dc.contributorRodriguez Niño, Gerardo
dc.contributorOrjuela Londoño, Alvaro
dc.contributorDepartamento de Ingeniería Química y Ambiental
dc.contributorProcesos Químicos y Bioquímicos
dc.creatorMartínez Arias, Andrés Felipe
dc.date.accessioned2020-09-01T02:34:19Z
dc.date.available2020-09-01T02:34:19Z
dc.date.created2020-09-01T02:34:19Z
dc.date.issued2020-01-02
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/78345
dc.description.abstractThis work presents a study of a reactive distillation process for the production of Isobutyl acetate, from the fundamentals of the operation like the phase equilibria and the reaction kinetics, to the conceptual design. Experimental phase equilibrium data was evaluated, and the quaternary mixture interactions were accurately described using an activity coefficients model for the liquid phase, and a viral equation of state for the vapor phase as described in Chapter one. In Chapter two a mole-based kinetic expression was adjusted to describe the esterification process using an heterogeneous catalyst. Then, a conceptual design of the reactive distillation process, coupling the phase equilibria and the reaction kinetics, was done in order to obtain a suitable configuration for an industrial scale process to produce Isobutyl acetate. Finally, rigorous simulations and optimization enabled to obtain the best operating conditions of the reactive distillation process for isobutyl acetate production at the industrial scale presented in Chapter three.
dc.description.abstractEste trabajo presenta un estudio del proceso de producción de Isobutil acetato por medio de destilación reactiva, desde los fundamentos de la operación como el equilibrio de fases y la cinética de reacción, hasta el diseño conceptual. Se evaluó información experimental del equilibrio de fases y las interacciones de la mezcla cuaternaria se describieron adecuadamente usando un modelo de coeficientes de actividad para la fase liquida y una ecuación de estado para la fase vapor. Una expresión cinética con base en fracciones molares fue desarrollada para describir el proceso de esterificación usando un catalizador heterogéneo. Posteriormente, se desarrolló el diseño conceptual del proceso de destilación reactiva empleando simultáneamente el equilibrio de fases y la cinética previamente obtenidos. Finalmente, con base en simulación rigurosa y optimización del proceso de destilación reactiva se obtuvieron las condiciones de operación masa adecuadas para la producción de Isobutil acetato por destilación reactiva a escala industria
dc.languageeng
dc.publisherBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Química
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationButamax, 2016. The Biofuel of the Future. https://www.butamax.com/the-bio-isobutanol-advantage/higher-value-biofuel/ (Consulted 23 Aug. 2019)
dc.relationMoncada, J., Posada, J., Ramírez, A. Comparative early stage assessment of multiproduct biorefinery systems: An application to the isobutanol platform. Bioresour. Technol. 2017, 241: 44–53.
dc.relationFalcke, H., Holbrook, S., Clenahan, I., López, A., Sanalan, T., Brinkmann, T., Roth, J., Zerger, B., Roudier, S., Delgado, L. Best Available Techniques (BAT) Reference Document for the Production of Large Volume Organic Chemicals; EUR 28882 EN; Publications Office of the European Union, Luxembourg, 2017, ISBN 978-92-79-76589-6, doi:10.2760/77304, JRC109279.
dc.relationRamli, N.A., Rahman, R.A., Ngadi, N., Samah, R.A. Optimisation of fermentation conditions for isobutanol production by saccharomyces cerevisiae using response surface methodology Chemical Engineering Transactions 2017, 56: 301-306.
dc.relationPatidar, P., Mahajani, S. Esterification of fusel oil using reactive distillation – Part I: Reaction kinetics. Chemical Engineering Journal. 2012, 207–208: 377-387.
dc.relationN. Montoya, J. Durán, F. Córdoba, I. Gil, C. Trujillo, G. Rodríguez, Colombian fusel oil, Ing. E Investig. 2016, 36:21-27.doi:10.15446/ing.investig.v36n2.52369.
dc.relationAtsumi S, Hanai T and Liao JC, Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 2008, 451(7174):86–89.
dc.relationXiao, Y., Feng, X. Varman, A., He, L., Yu, H., Tang, Y. Kinetic Modeling and Isotopic Investigation of Isobutanol Fermentation by Two Engineered Escherichia coli Strains. Ind. Eng. Chem. Res. 2012, 51(49): 15855-15863.
dc.relationLan, E.I., Liao, J.C. Microbial synthesis of n-butanol, isobutanol, and other higher alcohols from diverse resources. Bioresour. Technol. 2013, 135, 339–349.
dc.relationMinty, J.J., Singer, M.E., Scholz, S.A., Bae, C.-H., Ahn, J.-H., Foster, C.E., Liao, J.C., Lin, X. N. Design and characterization of synthetic fungal-bacterial consortia for direct production of isobutanol from cellulosic biomass. Proc. Natl. Acad. Sci. 2013, 110, 14592–14597.
dc.relationGak, E., Tyurin, M., Kiriukhin, M. Genome tailoring powered production of isobutanol in continuous CO2/H2 blend fermentation using engineered acetogen biocatalyst. Journal of Industrial Microbiology and Biotechnology 2014, 41(5): 763-781
dc.relationTao, L., Tan, E., McCormick, R., Zhang, M., Aden, A., He, X., Zigler, B. Techno-economic analysis and life-cycle assessment of cellulosic isobutanol and comparison with cellulosic ethanol and n-butanol. Biofuels, Bioproducts and Biorefining 2014, 8:30–48.
dc.relationSiripong, W., Wolf, P., Kusumoputri T. P., Downes J. J., Kocharin, K., Tanapongpipat, S., Runguphan, W. Metabolic engineering of Pichia pastoris for production of isobutanol and isobutyl acetate. Biotechnol Biofuels. 2018 11:1-16.
dc.relationJordison, T.L., Lira, C.T., Miller, D. J. Condensed-Phase Ethanol Conversion to Higher Alcohols. Industrial and Engineering Chemistry Research. 2015, 54 (44): 10991-11000.
dc.relationWingad, R.L., Bergström, E.J.E., Everett, M., Pellow, K.J., Wass, D.F. Catalytic conversion of methanol/ethanol to isobutanol - A highly selective route to an advanced biofuel. Chemical Communications 2016, 52 (29): 5202-5204.
dc.relationPellow, K.J., Wingad, R.L., Wass, D.F. Towards the upgrading of fermentation broths to advanced biofuels: A water tolerant catalyst for the conversion of ethanol to isobutanol. Catalysis Science and Technology 2017, 7(21): 5128-5134.
dc.relationNezam, I., Peereboom, L., Miller, D.J. Continuous condensed-phase ethanol conversion to higher alcohols: Experimental results and techno-economic analysis. Journal of Cleaner Production. 2019, 209: 1365-1375.
dc.relationLiu, Y., Shao, Z., Wang, Y., Xu, L., Yu, Z., Liu, Q. Manganese-Catalyzed Selective Upgrading of Ethanol with Methanol into Isobutanol. ChemSusChem 2019, 12 (13) : 3069-3072.
dc.relationBauer, F., Hulteberg, C. Isobutanol from glycerine – A techno-economic evaluation of a new biofuel production process. Appl. Energy 2014, 122: 261-268.
dc.relationSubramanian, N., Adeyinka, A., Spivey, J.J. Catalytic conversion of syngas to i-butanol - Synthesis routes and catalyst developments: A review. Catalysis 2013, 26:161-178.
dc.relationOpdyke, D. L. J. Isobutyl acetate. Food and Cosmetics Toxicology 1978 16: 795-796.
dc.relationRECHA. Isobutyl Acetate. Substance Information. European Chemicals Agency. https://echa.europa.eu/substance-information/-/substanceinfo/100.003.406 (Consulted Sept. 18, 2019).
dc.relationAltıokka, M., Çıtak, A. Kinetics study of esterification of acetic acid with isobutanol in the presence of amberlite catalyst. Applied Catalysis A: General, 2003, 239 (1–2): 141-148.
dc.relationIzci, A., Bodur, F. Liquid-phase esterification of acetic acid with isobutanol catalyzed by ion-exchange resins. React. Funct. Polym. 2007, 67: 1458-1464.
dc.relationIzci, A., Uyar, E., Izci, E. Determination of adsorption and kinetic parameters for synthesis of isobutyl acetate catalyzed by amberlite IR-122. Chem. Eng. Commun. 2009 196: 56-67.
dc.relationÇıtak A. Application of Ion Exchange Resins in the Synthesis of Isobutyl Acetate. In: Inamuddin D., Luqman M. (eds) Ion Exchange Technology II. Springer, Dordrecht. pp 137-148, 2012.
dc.relationMuñoz, R., Montón, J.B., Burguet, M.C., de la Torre, J. Separation of isobutyl alcohol and isobutyl acetate by extractive distillation and pressure-swing distillation: simulation and optimization. Sep. Purif. Technol. 2006, 50, 175–183.
dc.relationKorkmaz, S., Salt, Y., asanoglu, A., Ozkan, S., Salt, I., Dincer, S. Pervaporation membrane reactor study for the esterification of acetic acid and isobutanol using polydimethylsiloxane membrane. Applied Catalysis A: General 2009 366 (1): 102-107.
dc.relationKorkmaz, S., Salt, Y., Dincer, S. Esterification of acetic acid and isobutanol in a pervaporation membrane reactor using different membranes. Ind Eng. Chem. Res. 2011 50: 11657-11666.
dc.relationPatidar, P., Mahajani, S. Esterification of fusel oil using reactive distillation Part II: Process Alternatives. Ind. Eng. Chem. Res. 2013 52, (47): 16637-16647.
dc.relationCho, S.J., Shin, J.S., Choi, S.H., Lee, E.S., Park, S.J. Optimization study for pressure swing distillation process for the mixture of isobutyl-acetate and isobutyl-alcohol system Korean Chem. Eng. Res. 2014 52: 307-313.
dc.relationV.H. Agreda, L.R. Partin, Reactive distillation process for the production of methyl acetate, US4435595A, 1984. https://patents.google.com/patent/US4435595A/en?q=%2b+methyl+acetate&assignee=eastman+kodak&oq=eastman+kodak+%2b+methyl+acetate.
dc.relationM. Klöker, E.Y. Kenig, A. Górak, A.P. Markusse, G. Kwant, P. Moritz, Investigation of different column configurations for the ethyl acetate synthesis via reactive distillation, Chem. Eng. Process. Process Intensif. 43 (2004) 791–801. doi:10.1016/S0255-2701(03)00084-9.
dc.relationW. Osorio-Viana, M. Duque-Bernal, J.D. Quintero-Arias, I. Dobrosz-Gómez, J. Fontalvo, M.Á. Gómez-García, Activity model and consistent thermodynamic features for acetic acid–isoamyl alcohol–isoamyl acetate–water reactive system, Fluid Phase Equilibria. 345 (2013) 68–80. doi:10.1016/j.fluid.2013.02.006.
dc.relationHorsley, L.H. (ed.) Tables of Azeotropes and Nonazeotropes, in: Azeotropic Data—III, American Chemical Society, Washington, D. C., pp. 1–613. 1973. doi:10.1021/ba-1973-0116.ch001.
dc.relationZong, Z. L., Yang, X. H., Zheng, X. Y. Determination and correlation of vapor-liquid of alcohol solutions J. Chem. Eng. Jpn. 1983 16: 1–6. doi:10.1252/jcej.16.1.
dc.relationStockhardt, J. S., Hull, C.M. Vapor-liquid equilibria and boiling-point composition relations for systems n-butanol–water and isobutanol–water Ind. Eng. Chem. 1931 23: 1438–1440. doi:10.1021/ie50264a034.
dc.relationYushu, C., Afef, A., Fabrice, M., Roland, S., Jeday, M. R. Thermodynamic Modeling of Mixtures Containing Carboxylic Acids Using the PC-SAFT Equation of State, Ind. Eng. Chem. Res. 2012 51: 13846–13852. doi:10.1021/ie301930q
dc.relationAmezaga, S. A.; Biarge, J. F. Liquid-vapor equilibrium in systems formed by acetic acid and propyl, isopropyl, isobutyl, sec-butyl, and tert-butyl alcohols at 760 mm, An. Quim., 1973, 69, 587.
dc.relationBurguet, M. C., Montón, J. B., Muñoz, R., Wisniak, J., Segura, H. Polyazeotropy in Associating Systems:  The 2-Methylpropyl Ethanoate + Ethanoic Acid System, J. Chem. Eng. Data. 1996 41: 1191–1195. doi:10.1021/je960159k.
dc.relationZhang, C., Wan, H., Xue, L., Guan, G. Investigation on isobaric vapor liquid equilibrium for acetic acid+water+(n-propyl acetate or iso-butyl acetate), Fluid Phase Equilibria. 2011 305: 68–75. doi:10.1016/j.fluid.2011.03.006.
dc.relationMontón, J. B., Muñoz, R., Burguet, M. C., de la Torre, J. Isobaric vapor–liquid equilibria for the binary systems isobutyl alcohol+isobutyl acetate and tert-butyl alcohol+tert-butyl acetate at 20 and 101.3kPa, Fluid Phase Equilibria. 2005 227: 19–25. doi:10.1016/j.fluid.2004.10.022.
dc.relationLinek, J. Vapour-liquid equilibrium in the isobutyl alcohol-isobutyl acetate binary system, Collect. Czechoslov. Chem. Commun. 1977 42: 2469–2473.
dc.relationLiu, H., Cui, X., Zhang, Y., Feng, T., Zhang, K. Isobaric Vapor–Liquid Equilibrium for the Binary and Ternary System with Isobutyl Alcohol, Isobutyl Acetate and Dimethyl Sulfoxide at 101.3 kPa, J. Chem. Eng. Data. 2017 62: 1902–1909. doi:10.1021/acs.jced.7b00241.
dc.relationZhang, J.; Zhang, Y.; Fu, J.; Wang, X., Prediction of Partially Miscible System by VLE Data. Chemical Engineering (China), 1986, No. 4, 53-57.
dc.relationBomshtein, A. L.; Trofimov, A. N.; Gotlib, V. A.; Serafimov, L. A. Liquid-liquid phase equilibrium in isobutyl acetate-water and isobutyl acetate-water-acetic acid systems at normal temperature. Zh. Prikl. Khim. (Leningrad), 1978, 51, 440-442.
dc.relationCháfer, A., Lladosa, E., de la Torre, J., Burguet, M.C. Study of liquid–liquid equilibrium of the systems isobutyl acetate+acetic acid+water and isobutyl alcohol+acetic acid+water at different temperatures, Fluid Phase Equilibria. 2008 271: 76–81. doi:10.1016/j.fluid.2008.07.001.
dc.relationProcházka, J., Heyberger, A. Correlation of ternary liquid-liquid equilibria in system isobutyl acetate-acetic acid-water Chem. Eng. Sci. 1996 51: 893-903
dc.relationD. Xu, C. Wu, Q. Zhang, H. Zhang, Y. Wang, J. Gao, Liquid–liquid equilibrium for the ternary systems water+2-methyl-1-propanol+butyl acetate and water+2-methyl-2-propanol+butyl acetate at (298.15 and 323.15)K, Fluid Phase Equilibria. 381 (2014) 60–66. doi:10.1016/j.fluid.2014.08.014.
dc.relationCháfer, A., de la Torre, J., Monton, J.B., Lladosa, E. Liquid-liquid equilibria of the systems isobutyl acetate + isobutyl alcohol + water and isobutyl acetate + isobutyl alcohol + glycerol at different temperatures. Fluid Phase Equilibr. 2008 265: 122-128
dc.relationKillian, W., Bala, A., Peereboom, L., Stoner, J., Norfleet, A., Jackson, J. Lira, C. An Improved Spectroscopic Method for Determination of Association/Solvation Parameters Used in Process Models. AIChE Annual Meeting Nov. 10-15, Orlando, Fl. USA. 2019
dc.relationChristensen, S. P., Olson, J.D. Phase equilibria and multiple azeotropy of the acetic acid-isobutyl acetate system, Fluid Phase Equilibria. 1992 79: 187–199. doi:10.1016/0378-3812(92)85129-V.
dc.relationH. Renon, J.M. Prausnitz, Local compositions in thermodynamic excess functions for liquid mixtures, AIChE J. 14 (1968) 135–144. doi:10.1002/aic.690140124.
dc.relationJ.G. Hayden, J.P. O’Connell, A Generalized Method for Predicting Second Virial Coefficients, Ind. Eng. Chem. Process Des. Dev. 14 (1975) 209–216. doi:10.1021/i260055a003.
dc.relationOthmer, D., Tobias, P. Liquid-Liquid Extraction Data - The Line Correlation, Ind. Eng. Chem. 1942 34: 693–696. doi:10.1021/ie50390a600.
dc.relationJ. M. Prausnitz, C. A. Eckert, R. V. Orye, J. P. O'Connell, Computer calculations for multicomponent vapor‐liquid equilibria, Prentice‐Hall, Englewood Cliffs, New Jersey, 1962.
dc.relationM. Doherty, M. Malone, Conceptual design of distillation systems. McGraw–Hill, New York, 2001.
dc.relationD. Barbosa, M. F. Doherty, Design and minimum reflux calculations for single-feed Multicomponent reactive distillation columns, Chem. Eng. Sci., 43 (1988a) 1523-1537. DOI: 10.1016/0009-2509(88)85144-3
dc.relationD. Barbosa, M. F. Doherty, The simple distillation 782 of homogeneous reactive mixtures. Chem. Eng. Sci., 43 (1998b) 541-550. DOI: 10.1016/0009- 784 2509(88)87015-5
dc.relationY. V. Gurikov. Structure of the vapor–liquid equilibrium Diagrams of ternary homogeneous solutions. Russ. J. Phys. Chem. 32 (1958) 1980–1996.
dc.relationL. A. Serafimov, V. T. Zharov, V. S. Timofeyev. Rectifcation of multicomponent mixtures I. Topological analysis of liquid–vapor phase equilibrium diagrams. Acta Chim. Acad. Sci. Hung. 69 (1971) 383–396.
dc.relationL. A. Serafimov. Thermodynamic and Topological Analysis of Liquid-Vapor Phase Equilibrium Diagrams and Problems of Rectification of Multicomponent Mixtures. In: Mathematical Methods in Contemporary Chemistry, S.I. Kuchanov (Ed.) Gordon and Breach Publishers, Amsterdam pp. 557- 605. 1996.
dc.relationL. A. Serafimov, A. Frolkova, T. V. Chelyuskina. Konovalov’s First Law Validity for Multicomponent Azeotropic Mixtures. Theor. Found. Chem. Eng. 42 (2008) 171–178. DOI: 10.1134/S0040579508020097
dc.relationL. A. Serafimov, O. B. Razova, A. Frolkova, T. V. Chelyuskina. The Gibbs– Konovalov Law at Simple Singular Points of Two-Phase Multicomponent System Diagrams. Russ. J. Phys. Chem. A. 82 (2008) 946–950. DOI: 10.1134/S0036024408060149
dc.relationL. A. Serafimov, O. B. Razova, A. V. Frolkova, T. V. Chelyuskina. Observance of the Gibbs–Konovalov Law at Complex Singular Points of Two- Phase Multicomponent Systems. Theor. Found. Chem. Eng. 42 (2008) 415– 420. DOI: 10.1134/S004057950804009X
dc.relationL. A. Serafimov, A. Frolkova. Determination of vapor–liquid equilibrium diagrams of multicomponent systems. Chem. Pap. 70 (2016) 1578–1589. DOI: 10.1515/chempap-2016-0091
dc.relationV. Zhuchkov, A. Malyugin, A. Frolkova, F. 816 Alla. Double Ternary Azeotrope in the Benzene + Perfluorobenzene + Water System at 101 kPa. J. Chem. Eng Data 65 (2020) 2002-2007. DOI: 10.1021/acs.jced.9b01149
dc.relationKiva, V. N., Hilmen, E. K., Skogestad, S. Azeotropic phase equilibrium diagrams: a survey, Chem. Eng. Sci. 2003 58: 1903–1953. doi:10.1016/S0009-2509(03)00018-6.
dc.relationHilmen, E.K., Kiva, V.N., Skogestad, S. Topology of ternary VLE diagrams: Elementary cells, AIChE J. 2002 48: 752–759. doi:10.1002/aic.690480410.
dc.relationAlder, C.; Hayler, D.; Henderson, R.; Redman, A.; Shukla, L.; Shuster L.; Sneddon, H. Updating and further expanding GSK's solvent sustainability guide. Green Chem.; 2016, 18, 3879-3890. DOI: 10.1039/C6GC00611F
dc.relationByrne, F.; Jin, S.; Paggiola, G.; Petchey, T.; Clark, J.; Farmer, T.; Hunt, A.; McElroy, R.; Sherwood, J. Tools and techniques for solvent selection: green solvent selection guides. Sustain Chem Process 2016, 4 (7), 1-24. DOI: 10.1186/s40508-016-0051-z
dc.relationSizov, A. Krupnov, L.; Meledina, T. Intensification of Higher Alcohols Biosynthesis – An Advanced Feedstock for Biofuel Production. Energy Procedia 2017, 113, 333–338. DOI: 10.1016/j.egypro.2017.04.074
dc.relationYoshizawa, K. On Various Factors Affecting Formation of Isobutanol and Isoamyl Alcohol during Alcoholic Fermentation. Agric. Biol. Chem. 1966, 30, 634–641. DOI: 10.1080/00021369.1966.10858659
dc.relationOpdyke, D. L. J. Isobutyl acetate. Food Cosmet. Toxicol. 1978, 16, 795-796. DOI: 10.1016/S0015-6264(78)80119-9
dc.relationYadav, G. D.; Mujeebur, M. S. M. Synthesis of fragrance and flavour grade esters: activities of different ion exchange resins and kinetic studies. Clean Technol. Environ. Policy 2003, 5, 128–135. DOI: 10.1007/s10098-003-0196-9
dc.relationLuyben, W. L.; Yu, C. C. Reactive Distillation Design and Control. John Wiley & Sons, Inc.; Hoboken, New Jersey. 2008.
dc.relationCalvar, N.; González, B.; Dominguez, A. Esterification of acetic acid with ethanol: Reaction kinetics and operation in a packed bed reactive distillation column. Chem. Eng. Process. Process Intensif. 2007, 46, 1317–1323. DOI: 10.1016/j.cep.2006.10.007
dc.relationHelfferich, F. Ion Exchange; McGraw Hill: New York, 1962.
dc.relationFroment, G. F.; Bischoff, K. B. Chemical reactor analysis and design. Wiley, 1990.
dc.relationWeisz, P. B. & Prater, C. D. Interpretation of Measurements in Experimental Catalysis. in Advances in Catalysis (eds. Frankenburg, W. G.; Komarewsky, V. I. & Rideal, E. K.), Academic Press, 6, 143–196, 1954.
dc.relationSanz, M. T.; Gmehling, J. Esterification of acetic acid with isopropanol coupled with pervaporation: Part I: Kinetics and pervaporation studies. Chem. Eng. J. 2006, 123, 1–8. DOI: 10.1016/j.cej.2006.06.006
dc.relationDuque‐Bernal, M.; Quintero‐Arias, J. D.; Osorio‐Viana, W.; Dobrosz‐Gómez, I.; Fontalvo, J.; Gómez‐García, M. Á. Kinetic study on the homogeneous esterification of acetic acid with isoamyl alcohol. Int. J. Chem. Kinet. 2013, 45, 10–18. DOI: 10.1002/kin.20737
dc.relationWilke, C. R.; Chang, P. Correlation of diffusion coefficients in dilute solutions. AIChE J. 1955, 1, 264–270. DOI: 10.1002/aic.690010222
dc.relationOrjuela, A.; Yanez, A. J.; Santhanakrishnan, A.; Lira, C. T.; Miller, D. J. Kinetics of mixed succinic acid/acetic acid esterification with Amberlyst 70 ion exchange resin as catalyst. Chem. Eng. J. 2012, 188, 98–107. DOI: 10.1016/j.cej.2012.01.103
dc.relationOsorio-Pascuas, O. M.; Santaella, M. A.; Rodriguez, G.; Orjuela, A. Esterification Kinetics of Tributyl Citrate Production Using Homogeneous and Heterogeneous Catalysts. Ind. Eng. Chem. Res. 2015, 54, 12534–12542. DOI: 10.1021/acs.iecr.5b03608
dc.relationEuropean Union. 2006. Registration, Evaluation, Authorization and Restriction of Chemicals: REACH. 18.12.2006. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02006R1907-20140410 (Consulted May 13, 2019)
dc.relationEPA. 2016. Toxic Substances Control Act (TSCA) amended by the Frank R. Lautenberg Chemical Safety for the 21st Century Act. 22.06.2016. https://www.congress.gov/114/plaws/publ182/PLAW-114publ182.pdf (Consulted May 13, 2019)
dc.relationBrar, S. K., Sarma, S. J., Pakshirajan, K. (Eds.) 2017. Platform Chemical Biorefinery - Future Green Industry. Elsevier, Amsterdam, Netherlands. DOI: 10.1016/C2014-0-02394-5
dc.relationTakkellapati, S., Li, T., Gonzalez, M. A. 2018. An overview of biorefinery-derived platform chemicals from a cellulose and hemicellulose biorefinery. Clean Technol. Environ. Policy 20: 1615–1630. DOI: 10.1007/s10098-018-1568-5
dc.relationDe Jong, E., Higson, A., Walsh, P., Wellisch, M. 2011. Bio-based Chemicals Value Added products from Biorefineries. IEA Bioenergy – Task 42: 2020: 01.
dc.relationDe Jong, E., Stichnothe, H., Bell, G., Jørgensen, H. 2020. Bio-based Chemicals A 2020 Update. IEA Bioenergy – Task 42 Biorefinery
dc.relationE4tech, RE-CORD and WUR. 2015. From the Sugar Platform to biofuels and biochemicals. Final report for the European Commission, contract No. ENER/C2/423-2012/SI2.673791. https://ec.europa.eu/energy/sites/ener/files/documents/EC%20Sugar%20Platform%20final%20report.pdf (Consulted May 13, 2019).
dc.relationPhillips, S.; Aden, A., Jechura, J., Dayton, D., Eggeman, T. 2007. Thermochemical Ethanol via Indirect Gasification and Mixed Alcohol Synthesis of Lignocellulosic Biomass. Technical Report NREL/TP-510-41168. National Renewable Energy Laboratory. Golden, Co., USA. https://www.nrel.gov/docs/fy07osti/41168.pdf (Consulted May 13, 2019).
dc.relationBrown, R. C. (Ed.) 2011. Thermochemical Processing of Biomass: Conversion into Fuels, Chemicals and Power. John Wiley & Sons, Ltd. NY, USA. DOI: 10.1002/9781119417637
dc.relationPang, J., Zheng, M., Zhang, T. 2019. Synthesis of ethanol and its catalytic conversion. Advances in Catalysis 64: 89-191. DOI: 10.1016/bs.acat.2019.08.001
dc.relationRosales-Calderon, O., Arantes, V. 2019. A review on commercial-scale high-value products that can be produced alongside cellulosic ethanol. Biotechnol. Biofuels 12, 240 DOI: 10.1186/s13068-019-1529-1
dc.relationEikmanns, B.J., Blombach, B. 2014. Isobutanol. In: (Bisaria, V. S., Kondo, A. Eds.) Bioprocessing of Renewable Resources to Commodity Bioproducts. John Wiley & Sons pp 327- 352. DOI: 10.1002/9781118845394.ch12.
dc.relationRyan, C. 2019. An overview of Gevo’s biobased isobutanol production process. GEVO. https://gevo.com/wp-content/uploads/2019/11/Gevo-WP_Isobutanol.1.pdf (Consulted May 13, 2020).
dc.relationSahu, A., Pandit, A. B. 2019. Facile Synthesis of Homogeneous Catalyzed Esterification of Medium-Chain-Length Fatty Acids and Kinetic Study. Ind. Eng. Chem. Res. 58 (49): 22212-22224. DOI: 10.1021/acs.iecr.9b05034
dc.relationSahu, A., Pandit, A. B. 2019. Kinetic Study of Homogeneous Catalyzed Esterification of a Series of Aliphatic Acids with Different Alcohols. Ind. Eng. Chem. Res. 58 (8): 2672-2682. DOI: 10.1021/acs.iecr.8b04781
dc.relationChin S. Y., Azizan N., Ahmad M. A. A., Kamaruzaman M. R. 2019. Ion Exchange Resins Catalysed Esterification for the Production of Value Added Petrochemicals and Oleochemicals. In: (Inamuddin, I., Rangreez T. A., Asiri A. M. Eds.) Applications of Ion Exchange Materials in Chemical and Food Industries. Springer, Cham. DOI: 10.1007/978-3-030-06085-5_4
dc.relationFattahi, N., Triantafyllidis, K., Luque, R., Ramazani, A. 2019. Zeolite-Based Catalysts: A Valuable Approach toward Ester Bond Formation. Catalysts 9: 758. DOI: 10.3390/catal9090758
dc.relationChen, L., Ye, Q., Feng, S., Zhang, H., Wang, N., Cen, H., Fan, Y. 2020. Investigation about energy-saving for the isobutyl acetate synthesis in a reactive divided-wall column via vapor recompression heat pump. Chem. Eng. Process. Process Intensif. 147: 107783. DOI: 10.1016/j.cep.2019.107783
dc.relationSteiningeweg, S., Gmehling, J. 2002. n-Butyl Acetate Synthesis Via Reactive Distillation: Thermodynamic Aspects, Reaction Kinetics, Pilot-Plant Experiments And Simulation Studies. Ind. Eng. Chem. Res. 41 (22): 5483-5490 DOI: 10.1021/ie020179h
dc.relationGonzales, D., Bastidas, P., Rodriguez, G., Gil, I. 2017. Design alternatives and control performance in the pilot scale production of isoamyl acetate via reactive distillation. Chem. Eng. Res. Des. 123: 347-350. DOI: 10.1016/j.cherd.2017.05.028.
dc.relationTang, Y., Huang, H., Chien, I. 2003. Design of a complete ethyl acetate reactive distillation system. J. Chem. Eng. Japan. 36 (11): 1352-1363 DOI: 10.1252/jcej.36.1352.
dc.relationMartinez, A.F., Sanchez, C.A., Orjuela, A., Rodriguez, G. 2020. Isobutyl acetate production by reactive distillation. Non-reactive phase equilibrium and topological analysis. Fluid Phase Equilibr. 516: 112612. DOI: 10.1016/j.fluid.2020.112612
dc.relationOrjuela, A., Santaella, M., Molano, P. 2016. Process Intensification by Reactive Distillation. In: (Segovia-Hernández, J. G., Bonilla, A., Eds.) Process intensification in chemical Engineering, Springer International Publishing, Switzerland 2016. DOI: 10.1007/978-3-319-28392-0_6.
dc.relationMartinez, A. F., Sanchez, C. A., Orjuela, A., Gil, I. D., Rodriguez, G. 2020. Kinetic study on the catalytic esterification of acetic acid with isobutanol over Amberlyst 15. Chem. Eng. Res. Des. In revision.
dc.relationD. Barbosa, Doherty, M. 1988. The simple distillation of homogeneous reactive mixtures, Chem. Eng. Sci. 43: 541–550. DOI: 10.1016/0009-2509(88)87015-5
dc.relationVenimadhavan, G., Buzad, G., Doherty, M. F., Malone, M. F. 1994. Effect of Kinetics on Residue Curve maps for Reactive Distillation. AIChE J. 40 (11): 1814-1824. DOI: 10.1002/aic.690401106.
dc.relationOrjuela, A., Kolah, A., Hong, X., Miller, D., Lira, C. 2012. Diethyl Succinate Synthesis by Reactive Distillation. Sep. Purif. Technol. 88: 151-162. DOI: 10.1016/j.seppur.2011.11.033
dc.relationBurguet, M. C.; Monton, J. B.; Munoz, R.; Wisniak, J.; Segura, H. J. 1996. Polyazeotropy in Associating Systems: The 2-Methylpropyl Ethanoate + Ethanoic Acid System. J. Chem. Eng. Data. 41: 1191-1195. DOI: 10.1021/je960159k
dc.relationMatthew J., Okasinski., Doherty M.F. Design Method for Kinetically Controlled, Staged Reactive Distillation Columns. Ind. Eng. Chem. Res. (1998) Vol. 37 pp. 2821-2834.
dc.relationCash, J. R., Karp, A.H. 1990. A variable order Runge-Kutta method for initial value problems with rapidly varying right-hand sides. ACM T. Math. Software, 16: 201-222. DOI: 10.1145/79505.79507
dc.relationPress, W. Teukolsky, S. A., Vetterling, W. T., Flannery, B. P. 2007. Numerical Recipes: The Art of Scientific Computing, Cambridge University Press, New York, NY United States. DOI: 10.5555/1403886
dc.relationW. Song, R.S. Huss, M.F. Doherty & M.F. Malone. Discovery of a reactive azeotrope. Nature (1997). Vol 338 pg 661-663.
dc.relationKolah, A., Asthana, N. S., Vu, D. T., Lira, C. T., Miller, D. J. 2008. Triethyl Citrate Synthesis by Reactive Distillation. Ind. Eng. Chem. Res. 47 (4): 1017-1025. DOI: 10.1021/ie070279t
dc.relationBehrens, M., Olujic, Z., Jansens, P. J. 2008. Liquid Holdup in Catalyst-Containing Pockets of a Modular Catalytic Structured Packing. Chem. Eng. Technol. 31 (11): 1630-1637. DOI: 10.1002/ceat.200800236
dc.relationYang, X. S. (Ed) 2010. Nature-Inspired Metaheuristic Algorithms. 2nd Edition, Luniver Press. UK. DOI: 10.5555/1893084
dc.relationDUPONT. AMBERLYST™ 15DRY Polymeric Catalyst, available in: https://www.dupont.com/content/dam/dupont/amer/us/en/water-solutions/public/documents/en/45-D00927-en.pdf (Consulted May 13, 2019).
dc.relationShah, M., Kiss, A. A., Zondervan, E., de Haan, A. 2012. Influence of liquid back mixing on a kinetically controlled reactive Distillation process. Chem. Eng. Sci. 68: 184–191. DOI: 10.1016/j.ces.2011.09.027
dc.relationBessling, B., Schembercker, G., Simmrock. K.H. 1997. Design of Processes with Reactive Distillation Line Diagrams. Ind. Eng. Chem. Res. 36:3032-3042. DOI: 10.1021/ie960727p
dc.relationDOW. 2012. Isobutyl Acetate, Urethane Grade. Available in: https://www.dow.com/en-us/pdp.isobutyl-acetate-urethane-grade.85031z.html (Consulted May 13, 2019).
dc.relationEASTMAN. 2015. Isobutyl Acetate Sales Specifications. Available in: https://www.eastman.com/supplemental/salespecs/71000132.pdf (Consulted May 13, 2019).
dc.relationINTERNATIONAL TRADE CENTER. 2019. Acetic acid and Isobutanol Sales price. Available in: https://www.trademap.org/Index.aspx (consulted January 15, 2020).
dc.rightsAtribución-SinDerivadas 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleStudy of the reactive distillation in the production of isobutyl acetate
dc.typeOtro


Este ítem pertenece a la siguiente institución