dc.contributor | Sánchez Sáenz, Carlos Ignacio | |
dc.contributor | Universidad Nacional de Colombia - Sede Medellín | |
dc.contributor | Grupo de Ingenieria Electroquímica - GRIEQUI | |
dc.creator | Ortiz Gonzalez, Jessica Daniela | |
dc.date.accessioned | 2020-09-11T19:41:32Z | |
dc.date.accessioned | 2022-09-21T15:45:52Z | |
dc.date.available | 2020-09-11T19:41:32Z | |
dc.date.available | 2022-09-21T15:45:52Z | |
dc.date.created | 2020-09-11T19:41:32Z | |
dc.date.issued | 2020-09-10 | |
dc.identifier | Ortiz Gonzalez, J. D., & Sánchez Sáenz, C. I. (2020). Diseño y construcción de una batería ion-aluminio con capacidad de carga rápida. Universidad Nacional de Colombia. | |
dc.identifier | [1] J. D. Ortiz Gonzalez and C. I. Sánchez Sáenz, “Diseño y construcción de una batería ion-aluminio con capacidad de carga rápida,” Universidad Nacional de Colombia, 2020. | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/78452 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/3384880 | |
dc.description.abstract | En la búsqueda de materiales para reemplazar el litio en los sistemas de almacenamiento de energía se ha encontrado que el aluminio presenta ventajas potenciales como baja inflamabilidad, bajo costo y 3 electrones en la reacción que le dan alta capacidad de carga teórica. Hasta el momento gran parte de los estudios se enfocan en dispositivos con ánodo de aluminio, cátodo derivado del carbón y electrolito de líquido iónico ácido que han logrado altas velocidades de carga y estabilidad a largo plazo; sin embargo, presentan problemas asociados a la corrosividad, sensibilidad al ambiente y alto costo del electrolito. Con este trabajo se construyó una batería ion-aluminio con electrodos de aluminio y grafeno comerciales y electrolito tipo gel polimérico plastificado con líquidos iónicos ácidos para reducir la sensibilidad al ambiente, corrosividad y costo, así como proporcionar la posibilidad de dispositivos con múltiples geometrías y carga rápida al reducir la distancia entre electrodos.
La membrana de electrolito tipo gel polimérico se sintetizó mediante el Solvent-casting de una solución de polimetilmetacrilato funcionalizado con tricloruro de aluminio y plastificado con un líquido iónico de cloroaluminato. Con base en un diseño experimental se optimizó la conductividad eléctrica, medida por espectroscopia de impedancia electroquímica, el óptimo corresponde a la proporción molar de AlCl3/PMMA= 0,68 y porcentaje en peso de 80% de líquido iónico en la membrana. Adicionalmente, se realizó la caracterización térmica y química del material identificándose el rompimiento de enlaces de coordinación transiente entre 100°C y 200°C asociados a las transiciones de fase producto de la interacción de los iones cloroaluminato con la matriz polimérica y el catión orgánico del líquido iónico; los resultados exponen la presencia tanto de enlaces vinculados por los grupos oxigenados del polímero como la coordinación tradicional de los líquidos iónicos de primera generación.
Se realizó la evaluación electroquímica del mecanismo de reacción de cada material activo con el electrolito y se determinó que el colector de carga de acero inoxidable presenta una alta corrosión durante el proceso de carga; por otro lado, el ánodo mostró una cinética compleja similar a la encontrada en electrolitos compuestos de poliéteres y líquidos iónicos, en cuyo caso existen dos rutas de reacción asociadas al catión cloroaluminato y al anión respectivamente, mientras el cátodo reprodujo el mecanismo del plastificante a partir de 1,5V vs. QRE y presentó una reducción entre 0,5V-1,5 V vs. QRE asociado a la desintercalación irreversible de iones mediante los grupos oxigenados del polímero.
La batería mostró una capacidad de carga estable cercana a 13mAh/g y una eficiencia Coulómbica promedio de 60% asociada a las reacciones irreversibles encontradas en el análisis por voltamperometría cíclica, de igual manera se observó que al acelerar el proceso de carga en un factor de 15 la capacidad posee una retención superior al 60%, mientras al regresar a las condiciones iniciales mantiene la capacidad obtenida originalmente; asimismo el análisis de espectroscopia de impedancia electroquímica mostró la presencia de múltiples interfases, control difusional y corrosión, además de la aparición de nuevas interfases en el material anódico al acelerar el proceso de depositación de aluminio, en consecuencia se requiere revisar la metodología de ensamble del dispositivo.
Finalmente, los análisis de voltaje vs. carga almacenada exhibieron que la descarga a altas velocidades expone mecanismos no vinculados al cátodo y sugiere la necesidad de evaluar nuevos materiales activos para lograr aumentar los valores de diseño requeridos en dispositivos comerciales, pero dado que logró una aceptable eficiencia y retención pese a las irreversibilidades del sistema el material sintetizado puede llegar a ser promisorio para dispositivos de almacenamiento de energía basados en iones aluminio, en especial al considerar que la depositación de aluminio se logró ejecutar por cerca de 2h en presencia del aire ambiental. | |
dc.description.abstract | In the search for materials to replace lithium in energy storage systems, it has been found that aluminum has potential advantages such as low flammability, low cost and 3 electrons in the reaction that give it a high theoretical capacity. Until now, most studies focus on devices with aluminum anode, carbon derived cathode and ionic liquid electrolytes which have achieved high charging rates and long-term stability; however, they present problems associated with corrosivity, moisture sensitivity and the high cost of the electrolyte. With this work, an aluminum-ion battery was built with commercial aluminum and graphene electrodes and a gel polymeric electrolyte plasticized with an ionic liquid to reduce moisture sensitivity, corrosivity and cost, as well as providing the possibility of devices with different geometries and fast charge by reducing the interelectrode distance.
The gel polymer electrolyte was synthesized by Solvent-casting of a polymethylmethacrylate functionalized with aluminum trichloride solution and plasticized with a chloroaluminate ionic liquid. Based on an experimental design, electrical conductivity, measured by electrochemical impedance spectroscopy, was optimized. The optimum corresponds to the (AlCl3)/PMMA molar ratio = 0.68 and a weight-weight percentage of 80% ionic liquid in the membrane. The thermal and chemical characterization of the material was performed, identifying the transient coordination bonds breaking between 100°C and 200°C associated with the phase transitions resulting from the interaction of the chloroaluminate ions with the polymeric matrix and the ionic liquid; the results expose the presence of bonds linked by the oxygenated groups of the polymer and the traditional coordination of first generation ionic liquids.
The electrochemical analysis of the reaction mechanism of each active material with the electrolyte was carried out and it was determined that the stainless steel charge collector shows corrosion during the charging process; On the other hand, the anode showed complex kinetics similar to that found in the mixture of polyethers and ionic liquids electrolytes, so there are two reaction routes associated with the chloroaluminate cation and the anion respectively, while the cathode reproduced the mechanism of the plasticizer from 1.5V vs. QRE and presented the irreversible reduction of deintercalated ions and coordination by the oxygenated groups of the polymer between 0.5V-1.5V vs. QRE.
The battery showed a stable charging capacity close to 13mAh/g and an average Coulombic efficiency of 60% associated with the irreversible reactions found by cyclic voltammetry, in the same way it was observed a retention of over 60% when the charging rate increases by a 15 factor, while upon returning to the initial conditions it maintains the original capacity. Likewise, the electrochemical impedance spectroscopy analysis showed the presence of multiple interfaces, diffusional control and corrosion, plus the appearance of new interfaces in the anode material by accelerating the aluminum deposition process, therefore it is necessary to review the device assembly methodology.
Finally, the voltage vs. stored charge analysis showed that discharge at high speeds exposes not linked to the cathode mechanisms and suggests evaluating new active materials in order to increase the design values required in commercial devices, but given that it achieved acceptable efficiency and retention despite the system irreversibilities, the synthesized material can be promising for energy storage devices based on aluminum ions, especially considering that the aluminum deposition was achieved for about 2h in air presence. | |
dc.language | spa | |
dc.publisher | Medellín - Minas - Maestría en Ingeniería - Ingeniería Química | |
dc.publisher | Departamento de Procesos y Energía | |
dc.publisher | Universidad Nacional de Colombia - Sede Medellín | |
dc.relation | [1] R. Zhang and R. Montazami, “Advanced Gel Polymer Electrolyte for Lithium- ion Polymer Bateries,” Iowa State University, 2013. | |
dc.relation | [2] Open Energy Information, “Generation: Capacity Factor,” 2017. [Online]. Available: https://openei.org/apps/TCDB/#blank. [Accessed: 29-Aug-2018]. | |
dc.relation | [3] U.S. Energy Information Administration, “EIA - Electricity Data,” Electric Power Monthly Data for December 2019, 2020. [Online]. Available: https://www.eia.gov/electricity/monthly/epm_table_grapher.php?t=epmt_6_07_b. [Accessed: 23-Mar-2020]. | |
dc.relation | [4] X. Zhang, J. Xie, R. Rao, and Y. Liang, “Policy incentives for the adoption of electric vehicles across countries,” Sustain., vol. 6, no. 11, pp. 8056–8078, 2014. | |
dc.relation | [5] International Energy Agency, “CO2 Emissions from Fuel Combustion,” París, 2019. | |
dc.relation | [6] CIEA, Contraloría General de Medellín, and Universidad Nacional de Colombia-sede Medellín, Cuantificación física y económica del impacto de la contaminación atmosférica en la salud de la población de la ciudad de Medellín, no. 01. Medellín, 2019. | |
dc.relation | [7] H. Moreno Correa, “Muertes por contaminación del aire le costaron a Medellín 5 billones de pesos en solo un año,” Semana Sostenible, Medellín, 2019. | |
dc.relation | [8] L. F. Rodrigez Jaramillo, “Más de 4 mil personas mueren al año en Medellín por enfermedades respiratorias,” Opinión&Salud.com Revista Digital, Medellín, 2019. | |
dc.relation | [9] A. Y. Saber and G. K. Venayagamoorthy, “Plug-in vehicles and renewable energy sources for cost and emission reductions,” IEEE Trans. Ind. Electron., vol. 58, no. 4, pp. 1229–1238, 2011. | |
dc.relation | [10] International Energy Agency, Global EV Outlook 2018. IEA Publications, 2018. | |
dc.relation | [11] B. M. Adams and J. D. Jaramillo, “A two-dimensional study on the weak-motion seismic response of the Aburra Valley, Medellín, Colombia,” Bulletin of the New Zealand Society for Earthquake Engineering, vol. 35, no. 1. pp. 17–41, 2002. | |
dc.relation | [12] L. E. Munoz, J. C. Blanco, J. P. Barreto, N. A. Rincon, and S. D. Roa, “Conceptual design of a hybrid electric off-road vehicle,” in 2012 IEEE International Electric Vehicle Conference, 2012, pp. 1–8. | |
dc.relation | [13] Q. Cheng, “Porous Graphene Sponge Additives for Lithium Ion Batteries with Excellent Rate Capability,” Sci. Rep., vol. 7, no. 1, p. 925, 2017. | |
dc.relation | [14] R. Kochhan, S. Fuchs, B. Reuter, P. Burda, S. Matz, and M. Lienkamp, “An Overview of Costs for Vehicle Components, Fuels and Greenhouse Gas Emissions,” researchgate, p. February, 2014. | |
dc.relation | [15] P. Z. Lévay, Y. Drossinos, and C. Thiel, “The effect of fiscal incentives on market penetration of electric vehicles: A pairwise comparison of total cost of ownership,” Energy Policy, vol. 105, no. March, pp. 524–533, 2017. | |
dc.relation | [16] L. Long, S. Wang, M. Xiao, and Y. Meng, “Polymer electrolytes for lithium polymer batteries,” J. Mater. Chem. A, vol. 4, no. 26, pp. 10038–10039, 2016. | |
dc.relation | [17] Y. Kitazawa et al., “Polymer Electrolytes Containing Solvate Ionic Liquids: A New Approach to Achieve High Ionic Conductivity, Thermal Stability, and a Wide Potential Window,” Chem. Mater., vol. 30, no. 1, pp. 252–261, 2018. | |
dc.relation | [18] T. Leisegang et al., “The Aluminum-Ion Battery: A Sustainable and Seminal Concept?,” Front. Chem., vol. 7, no. May, pp. 1–21, 2019. | |
dc.relation | [19] M.-C. Lin et al., “An ultrafast rechargeable aluminium-ion battery,” Nature, vol. 520, no. 7547, pp. 324–328, 2015. | |
dc.relation | [20] A. Eftekhari et al., “Electrochemical energy storage by aluminum as a lightweight and cheap anode/charge carrier,” Sustain. Energy Fuels, vol. 1, no. 6, pp. 1246–1264, 2017. | |
dc.relation | [21] Y. Li, J. Yang, and J. Song, “Design principles and energy system scale analysis technologies of new lithium-ion and aluminum-ion batteries for sustainable energy electric vehicles,” Renew. Sustain. Energy Rev., vol. 71, no. December 2016, pp. 645–651, 2017. | |
dc.relation | [22] H. Chen et al., “Ultrafast all-climate aluminum-graphene battery with quarter-million cycle life,” Sci. Adv., vol. 3, no. 12, 2017. | |
dc.relation | [23] H. Chen, C. Chen, Y. Liu, X. Zhao, N. Ananth, and B. Zheng, “High-Quality Graphene Microflower Design for High-Performance Li – S and Al-Ion Batteries,” Adv. Energy Mater., vol. 7, no. 17, pp. 1–9, 2017. | |
dc.relation | [24] G. A. Elia et al., “An Overview and Future Perspectives of Aluminum Batteries,” Adv. Mater., vol. 28, no. 35, pp. 7564–7579, 2016. | |
dc.relation | [25] S. K. Das, S. Mahapatra, and H. Lahan, “Aluminium-ion batteries: developments and challenges,” J. Mater. Chem. A, vol. 5, no. 14, pp. 6347–6367, 2017. | |
dc.relation | [26] L. Peng, Y. Zhu, H. Li, and G. Yu, “Chemically Integrated Inorganic-Graphene Two-Dimensional Hybrid Materials for Flexible Energy Storage Devices,” Small, vol. 12, no. 45, pp. 6183–6199, 2016. | |
dc.relation | [27] F. Feng, S. Zhao, R. Liu, Z. Yang, and Q. Shen, “NiO Flowerlike porous hollow nanostructures with an enhanced interfacial storage capability for battery-to-pseudocapacitor transition,” Electrochim. Acta, vol. 222, pp. 1160–1168, 2016. | |
dc.relation | [28] M. F. El-Kady, Y. Shao, and R. B. Kaner, “Graphene for batteries, supercapacitors and beyond,” Nat. Rev. Mater., vol. 1, no. 7, p. 16033, 2016. | |
dc.relation | [29] H. Zhang, X. Yu, and P. V Braun, “Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes.,” Nat. Nanotechnol., vol. 6, no. 5, pp. 277–281, 2011. | |
dc.relation | [30] H. J. Yen et al., “Structurally Defined 3D Nanographene Assemblies via Bottom-Up Chemical Synthesis for Highly Efficient Lithium Storage,” Adv. Mater., 2016. | |
dc.relation | [31] S. C. Jung, Y. J. Kang, D. J. Yoo, J. W. Choi, and Y. K. Han, “Flexible Few-Layered Graphene for the Ultrafast Rechargeable Aluminum-Ion Battery,” J. Phys. Chem. C, vol. 120, no. 25, pp. 13384–13389, 2016. | |
dc.relation | [32] S. Wang et al., “A Novel Ultrafast Rechargeable Multi-Ions Battery,” Adv. Mater., vol. 29, no. 16, 2017. | |
dc.relation | [33] X.-G. Sun, Y. Fang, X. Jiang, K. Yoshii, T. Tsuda, and S. Dai, “Polymer gel electrolytes for application in aluminum deposition and rechargeable aluminum ion batteries,” Chem. Commun., vol. 52, no. 2, pp. 292–295, 2016. | |
dc.relation | [34] R. Mori, “A new structured aluminium–air secondary battery with a ceramic aluminium ion conductor,” RSC Adv., vol. 3, no. 29, p. 11547, 2013. | |
dc.relation | [35] R. Mori, “A novel aluminium-Air rechargeable battery with Al2O3 as the buffer to suppress byproduct accumulation directly onto an aluminium anode and air cathode,” Rsc Adv., vol. 4, no. 57, pp. 30346–30351, 2014. | |
dc.relation | [36] J. Qiu et al., “Aluminum-based materials for advanced battery systems,” Sci. China Mater., vol. 60, no. 7, pp. 577–607, 2017. | |
dc.relation | [37] H. Lahan and S. K. Das, “Graphene and diglyme assisted improved Al3+ ion storage in MoO3 nanorod: steps for high-performance aqueous aluminum-ion battery,” Ionics (Kiel)., vol. 25, no. 7, pp. 3493–3498, 2019. | |
dc.relation | [38] S. Nandi and S. K. Das, “An electrochemical study on bismuth oxide (Bi2O3) as an electrode material for rechargeable aqueous aluminum-ion battery,” Solid State Ionics, vol. 347, no. September 2019, p. 115228, 2020. | |
dc.relation | [39] H. Lahan and S. K. Das, “An approach to improve the Al3+ ion intercalation in anatase TiO2 nanoparticle for aqueous aluminum-ion battery,” Ionics (Kiel)., pp. 1–6, 2018. | |
dc.relation | [40] T. Schoetz, M. Ueda, A. Bund, and C. Ponce de Leon, “Preparation and characterization of a rechargeable battery based on poly-(3,4-ethylenedioxythiophene) and aluminum in ionic liquids,” J. Solid State Electrochem., vol. 21, no. 11, pp. 3237–3246, 2017. | |
dc.relation | [41] S. Wang, K. V. Kravchyk, F. Krumeich, and M. V. Kovalenko, “Kish Graphite Flakes as a Cathode Material for an Aluminum Chloride-Graphite Battery,” ACS Appl. Mater. Interfaces, vol. 9, no. 34, pp. 28478–28485, 2017. | |
dc.relation | [42] Y. Hu et al., “A Binder-Free and Free-Standing Cobalt Sulfide@Carbon Nanotube Cathode Material for Aluminum-Ion Batteries,” Adv. Mater., vol. 30, no. 2, pp. 1–6, 2018. | |
dc.relation | [43] Z. Li, B. Niu, J. Liu, J. Li, and F. Kang, “Rechargeable Aluminum-Ion Battery Based on MoS 2 Microsphere Cathode,” ACS Appl. Mater. Interfaces, vol. 10, no. 11, pp. 9451–9459, 2018. | |
dc.relation | [44] X. Yu, B. Wang, D. Gong, Z. Xu, and B. Lu, “Graphene Nanoribbons on Highly Porous 3D Graphene for High-Capacity and Ultrastable Al-Ion Batteries,” Adv. Mater., vol. 29, no. 4, pp. 1–8, 2017. | |
dc.relation | [45] H. Chen et al., “A Defect-Free Principle for Advanced Graphene Cathode of Aluminum-Ion Battery,” Adv. Mater., vol. 29, no. 12, 2017. | |
dc.relation | [46] H. Yznaga, M. Téllez a, R. Aguirre Flores, J. Ortiz, F. Avalos, and M. Tellez, Modelos para la simulación computacional del moldeo por inyección. 2015. | |
dc.relation | [47] F. Wang et al., “Aqueous Rechargeable Zinc/Aluminum Ion Battery with Good Cycling Performance,” ACS Appl. Mater. Interfaces, vol. 8, no. 14, pp. 9022–9029, 2016. | |
dc.relation | [48] T. Tsuda, G. R. Stafford, and C. L. Hussey, “Review—Electrochemical Surface Finishing and Energy Storage Technology with Room-Temperature Haloaluminate Ionic Liquids and Mixtures,” J. Electrochem. Soc., vol. 164, no. 8, pp. H5007–H5017, 2017. | |
dc.relation | [49] K. Izutsu, Electrochemistry in Nonaqueos Solutions, Second. Tokyo: Wiley-VC Verlag GmbH & Co. KGaA, 2008. | |
dc.relation | [50] T. Tsuda et al., “Electrochemical Energy Storage Device with a Lewis Acidic AlBr3-1-Ethyl-3-methylimidazolioum Bromide Room-Temperature Ionic Liquid,” J. Electrochem. Soc., vol. 161, no. 6, pp. A908–A914, 2014. | |
dc.relation | [51] G. A. Elia et al., “Polyacrylonitrile Separator for High-Performance Aluminum Batteries with Improved Interface Stability,” ACS Appl. Mater. Interfaces, vol. 9, no. 44, pp. 38381–38389, 2017. | |
dc.relation | [52] S. Xia, X.-M. Zhang, K. Huang, Y.-L. Chen, and Y.-T. Wu, “Ionic liquid electrolytes for aluminium secondary battery: Influence of organic solvents,” J. Electroanal. Chem., vol. 757, pp. 167–175, 2015. | |
dc.relation | [53] J. Li, J. Tu, H. Jiao, C. Wang, and S. Jiao, “Ternary AlCl 3 -Urea-[EMIm]Cl Ionic Liquid Electrolyte for Rechargeable Aluminum-Ion Batteries,” J. Electrochem. Soc., vol. 164, no. 13, pp. A3093–A3100, 2017. | |
dc.relation | [54] H. Wang, S. Gu, Y. Bai, S. Chen, F. Wu, and C. Wu, “High-Voltage and Noncorrosive Ionic Liquid Electrolyte Used in Rechargeable Aluminum Battery,” ACS Appl. Mater. Interfaces, vol. 8, no. 41, pp. 27444–27448, 2016. | |
dc.relation | [55] Y. Yamada, “Developing New Functionalities of Superconcentrated Electrolytes for Lithium-ion Batteries,” Compr. Pap. (Invited Pap. Electrochem., vol. 85, no. 9, pp. 559–565, 2017. | |
dc.relation | [56] Y. Song et al., “A long-life rechargeable Al ion battery based on molten salts,” J. Mater. Chem. A, vol. 5, no. 3, pp. 1282–1291, 2017. | |
dc.relation | [57] M. Kotobuki, L. Lu, S. V. Savilov, and S. M. Aldoshin, “Poly(vinylidene fluoride)-Based Al Ion Conductive Solid Polymer Electrolyte for Al Battery,” J. Electrochem. Soc., vol. 164, no. 14, pp. A3868–A3875, 2017. | |
dc.relation | [58] H. Peng, X. Cheng, J. Pan, Y. Zhao, and M. Liao, “Gel Polymer Electrolytes for Electrochemical Energy Storage,” Adv. Energy Mater., vol. 1702184, pp. 1–16, 2017. | |
dc.relation | [59] S. Song et al., “Al conductive hybrid solid polymer electrolyte,” Solid State Ionics, vol. 300, pp. 165–168, 2017. | |
dc.relation | [60] Z. Yu et al., “Flexible Stable Solid-State Al-Ion Batteries,” Adv. Funct. Mater., vol. 29, no. 1, pp. 1–9, 2019. | |
dc.relation | [61] L. Balo, Shalu, H. Gupta, V. Kumar Singh, and R. Kumar Singh, “Flexible gel polymer electrolyte based on ionic liquid EMIMTFSI for rechargeable battery application,” Electrochim. Acta, vol. 230, pp. 123–131, 2017. | |
dc.relation | [62] C. Sequeira and D. Santos, Polymer Electrolytes: Fundamentals and Applications. Woodhead Publishing, 2010. | |
dc.relation | [63] Y. Xu, Y. Zhao, J. Ren, Y. Zhang, and H. Peng, “An All-Solid-State Fiber-Shaped Aluminum-Air Battery with Flexibility, Stretchability, and High Electrochemical Performance,” Angew. Chemie - Int. Ed., vol. 55, no. 28, pp. 7979–7982, 2016. | |
dc.relation | [64] M. Chakir, D. Sotta, and J. Breger, “European Li-Ion Battery Advanced Manufacturing for Electric Vehicles,” 2014. | |
dc.relation | [65] S. Thomas, G. Zaikov, and S. Valsaraj, Recent Advances in Polymer Nanocomposites. Boston: CRS Press, 2009. | |
dc.relation | [66] J. J. Xu and H. Ye, “Polymer gel electrolytes based on oligomeric polyether/cross-linked PMMA blends prepared via in situ polymerization,” Electrochem. commun., vol. 7, no. 8, pp. 829–835, 2005. | |
dc.relation | [67] E. H. Immergut and H. F. MARK, “Principles of Plasticization,” in Plasticization and Plasticizer Processes, Washington D.C., EEUU, 1965, pp. 1–26. | |
dc.relation | [68] C. Liao, X.-G. Sun, and S. Dai, “Crosslinked gel polymer electrolytes based on polyethylene glycol methacrylate and ionic liquid for lithium ion battery applications,” Electrochim. Acta, vol. 87, pp. 889–894, 2013. | |
dc.relation | [69] H. F. Restrepo Builes and J. G. Cervera García, “Análisis de un Método para obtener un polímero con características de electrodo a partir de anilina,” Universidad Nacional de Colombia, 2004. | |
dc.relation | [70] G. Garcia, W. Schuhmann, and E. Ventosa, “A Three-Electrode, Battery-Type Swagelok Cell for the Evaluation of Secondary Alkaline Batteries: The Case of the Ni-Zn Battery,” ChemElectroChem, vol. 3, no. 4, pp. 592–597, 2016. | |
dc.relation | [71] L. Nichols, Organic Chemistry Lab Techniques, 08/24/2020. California: Open Education Resource (OER) and LibreTexts Projec, 2020. | |
dc.relation | [72] Y. Wu et al., “3D Graphitic Foams Derived from Chloroaluminate Anion Intercalation for Ultrafast Aluminum-Ion Battery,” Adv. Mater., vol. 28, no. 41, pp. 9218–9222, 2016. | |
dc.relation | [73] X.-G. Sun, Y. Fang, X. Jiang, K. Yoshii, T. Tsuda, and S. Dai, “Polymer gel electrolytes for application in aluminum deposition and rechargeable aluminum ion batteries,” RSC ChemComm, vol. 52, no. 2, pp. 292–295, 2015. | |
dc.relation | [74] S. Hussan KP and M. Shahin Thayyil, Theoretical and Spectroscopic Investigations on Ionogels, 1st ed. Newcastle, UK: Cambridge Scholars Publishing, 2019. | |
dc.relation | [75] W. Li, Y. Pang, J. Liu, G. Liu, Y. Wang, and Y. Xia, “A PEO-based gel polymer electrolyte for lithium ion batteries,” RSC Adv., vol. 7, no. 38, pp. 23494–23501, 2017. | |
dc.relation | [76] M.-K. Song, Y.-T. Kim, Y. T. Kim, B. W. Cho, B. N. Popov, and H.-W. Rhee, “Thermally Stable Gel Polymer Electrolytes,” J. Electrochem. Soc., vol. 150, no. 4, p. A439, 2003. | |
dc.relation | [77] A. Kitada, K. Nakamura, K. Fukami, and K. Murase, “AlCl3-dissolved diglyme as electrolyte for room-temperature aluminum electrodeposition,” Electrochemistry, vol. 82, no. 11, pp. 946–948, 2014. | |
dc.relation | [78] A. Hosseinioun, P. Nürnberg, M. Schönhoff, D. Diddens, and E. Paillard, “Improved lithium ion dynamics in crosslinked PMMA gel polymer electrolyte,” R. Soc. Chem. Adv., vol. 9, no. 47, pp. 27574–27582, 2019. | |
dc.relation | [79] D. Tuschel, “Selecting an excitation wavelength for raman spectroscopy,” Spectrosc. (Santa Monica), vol. 31, no. 3, 2016. | |
dc.relation | [80] L. A. Escudero Ballesteros, “Principios de fluorescencia,” Universidad Complutense, 2018. | |
dc.relation | [81] H. A. Willis, V. J. I. Zichy, and P. J. Hendra, “The laser-Raman and infra-red spectra of poly(methyl methacrylate),” Polymer (Guildf)., vol. 10, no. C, pp. 737–746, 1969. | |
dc.relation | [82] H. G. M. Edwards, D. W. Farwell, and A. F. Johnson, “FT-Raman spectroscopic study of aluminium(III) chloride in acetonitrile and dichloromethane solutions containing water,” J. Mol. Struct., vol. 344, no. 1–2, pp. 37–44, 1995. | |
dc.relation | [83] A. Kitada, K. Nakamura, K. Fukami, and K. Murase, “Electrochemically active species in aluminum electrodeposition baths of AlCl3/glyme solutions,” Electrochim. Acta, vol. 211, pp. 561–567, Sep. 2016. | |
dc.relation | [84] Y. Kato, A. Kitada, K. Fukami, and K. Murase, “Effect of Supporting Electrolytes on AlCl3/Diglyme Aluminum Electrodeposition Bath,” in ECS Meeting Abstracts, 2016, p. 1644. | |
dc.relation | [85] A. Kitada, Y. Kang, K. Matsumoto, K. Fukami, R. Hagiwara, and K. Murase, “Room temperature magnesium electrodeposition from glyme-coordinated ammonium amide electrolytes,” J. Electrochem. Soc., vol. 162, no. 8, pp. D389–D396, 2015. | |
dc.relation | [86] C. Xu et al., “A High Capacity Aluminum-Ion Battery Based on Imidazole Hydrochloride Electrolyte,” ChemElectroChem, vol. 6, no. 13, pp. 3350–3354, 2019. | |
dc.relation | [87] D. J. Yoo, J. S. Kim, J. Shin, K. J. Kim, and J. W. Choi, “Stable Performance of Aluminum-Metal Battery by Incorporating Lithium-Ion Chemistry,” ChemElectroChem, vol. 4, no. 9, pp. 2345–2351, 2017. | |
dc.relation | [88] M. Angell et al., “High Coulombic efficiency aluminum-ion battery using an AlCl3-urea ionic liquid analog electrolyte.,” Proc. Natl. Acad. Sci. U. S. A., vol. 114, no. 5, pp. 834–839, 2017. | |
dc.relation | [89] K. Kisu, E. Iwama, W. Naoi, P. Simon, and K. Naoi, “Electrochemical kinetics of nanostructure LiFePO4/graphitic carbon electrodes,” Electrochem. commun., vol. 72, pp. 10–14, 2016. | |
dc.relation | [90] W. Zhang et al., “Mesoporous TiO2/TiC@C Composite Membranes with Stable TiO2-C Interface for Robust Lithium Storage,” iScience, vol. 3, no. April, pp. 149–160, 2018. | |
dc.relation | [91] M. Liu, Y. Ren, D. Zhou, H. Jiang, F. Kang, and T. Zhao, “A lithium/polysulfide battery with dual-working mode enabled by liquid fuel and acrylate-based gel polymer electrolyte,” ACS Appl. Mater. Interfaces, vol. 9, no. 3, pp. 2526–2534, 2017. | |
dc.relation | [92] U. Westerhoff, K. Kurbach, F. Lienesch, and M. Kurrat, “Analysis of Lithium-Ion Battery Models Based on Electrochemical Impedance Spectroscopy,” Energy Technol., vol. 4, no. 12, pp. 1620–1630, 2016. | |
dc.relation | [93] D. E. L. Acide, I. Gimenez, and S. Maximovitch, “De Reduction Par Mesures D ’ Impedance.” | |
dc.relation | [94] T. Q. Nguyen and C. Breitkopf, “Determination of Diffusion Coefficients Using Impedance Spectroscopy Data,” J. Electrochem. Soc., vol. 165, no. 14, pp. E826–E831, 2018. | |
dc.relation | [95] L. Garita Arce, L. Rivolta Carvallo, and M. Vega León, “Evaluación de la corrosión por picadura en aleaciones de aluminio,” Rev. la Univ. Costa Rica, vol. 23, no. 1, pp. 13–25, 2013. | |
dc.relation | [96] F. Cuesta, “Análisis Del Fenómeno De La Corrosión En Materiales De Uso Técnico: Metales.,” 2009. | |
dc.relation | [97] M. S. Wu, B. Xu, and C. Y. Ouyang, “Further discussions on the geometry and fast diffusion of AlCl4 cluster intercalated in graphite,” Electrochim. Acta, vol. 223, pp. 137–139, 2017. | |
dc.relation | [98] M. Chiku, H. Takeda, S. Matsumura, E. Higuchi, and H. Inoue, “Amorphous Vanadium Oxide/Carbon Composite Positive Electrode for Rechargeable Aluminum Battery,” ACS Appl. Mater. Interfaces, vol. 7, no. 44, pp. 24385–24389, 2015. | |
dc.relation | [99] J. Tu, H. Lei, Z. Yu, and S. Jiao, “Ordered WO 3−x nanorods: facile synthesis and their electrochemical properties for aluminum-ion batteries,” Chem. Commun., vol. 54, no. 11, pp. 1343–1346, 2018. | |
dc.relation | [100] Z. Chen, W. Ren, L. Gao, B. Liu, S. Pei, and H.-M. Cheng, “Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition.,” Nat. Mater., vol. 10, no. 6, pp. 424–428, 2011. | |
dc.relation | [101] S. Wang et al., “A Novel Aluminum-Ion Battery: Al/AlCl3-[EMIm]Cl/Ni3S2@Graphene,” Adv. Energy Mater., vol. 6, no. 13, 2016. | |
dc.relation | [102] T. Mori et al., “Discharge/charge reaction mechanisms of FeS2 cathode material for aluminum rechargeable batteries at 55°C,” J. Power Sources, vol. 313, pp. 9–14, 2016. | |
dc.relation | [103] Z. Zhao et al., “Tailoring multi-layer architectured FeS2@C hybrids for superior sodium-, potassium- and aluminum-ion storage,” Energy Storage Mater., vol. 22, pp. 228–234, 2019. | |
dc.relation | [104] Z. Hu et al., “Two-dimensionally porous cobalt sulfide nanosheets as a high-performance cathode for aluminum-ion batteries,” J. Power Sources, vol. 440, no. September, p. 227147, 2019. | |
dc.relation | [105] X. Zhang et al., “Flower-like Vanadium Suflide/Reduced Graphene Oxide Composite: An Energy Storage Material for Aluminum-Ion Batteries,” ChemSusChem, vol. 11, no. 4, pp. 709–715, 2018. | |
dc.relation | [106] H. Sun, W. Wang, Z. Yu, Y. Yuan, S. Wang, and S. Jiao, “A new aluminium-ion battery with high voltage, high safety and low cost.,” Chem. Commun., vol. 51, no. 59, pp. 11892–5, 2015. | |
dc.relation | [107] Y. Wu et al., “3D Graphitic Foams Derived from Chloroaluminate Anion Intercalation for Ultrafast Aluminum-Ion Battery,” Adv. Mater., vol. 28, no. 41, pp. 9218–9222, 2016. | |
dc.relation | [108] G. Y. Yang, L. Chen, P. Jiang, Z. Y. Guo, W. Wang, and Z. P. Liu, “Fabrication of tunable 3D graphene mesh network with enhanced electrical and thermal properties for high-rate aluminum-ion battery application,” RSC Adv., vol. 6, no. 53, pp. 47655–47660, 2016. | |
dc.relation | [109] D.-Y. Wang et al., “Advanced rechargeable aluminium ion battery with a high-quality natural graphite cathode,” Nat. Commun., vol. 8, p. 14283, 2017. | |
dc.relation | [110] X.-G. Sun et al., “A sodium–aluminum hybrid battery,” J. Mater. Chem. A, vol. 5, no. 14, pp. 6589–6596, 2017. | |
dc.relation | [111] Z. A. Zafar et al., “A super-long life rechargeable aluminum battery,” Solid State Ionics, vol. 320, pp. 70–75, 2018. | |
dc.relation | [112] G. A. Elia, N. A. Kyeremateng, K. Marquardt, and R. Hahn, “An aluminum/graphite battery with ultra-high rate capability,” Batter. Supercaps, vol. 2, pp. 83–90, 2019. | |
dc.relation | [113] H. M. A. Abood, A. P. Abbott, A. D. Ballantyne, and K. S. Ryder, “Do all ionic liquids need organic cations? Characterisation of [AlCl2·nAmide]+ AlCl4− and comparison with imidazolium based systems,” Chem. Commun., vol. 47, no. 12, pp. 3523–3525, 2011. | |
dc.relation | [114] P. Wang et al., “A flexible aqueous Al ion rechargeable full battery,” Chem. Eng. J., vol. 373, no. May, pp. 580–586, 2019. | |
dc.relation | [115] T. Mandai and P. Johansson, “Haloaluminate-Free Cationic Aluminum Complexes: Structural Characterization and Physicochemical Properties,” J. Phys. Chem. C, vol. 120, no. 38, pp. 21285–21292, 2016. | |
dc.relation | [116] F. Gan, K. Chen, N. Li, Y. Wang, Y. Shuai, and X. He, “Low cost ionic liquid electrolytes for rechargeable aluminum/graphite batteries,” Ionics (Kiel)., vol. 25, no. 9, pp. 4243–4249, 2019. | |
dc.relation | [117] T. Schoetz, C. P. de Leon, M. Ueda, and A. Bund, “Perspective—State of the Art of Rechargeable Aluminum Batteries in Non-Aqueous Systems,” J. Electrochem. Soc., vol. 164, no. 14, pp. A3499–A3502, 2017. | |
dc.relation | [118] Y. Saito, M. Okano, T. Sakai, and T. Kamada, “Lithium polymer gel electrolytes designed to control ionic mobility,” J. Phys. Chem. C, vol. 118, no. 12, pp. 6064–6068, 2014. | |
dc.relation | [119] J. M. Tarascon, A. S. Gozdz, C. Schmutz, F. Shokoohi, and P. C. Warren, “Performance of Bellcore’s plastic rechargeable Li-ion batteries,” Solid State Ionics, vol. 86–88, no. PART 1, pp. 49–54, 1996. | |
dc.relation | [120] R. Leones, R. C. Sabadini, F. C. Sentanin, J. M. S. S. Esperança, A. Pawlicka, and M. M. Silva, “Polymer electrolytes for electrochromic devices through solvent casting and sol-gel routes,” Sol. Energy Mater. Sol. Cells, vol. 169, no. April, pp. 98–106, 2017. | |
dc.relation | [121] R. Dorey, “Routes to thick films,” in Ceramic Thick Films for MEMS and Microdevices, Elsevier, 2012, pp. 35–61. | |
dc.relation | [122] M. A. Hernández Ramón, Microfiltración, ultrafiltración y osmosis inversa. Madrid: Universidad de Murcia, 1990. | |
dc.relation | [123] A. K. Hołda and I. F. J. Vankelecom, “Understanding and guiding the phase inversion process for synthesis of solvent resistant nanofiltration membranes,” J. Appl. Polym. Sci., vol. 132, no. 27, pp. 1–17, 2015. | |
dc.relation | [124] M. Watanabe, S. ichiro Yamada, and N. Ogata, “Ionic conductivity of polymer electrolytes containing room temperature molten salts based on pyridinium halide and aluminium chloride,” Electrochim. Acta, vol. 40, no. 13–14, pp. 2285–2288, 1995. | |
dc.relation | [125] I. Rey, “Raman Spectroelectrochemistry of a Lithium/Polymer Electrolyte Symmetric Cell,” J. Electrochem. Soc., vol. 145, no. 9, p. 3034, 1998. | |
dc.rights | Atribución-SinDerivadas 4.0 Internacional | |
dc.rights | Atribución-SinDerivadas 4.0 Internacional | |
dc.rights | Atribución-SinDerivadas 4.0 Internacional | |
dc.rights | Acceso abierto | |
dc.rights | http://creativecommons.org/licenses/by-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Derechos reservados - Universidad Nacional de Colombia | |
dc.title | Diseño y construcción de una batería ion-aluminio con capacidad de carga rápida | |
dc.type | Otros | |