contamination. Cosmetics [Internet]. 2020 Nov 24 [cited 2021 Nov 17];7(4):1–14. Available from: https://www.mdpi.com/2079-9284/7/4/92/htm
dc.relationKamil OH, Lupuliasa D. Modern aspects regarding the microbial spoilage of pharmaceutical products. Farmacia. 2011;59(2):133–46.
dc.relationKabara JJ, Orth SD. Preservative-Free and Self-Preserving Cosmetics and Drugs: Principles and Practices [Internet]. CRC Press; 1997 [cited 2016 Apr 4]. 286 p. Available from: https://books.google.com/books?id=qHgB7ZFLOC4C&pgis=1
dc.relationErkmen O, Bozoglu F. Food Preservation by Removal Methods. In: Food Microbiology: Principles into Practice [Internet]. Wiley; 2016 [cited 2021 Sep 8]. p. 127–31. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/9781119237860.ch33
dc.relationBalouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: A review. J Pharm Anal [Internet]. 2016 Apr [cited 2017 Mar 21];6(2):71–9. Available from: http://linkinghub.elsevier.com/retrieve/pii/S2095177915300150
dc.relationEvangelista TFS, Andrade GRS, Nascimento KNS, dos Santos SB, de Fátima Costa Santos M, Da Ros Montes D’Oca C, et al. Supramolecular polyelectrolyte complexes based on cyclodextrin-grafted chitosan and carrageenan for controlled drug release. Carbohydr Polym [Internet]. 2020 Oct 1 [cited 2021 Feb 16];245:116592. Available from: https://doi.org/10.1016/j.carbpol.2020.116592
dc.relationDillen K, Vandervoort J, Van den Mooter G, Ludwig A. Evaluation of ciprofloxacin-loaded Eudragit® RS100 or RL100/PLGA nanoparticles. Int J Pharm. 2006;314(1):72–82.
dc.relationTOPUZOĞULLARI M. Effect of polyelectrolyte complex formation on the antibacterial activity of copolymer of alkylated 4-vinylpyridine. TURKISH J Chem [Internet]. 2020 Jun 1 [cited 2021 Mar 23];44(3):634–46. Available from: http://online.journals.tubitak.gov.tr/openDoiPdf.htm?mKodu=kim-1909-95
dc.relationQian L, Dong C, Liang X, He B, Xiao H. Polyelectrolyte complex containing antimicrobial guanidine-based polymer and its adsorption on cellulose fibers. Holzforschung. 2014;
dc.relationTsao CT, Chang CH, Lin YY, Wu MF, Wang J-L, Han JL, et al. Antibacterial activity and biocompatibility of a chitosan–γ-poly(glutamic acid) polyelectrolyte complex hydrogel. Carbohydr Res [Internet]. 2010 Aug;345(12):1774–80. Available from: https://linkinghub.elsevier.com/retrieve/pii/S000862151000248X
dc.relationProcop GW, Barbara Alexander MD, Philippe Dufresne MJ, Jeff Fuller R, Mahmoud Ghannoum DA, Kimberly Hanson ME, et al. Method for Antifungal Disk Diffusion Susceptibility Testing of Yeasts [Internet]. 2018 [cited 2021 Mar 29]. p. 44–6. Available from: www.clsi.org.
dc.relationCLSI. M51-A: Method for Antifungal Disk Diffusion Susceptibility Testing of Nondermatophyte Filamentous Fungi; Approved Guideline [Internet]. Vol. 30. 2010 [cited 2021 Mar 29]. 1–29 p. Available from: www.clsi.org.
dc.relationWikler MA, Cockerill FR, Bush K, Dudley MN, Eliopoulos GM, Hardy DJ, et al. Performance Standards for Antimicrobial Disk Susceptibility Tests [Internet]. Vol. 29. 2009 [cited 2021 Mar 29]. Available from: www.clsi.org.
dc.relationCLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically [Internet]. Approved Standard-Tenth Edition. CLSI document M07-A10. 2015. 1–87 p. Available from: http://shop.clsi.org/site/Sample_pdf/M07A10_sample.pdf
dc.relationRex JH. M27-A3 Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved Standard—Third Edition. 2008.
dc.relationTapia C V. Actualización en pruebas de susceptibilidad antifúngica. Rev Chil Infectol. 2009;26(2):144–50.
dc.relationSandle T. Antibiotics and preservatives. In: Pharmaceutical Microbiology. First Edit. Cambridge: Elsevier; 2016. p. 171–83.
dc.relationWilson D. Candida albicans. Trends Microbiol [Internet]. 2019 Feb [cited 2021 Mar 29];27(2):188–9. Available from: https://doi.org/10.1016/j.tim.2018.10.010
dc.relationKabir MA, Hussain MA, Ahmad Z. Candida albicans : A Model Organism for Studying Fungal Pathogens. ISRN Microbiol [Internet]. 2012 Sep 29 [cited 2021 Mar 29];2012:1–15. Available from: https://www.hindawi.com/journals/isrn/2012/538694/
dc.relationPrasad R. Candida albicans: Cellular and Molecular Biology [Internet]. Prasad R, editor. Candida albicans: Cellular and Molecular Biology: Second Edition. Cham: Springer International Publishing; 2017 [cited 2021 Mar 30]. 1–554 p. Available from: http://link.springer.com/10.1007/978-3-319-50409-4
dc.relationSalci TP, Negri M, Abadio AKR, Svidzinski TIE, Kioshima ÉS. Targeting Candida spp. to develop antifungal agents. Drug Discov Today [Internet]. 2018 Apr [cited 2021 Mar 29];23(4):802–14. Available from: https://doi.org/10.1016/j.drudis.2018.01.003
dc.relationBoundless. Classification of Microorganisms - Biology LibreTexts [Internet]. Vol. 2019. 2019 [cited 2021 Mar 30]. Available from: https://bio.libretexts.org/Bookshelves/Microbiology/Book%3A_Microbiology_(Boundless)/1%3A_Introduction_to_Microbiology/1.2%3A_Microbes_and_the_World/1.2B%3A_Classification_of_Microorganisms
dc.relationPercival SL, Williams DW. Escherichia coli [Internet]. Second Edi. Microbiology of Waterborne Diseases: Microbiological Aspects and Risks: Second Edition. Elsevier; 2013. 89–117 p. Available from: http://dx.doi.org/10.1016/B978-0-12-415846-7.00006-8
dc.relationFleckenstein JM, Hardwidge PR, Munson GP, Rasko DA, Sommerfelt H, Steinsland H. Molecular mechanisms of enterotoxigenic Escherichia coli infection. Microbes Infect [Internet]. 2010 Feb [cited 2021 Mar 30];12(2):89–98. Available from: www.elsevier.com/locate/micinf
dc.relationRatajczak M, Kubicka MM, Kamińska D, Sawicka P, Długaszewska J. Microbiological quality of non-sterile pharmaceutical products. Saudi Pharm J [Internet]. 2015 Jul 1 [cited 2021 Mar 30];23(3):303–7. Available from: http://dx.doi.org/10.1016/j.jsps.2014.11.015
dc.relationJairoun AA, Al-Hemyari SS, Shahwan M, Zyoud SH. An Investigation into Incidences of Microbial Contamination in Cosmeceuticals in the UAE: Imbalances between Preservation and Microbial Contamination. Cosmetics [Internet]. 2020 Nov 24;7(4):92. Available from: https://www.mdpi.com/2079-9284/7/4/92
dc.relationSataloff RT, Johns MM, Kost KM. Staphylococcus aureus [Internet]. Elsevier; 2018. Available from: https://linkinghub.elsevier.com/retrieve/pii/C20150047578
dc.relationPollitt EJG, Szkuta PT, Burns N, Foster SJ. Staphylococcus aureus infection dynamics. Prince A, editor. PLOS Pathog [Internet]. 2018 Jun 14 [cited 2021 Mar 30];14(6):e1007112. Available from: https://dx.plos.org/10.1371/journal.ppat.1007112
dc.relationWong F, Stokes JM, Cervantes B, Penkov S, Friedrichs J, Renner LD, et al. Cytoplasmic condensation induced by membrane damage is associated with antibiotic lethality. Nat Commun [Internet]. 2021 Apr 19 [cited 2021 Sep 15];12(1):1–15. Available from: https://www.nature.com/articles/s41467-021-22485-6
dc.relationOkkeh M, Bloise N, Restivo E, De Vita L, Pallavicini P, Visai L. Gold nanoparticles: Can they be the next magic bullet for multidrug-resistant bacteria? Nanomaterials [Internet]. 2021 Jan 26 [cited 2021 Sep 15];11(2):1–30. Available from: https://www.mdpi.com/2079-4991/11/2/312/htm
dc.relationLonergan NE, Britt LD, Sullivan CJ. Immobilizing live Escherichia coli for AFM studies of surface dynamics. Ultramicroscopy [Internet]. 2014 Feb 1 [cited 2019 Mar 7];137:30–9. Available from: https://www.sciencedirect.com/science/article/pii/S0304399113002945
dc.relationLouise Meyer R, Zhou X, Tang L, Arpanaei A, Kingshott P, Besenbacher F. Immobilisation of living bacteria for AFM imaging under physiological conditions. Ultramicroscopy [Internet]. 2010 Oct 1 [cited 2019 Mar 7];110(11):1349–57. Available from: https://www.sciencedirect.com/science/article/pii/S0304399110001919
dc.relationHarimawan A, Rajasekar A, Ting YP. Bacteria attachment to surfaces - AFM force spectroscopy and physicochemical analyses. J Colloid Interface Sci [Internet]. 2011 Dec 1 [cited 2019 Mar 7];364(1):213–8. Available from: https://www.sciencedirect.com/science/article/pii/S0021979711010046
dc.relationNasompag S, Siritongsuk P, Thammawithan S, Srichaiyapol O, Prangkio P, Camesano TA, et al. Afm study of nanoscale membrane perturbation induced by antimicrobial lipopeptide c14 kyr. Membranes (Basel) [Internet]. 2021 Jun 30 [cited 2021 Sep 15];11(7):495. Available from: https://www.mdpi.com/2077-0375/11/7/495/htm
dc.relationDorobantu LS, Goss GG, Burrell RE. Atomic force microscopy: A nanoscopic view of microbial cell surfaces. Micron [Internet]. 2012 [cited 2021 Sep 15];43(12):1312–22. Available from: http://dx.doi.org/10.1016/j.micron.2012.05.005
dc.relationBhattacharjee S. DLS and zeta potential – What they are and what they are not? J Control Release [Internet]. 2016 Aug 10 [cited 2018 Apr 7];235:337–51. Available from: https://www.sciencedirect.com/science/article/pii/S0168365916303832
dc.relationFerreyra Maillard APV, Espeche JC, Maturana P, Cutro AC, Hollmann A. Zeta potential beyond materials science: Applications to bacterial systems and to the development of novel antimicrobials. Biochim Biophys Acta - Biomembr [Internet]. 2021 Jun [cited 2021 Sep 15];1863(6):183597. Available from: https://doi.org/10.1016/j.bbamem.2021.183597
dc.relationKlapetek P, Nečas D, Anderson C. One-Dimensional Roughness Parameters [Internet]. Gwyddion user guide. 2021 [cited 2021 Jul 8]. p. On line. Available from: http://gwyddion.net/documentation/user-guide-en/roughness-iso.html
dc.relationWang H, Feng H, Liang W, Luo Y, Malyarchuk V. Effect of Surface Roughness on Retention and Removal of Escherichia coli O157:H7 on Surfaces of Selected Fruits. J Food Sci [Internet]. 2009 Jan [cited 2021 Jul 8];74(1):E8–15. Available from: https://onlinelibrary.wiley.com/doi/10.1111/j.1750-3841.2008.00998.x
dc.relationHalder S, Yadav KK, Sarkar R, Mukherjee S, Saha P, Haldar S, et al. Alteration of Zeta potential and membrane permeability in bacteria: a study with cationic agents. Springerplus [Internet]. 2015 [cited 2019 Jun 28];4(1):1–14. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26558175
dc.relationChen LC, Chiang WD, Chen WC, Chen HH, Huang YW, Chen WJ, et al. Influence of alanine uptake on Staphylococcus aureus surface charge and its susceptibility to two cationic antibacterial agents, nisin and low molecular weight chitosan. Food Chem [Internet]. 2012 [cited 2021 Apr 13];135(4):2397–403. Available from: http://dx.doi.org/10.1016/j.foodchem.2012.06.122
dc.relationHuang YT, Kumar SR, Chan HC, Jhan ZH, Chen DW, Lue SJ. Efficacy of antimicrobial peptides (AMPs) against Escherichia coli and bacteria morphology change after AMP exposure. J Taiwan Inst Chem Eng [Internet]. 2021 [cited 2021 Sep 20];126:307–12. Available from: https://doi.org/10.1016/j.jtice.2021.07.003
dc.relationAlfei S, Schito AM. Positively Charged Polymers as Promising Devices against Multidrug Resistant Gram-Negative Bacteria: A Review. Polymers (Basel) [Internet]. 2020 May 23 [cited 2021 Sep 20];12(5):1195. Available from: /pmc/articles/PMC7285334/
dc.relationDi Somma A, Moretta A, Canè C, Cirillo A, Duilio A. Antimicrobial and Antibiofilm Peptides. Biomolecules [Internet]. 2020 Apr 23;10(4):652. Available from: http://aps.unmc.edu/AP
dc.relationPerinelli DR, Fagioli L, Campana R, Lam JKW, Baffone W, Palmieri GF, et al. Chitosan-based nanosystems and their exploited antimicrobial activity. Eur J Pharm Sci [Internet]. 2018 May [cited 2021 Apr 23];117:8–20. Available from: https://doi.org/10.1016/j.ejps.2018.01.046
dc.relationYaroslavov AA, Melik-Nubarov NS, Menger FM. Polymer-induced flip-flop in biomembranes. Acc Chem Res [Internet]. 2006 Oct [cited 2021 Sep 20];39(10):702–10. Available from: https://pubs.acs.org/doi/abs/10.1021/ar050078q
dc.relationErgene C, Palermo EF. Antimicrobial Synthetic Polymers: An Update on Structure-Activity Relationships. Curr Pharm Des. 2018;24(8):855–65.
dc.relationPundir RK, Jain P. Evaluation of five chemical food preservatives for their antibacterial activity against bacterial isolates from bakery products and mango pickles. J Chem Pharm Res. 2011;3(1):24–31.
dc.relationKosová M, Hrádková I, Mátlová V, Kadlec D, Šmidrkal J, Filip V. Antimicrobial effect of 4-hydroxybenzoic acid ester with glycerol. J Clin Pharm Ther [Internet]. 2015 Aug 1 [cited 2021 Apr 27];40(4):436–40. Available from: http://doi.wiley.com/10.1111/jcpt.12285
dc.relationAdamczak A, Ożarowski M, Karpiński TM. Antibacterial Activity of Some Flavonoids and Organic Acids Widely Distributed in Plants. J Clin Med [Internet]. 2019 [cited 2021 Apr 27];9(1):109. Available from: www.mdpi.com/journal/jcm
dc.relationParedes F, Roca J. Acción de los antibióticos: perspectiva de la medicación antimicrobiana. Offarm Farm y Soc [Internet]. 2004 [cited 2021 Sep 21];23(3):116–24. Available from: https://www.elsevier.es/es-revista-offarm-4-pdf-13059414
dc.relationLambert RJ, Stratford M. Weak-acid preservatives: Modelling microbial inhibition and response. J Appl Microbiol. 1999;86(1):157–64.
dc.relationSpirescu VA, Chircov C, Grumezescu AM, Andronescu E. Polymeric Nanoparticles for Antimicrobial Therapies: An up-to-date Overview. Polymers (Basel) [Internet]. 2021 Feb 27;13(5):724. Available from: https://www.mdpi.com/2073-4360/13/5/724
dc.relationAlasino R V., Leonhard V, Bianco ID, Beltramo DM. Eudragit E100 surface activity and lipid interactions. Colloids Surf B Biointerfaces [Internet]. 2012 Mar 1 [cited 2019 Nov 23];91(1):84–9. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0927776511006254
dc.relationAlasino R V., Bianco ID, Vitali MS, Zarzur JA, Beltramo DM. Characterization of the inhibition of enveloped virus infectivity by the cationic acrylate polymer eudragit e100. Macromol Biosci. 2007;7(9–10):1132–8.
dc.relationAusar SF, Bianco ID, Castagna LF, Alasino R V., Beltramo DM. Interaction of a cationic acrylate polymer with caseins: Biphasic effect of Eudragit E100 on the stability of casein micelles. J Agric Food Chem [Internet]. 2003 Jul 16 [cited 2021 May 25];51(15):4417–23. Available from: https://pubs.acs.org/doi/abs/10.1021/jf034070b
dc.relationAlasino R V., Ausar SF, Bianco ID, Castagna LF, Contigiani M, Beltramo DM. Amphipathic and membrane-destabilizing properties of the cationic acrylate polymer Eudragit® E100. Macromol Biosci. 2005;5(3):207–13.
dc.relationAbdel-Rahman LM, Eltaher HM, Abdelraouf K, Bahey-El-Din M, Ismail C, Kenawy ERS, et al. Vancomycin-functionalized Eudragit-based nanofibers: Tunable drug release and wound healing efficacy. J Drug Deliv Sci Technol [Internet]. 2020;58:101812. Available from: https://doi.org/10.1016/j.jddst.2020.101812
dc.relationTaghe S, Mirzaeei S, Alany RG, Nokhodchi A. Polymeric Inserts Containing Eudragit® L100 Nanoparticle for Improved Ocular Delivery of Azithromycin. Biomedicines [Internet]. 2020 Oct 31;8(11):466. Available from: https://www.mdpi.com/2227-9059/8/11/466
dc.relationKong J, Xie Y, Yu H, Guo Y, Cheng Y, Qian H, et al. Synergistic antifungal mechanism of thymol and salicylic acid on Fusarium solani. LWT [Internet]. 2021 [cited 2021 Jul 4];140:110787. Available from: https://doi.org/10.1016/j.lwt.2020.110787
dc.relationRodrigues ML. The Multifunctional Fungal Ergosterol. MBio [Internet]. 2018 Nov 7 [cited 2021 Jul 4];9(5). Available from: /pmc/articles/PMC6143734/
dc.relationda Rocha Neto AC, Maraschin M, Di Piero RM. Antifungal activity of salicylic acid against Penicillium expansum and its possible mechanisms of action. Int J Food Microbiol. 2015 Dec 23;215:64–70.
dc.relationChoi H, Kim KJ, Lee DG. Antifungal activity of the cationic antimicrobial polymer-polyhexamethylene guanidine hydrochloride and its mode of action. Fungal Biol [Internet]. 2017 [cited 2021 Sep 24];121(1):53–60. Available from: http://dx.doi.org/10.1016/j.funbio.2016.09.001
dc.relationGarcia IM, Rodrigues SB, Rodrigues Gama ME, Branco Leitune VC, Melo MA, Collares FM. Guanidine derivative inhibits C. albicans biofilm growth on denture liner without promote loss of materials’ resistance. Bioact Mater. 2020 Jun 1;5(2):228–32
dc.relationBorawska MH, Czechowska SK, Markiewicz R, Pałka J, Świsłocka R. Antimicrobial Activity and Cytotoxicity of Picolinic Acid and Selected. Polish J Food Nutr Sci. 2008;58(4):415–8.
dc.relationRajput SB, Karuppayil SM. Small molecules inhibit growth, viability and ergosterol biosynthesis in Candida albicans. Springerplus [Internet]. 2013 Dec 29 [cited 2021 Jun 22];2(1):26. Available from: http://www.springerplus.com/content/2/1/26
dc.relationCho JY, Moon JH, Seong KY, Park KH. Antimicrobial activity of 4-hydroxybenzoic acid and trans 4-hydroxycinnamic acid isolated and identified from rice hull. Biosci Biotechnol Biochem [Internet]. 1998 [cited 2021 Apr 27];62(11):2273–6. Available from: https://www.tandfonline.com/action/journalInformation?journalCode=tbbb20
dc.relationKarlsson AJ, Flessner RM, Gellman SH, Lynn DM, Palecek SP. Polyelectrolyte multilayers fabricated from antifungal β-peptides: Design of surfaces that exhibit antifungal activity against Candida albicans. Biomacromolecules [Internet]. 2010 Sep 13 [cited 2021 Sep 24];11(9):2321–8. Available from: /pmc/articles/PMC2939741/
dc.relationGîfu IC, Maxim ME, Cinteza LO, Popa M, Aricov L, Leonties AR, et al. Antimicrobial activities of hydrophobically modified poly(acrylate) films and their complexes with different chain length cationic surfactants. Coatings [Internet]. 2019 Apr 11 [cited 2021 Sep 27];9(4):244. Available from: https://www.mdpi.com/2079-6412/9/4/244/htm
dc.relationAlves CS, Melo MN, Franquelim HG, Ferre R, Planas M, Feliu L, et al. Escherichia coli Cell Surface Perturbation and Disruption Induced by Antimicrobial Peptides BP100 and pepR. J Biol Chem [Internet]. 2010 Sep 3 [cited 2019 May 21];285(36):27536–44. Available from: http://www.jbc.org/
dc.relationEaton P, Fernandes JC, Pereira E, Pintado ME, Xavier Malcata F. Atomic force microscopy study of the antibacterial effects of chitosans on Escherichia coli and Staphylococcus aureus. Ultramicroscopy [Internet]. 2008 Sep 1 [cited 2019 Mar 7];108(10):1128–34. Available from: https://www.sciencedirect.com/science/article/pii/S0304399108000922?via%3Dihub
dc.relationLaskowski D, Strzelecki J, Pawlak K, Dahm H, Balter A. Effect of ampicillin on adhesive properties of bacteria examined by atomic force microscopy. Micron [Internet]. 2018 Sep 1 [cited 2019 Mar 7];112:84–90. Available from: https://www.sciencedirect.com/science/article/pii/S0968432818300696
dc.relationOverton K, Greer HM, Ferguson MA, Spain EM, Elmore DE, Núñez ME, et al. Qualitative and Quantitative Changes to Escherichia coli during Treatment with Magainin 2 Observed in Native Conditions by Atomic Force Microscopy. Langmuir [Internet]. 2020 Jan 21 [cited 2021 Jul 9];36(2):650–9. Available from: /pmc/articles/PMC7430157/
dc.relationSoon RL, Nation RL, Harper M, Adler B, Boyce JD, Tan CH, et al. Effect of colistin exposure and growth phase on the surface properties of live Acinetobacter baumannii cells examined by atomic force microscopy. Int J Antimicrob Agents. 2011;38(6):493–501.
dc.relationDomingues MM, Silva PM, Franquelim HG, Carvalho FA, Castanho MARB, Santos NC. Antimicrobial protein rBPI21-induced surface changes on Gram-negative and Gram-positive bacteria. Nanomedicine Nanotechnology, Biol Med [Internet]. 2014;10(3):543–51. Available from: http://dx.doi.org/10.1016/j.nano.2013.11.002
dc.relationHammer KA, Heel KA. Use of multiparameter flow cytometry to determine the effects of monoterpenoids and phenylpropanoids on membrane polarity and permeability in staphylococci and enterococci. Int J Antimicrob Agents [Internet]. 2012 Sep 1 [cited 2020 May 28];40(3):239–45. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0924857912002166
dc.relationZhang D, Lee Y-C, Shabani Z, Frankenfeld Lamm C, Zhu W, Li Y, et al. Processing Impact on Performance of Solid Dispersions. Pharmaceutics [Internet]. 2018 Aug 30;10(3):142. Available from: http://www.mdpi.com/1999-4923/10/3/142
dc.relationEbejer JP, Charlton MH, Finn PW. Are the physicochemical properties of antibacterial compounds really different from other drugs? J Cheminform [Internet]. 2016 Jun 3 [cited 2021 Oct 5];8(1):1–9. Available from: https://jcheminf.biomedcentral.com/articles/10.1186/s13321-016-0143-5
dc.relationMugumbate G, Overington JP. The relationship between target-class and the physicochemical properties of antibacterial drugs. Bioorganic Med Chem. 2015 Aug 15;23(16):5218–24.
dc.relationMengelers MJB, Hougee PE, Janssen LHM, Van Miert ASJPAM. Structure-activity relationships between antibacterial activities and physicochemical properties of sulfonamides. J Vet Pharmacol Ther. 1997;20(4):276–83.
dc.relationRezaee S, Khalaj A, Adibpour N, Saffary M. Correlation between lipophilicity and antimicrobial activity of some 2-(4-substituted phenyl)-3(2H)-isothiazolones. Daru [Internet]. 2009 Jan 1 [cited 2021 Oct 11];17(4):256–63. Available from: https://www.sid.ir/en/journal/ViewPaper.aspx?ID=171362
dc.relationSingh UP, Bhat HR, Gahtori P. Antifungal activity, SAR and physicochemical correlation of some thiazole-1,3,5-triazine derivatives. J Mycol Med [Internet]. 2012;22(2):134–41. Available from: http://dx.doi.org/10.1016/j.mycmed.2011.12.073
dc.relationPasquet J, Chevalier Y, Couval E, Bouvier D, Noizet G, Morlière C, et al. Antimicrobial activity of zinc oxide particles on five micro-organisms of the Challenge Tests related to their physicochemical properties. Int J Pharm. 2014 Jan 2;460(1–2):92–100.
dc.relationInsua I, Zizmare L, Peacock AFA, Krachler AM, Fernandez-Trillo F. Polymyxin B containing polyion complex (PIC) nanoparticles: Improving the antimicrobial activity by tailoring the degree of polymerisation of the inert component. Sci Rep [Internet]. 2017;7(1). Available from: www.nature.com/scientificreports/
dc.relationPerinelli DR, Petrelli D, Vitali LA, Vllasaliu D, Cespi M, Giorgioni G, et al. Quaternary ammonium surfactants derived from leucine and methionine: Novel challenging surface active molecules with antimicrobial activity. J Mol Liq [Internet]. 2019 [cited 2021 Oct 11];283:249–56. Available from: https://doi.org/10.1016/j.molliq.2019.03.083
dc.relationMakowski D, Ben-Shachar M, Patil I, Lüdecke D. Methods and Algorithms for Correlation Analysis in R. J Open Source Softw [Internet]. 2020 [cited 2021 Oct 11];5(51):2306. Available from: https://github.com/easystats/
dc.relationMukaka MM. Statistics corner: A guide to appropriate use of correlation coefficient in medical research. Malawi Med J [Internet]. 2012 [cited 2021 Oct 11];24(3):69–71. Available from: /pmc/articles/PMC3576830/
dc.relationBenesty J, Chen J, Huang Y, Cohen I. Pearson correlation coefficient. In: Springer Topics in Signal Processing [Internet]. Springer, Berlin, Heidelberg; 2009 [cited 2021 Oct 12]. p. 1–4. Available from: https://link.springer.com/chapter/10.1007/978-3-642-00296-0_5
dc.relationFernández S. P, Pértega Díaz S. Investigación: relación entre variables cuantitativas. Cad Atención Primaria [Internet]. 1997 [cited 2021 Oct 12];4:141–4. Available from: www.fisterra.com
dc.relationChan YH. Biostatistics 104: Correlational Analysis. Singapore Med J. 2003;44(12):614–9.
dc.relationAkoglu H. User’s guide to correlation coefficients. Turkish J Emerg Med. 2018;18(3):91–3.
dc.relationChang S-H, Lin H-TV, Wu G-J, Tsai GJ. pH Effects on solubility, zeta potential, and correlation between antibacterial activity and molecular weight of chitosan. Carbohydr Polym [Internet]. 2015 Dec 10 [cited 2021 Sep 15];134:74–81. Available from: http://dx.doi.org/10.1016/j.carbpol.2015.07.072
dc.relationChung YC, Su YP, Chen CC, Jia G, Wang HL, Wu JCG, et al. Relationship between antibacterial activity of chitosan and surface characteristics of cell wall. Acta Pharmacol Sin. 2004;25(7):932–6.
dc.relationTopuzogullari M. Effect of polyelectrolyte complex formation on the antibacterial activity of copolymer of alkylated 4-vinylpyridine. Turkish J Chem. 2020;44(3):634–46.
dc.relationDash A, Singh S, Tolman J. Pharmaceutics Basic Principles and Application to Pharmacy Practice. 1st Editio. Academic Press; 2013. 392 p.
dc.rightsReconocimiento 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleEvaluación del comportamiento fisicoquímico y antimicrobiano de complejos con polielectrolitos
dc.typeTrabajo de grado - Doctorado


Este ítem pertenece a la siguiente institución