dc.contributorPérez Pérez, León Darío
dc.contributorGrupo de Investigación en Macromoléculas
dc.creatorRodríguez Molina, Yeimy Johana
dc.date.accessioned2020-03-06T19:35:21Z
dc.date.available2020-03-06T19:35:21Z
dc.date.created2020-03-06T19:35:21Z
dc.date.issued2019-07-19
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/75949
dc.description.abstractEn este estudio, se describe la síntesis de copolímeros anfifílicos de PEG-b-PCL bioconjugados con colesterol o retinol del tipo AB y ABA a través de polimerización por apertura de anillo (ROP) y esterificación de Steglich. La copolimerización fue confirmada empleando resonancia magnética nuclear protónica (RMN1H), espectroscopia infrarroja (FTIR) y cromatografía de permeación en gel (GPC), las propiedades térmicas fueron estudiadas por calorimetría diferencial de barrido (DSC). Posteriormente, se realizó el estudio de las relaciones entre las propiedades coloidales de las micelas y los copolímeros anfifílicos sintetizados. La micelización de los copolímeros y su concentración micelar critica (CMC) se estudió empleando el método de fluorescencia con pireno. De acuerdo con los resultados, se evidencia que los métodos de polimerización y bioconjugación empleados dieron lugar a copolímeros con entidades terpénicas enlazadas covalentemente a su estructura. Por su parte, las propiedades coloidales de las micelas evidencian que el incremento del segmento hidrofóbico de los materiales genera disminución en la CMC, conveniente para la estabilidad de las dispersiones micelares empleadas en la liberación controlada de fármacos. Adicionalmente, se caracterizaron los sistemas micelares empleando DLS, potencial Z y TEM, en su orden, se obtuvieron partículas micelares de tamaños que comprenden el rango entre 22,0 y 136,8 nm; la estabilización de los sistemas micelares establecida por el potencial Z es de tipo estérico, teniendo en cuenta que la carga de las partículas fue cercana a cero; En tanto, la morfología de las micelas mostrada en las imágenes TEM confirma la presencia de partículas nanométricas con estructura tipo “core-shell”. Finalmente, se evaluó la potencial aplicación de estos copolímeros bioconjugados en la encapsulación de AmB, el estudio de su liberación controlada y el efecto sobre el estado de agregación en cada sistema micelar cargado con AmB. Se evidenció que las unidades de terpeno inciden favorablemente en la encapsulación de AmB, encontrándose mayores contenidos de fármaco cuando se bioconjugan con retinol (10,21%). No obstante, la conjugación con colesterol también incrementa la solubilización de AmB (5,88%) con respecto a los copolímeros blanco (<3,16%). Los estudios de liberación demuestran condiciones controladas y porcentajes de liberación menores en los copolímeros bioconjugados con terpenos, corroborando que el núcleo micelar genera un microambiente con interacciones favorables que retardan la salida de AmB al medio de liberación. Finalmente, los estudios de agregación realizados por espectrofotometría UV-Vis, demostraron que la AmB cargada en las micelas se encuentra formando autoagregados.
dc.description.abstractIn this study, the synthesis of amphiphilic PEG-b-PCL copolymers type AB and ABA bioconjugate with cholesterol or retinol through ring open polymerization (ROP) and Steglich esterification are described. The copolymerization was confirmed using proton nuclear magnetic resonance (¹H NMR) and infrared spectroscopy (FTIR) and gel permeation chromatography (GPC), the thermal properties were studied using differential scanning calorimetry (DSC). Then, the study of the relationship between the colloidal properties of the micelles and the amphiphilic copolymers synthetized were carry out. The copolymers micellization and its critical micelle concentration (CMC) were perform using fluorescence method with pyrene. According to the results, it is evident that the polymerization and bioconjugate methods used gave rise to copolymers with terpene entities covalently linked to its structure. In the same way, the colloidal properties of the micelles show that an increase in the hydrophobic segment of the material generates a CMC decrease; this is convenient for the stability of the micellar dispersion used in drugcontrolled release. The micellar systems were characterized employing Dynamic Light Scattering (DLS), Z potential and transmission electron microscopy (TEM). In its order, micellar particles of sizes that comprise the range between 22,0 and 136.8 nm were obtained; the stabilization of the micellar systems stablished using Z potential exhibit a steric type, taking in account that the particle charge was near to cero. While, the morphology shown in TEM images confirm the presence of nanometric core-shell type particles. The application of this bioconjugate copolymers in the AmB encapsulation, the study of their controlled release and the aggregation state were evaluated for each micellar system charged with AmB. It was evidenced that the terpene units favorably affect the encapsulation of AmB, when the AmB was bioconjugate with retinol the obtained drug content was 10,21%. However, the conjugation with cholesterol increase also the AmB solubilization (5,88%) compared to blank copolymers (<3,16%). Release studies demonstrate controlled conditions and lower release rates in bioconjugate copolymers with terpenes, this confirms that the micellar core generates a microenvironment with favorable interactions that delay the exit of AmB to the release medium. Finally, aggregation studies performed by UV-Vis spectrophotometry showed that the AMB loaded in the micelles is arranged in self-aggregates form.
dc.languagespa
dc.publisherDepartamento de Química
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relation[1] C. M. Jewell, C. M. Jewell, and J. H. Collier, “Biomaterials Science,” 2019. [2] P. Chem, “Polymer Chemistry,” no. Scheme 1, pp. 1763–1768, 2012. [3] M. Alami-Milani, P. Zakeri-Milani, H. Valizadeh, R. Salehi, and M. Jelvehgari, “Preparation and evaluation of PCL-PEG-PCL micelles as potential nanocarriers for ocular delivery of dexamethasone,” Iran. J. Basic Med. Sci., vol. 21, no. 2, pp. 153– 164, 2018. [4] M. A. Osorio-delgado, L. J. Henao-tamayo, J. A. Velásquez-cock, A. Isabel, L. M. Restrepo-múnera, P. F. Gañán-rojo, R. O. Zuluaga-, I. C. Ortiz-trujillo, and C. I. Castro-herazo, “Biomedical applications of polymeric biomaterials Aplicaciones biomédicas de biomateriales poliméricos,” vol. 84, no. 201, pp. 241–252, 2017. [5] L. H. Azouz, F. Dahmoune, F. Rezgui, and C. G. Sell, “Full factorial design optimization of anti-in fl ammatory drug release by PCL – PEG – PCL microspheres,” Mater. Sci. Eng. C, vol. 58, pp. 412–419, 2016. [6] R. Oropesa and U. Jáuregui, “Las nanopartículas como portadores de fármacos : características y perspectivas Nanoparticles as drug carriers : characteristics and perspectives,” CENIC Ciebcias Biológicas, vol. 43, no. 3, 2012. [7] S. A. Castleberry, M. A. Quadir, M. A. Sharkh, K. E. Shopsowitz, and P. T. Hammond, “AC PT US CR,” J. Control. Release, 2017. [8] J. C. Villamil, C. M. Parra-giraldo, and L. D. Pérez, “Enhancing the performance of PEG-b-PCL copolymers as precursors of micellar vehicles for amphotericin B through its conjugation with cholesterol,” Colloids Surfaces A, vol. 572, no. March, pp. 79–87, 2019. [9] L. Wang, “Positively charged micelles based on a triblock copolymer demonstrate enhanced corneal penetration,” pp. 6027–6037, 2015. [10] R. J. Hamill, “Amphotericin B formulations: A comparative review of efficacy and toxicity,” Drugs, vol. 73, no. 9, pp. 919–934, 2013. [11] X. Tang, L. Xu, Z. Huo, J. Dai, Y. Qian, J. Wang, W. Hou, R. Jiao, C. Xie, W. Xu, and Y. Liang, “Improved antifungal activity of amphotericin B-loaded TPGS-b-(PCL-ranPGA) nanoparticles,” Int. J. Clin. Exp. Med., vol. 8, no. 4, pp. 5150–5162, 2015. [12] T. A. Diezi and G. Kwon, “Amphotericin B/sterol co-loaded PEG-phospholipid micelles: effects of sterols on aggregation state and hemolytic activity of amphotericin B.,” Pharm. Res., vol. 29, no. 7, pp. 1737–1744, 2012. [13] H. Van De Ven, C. Paulussen, P. B. Feijens, A. Matheeussen, P. Rombaut, P. Kayaert, and G. Van Den Mooter, “PLGA nanoparticles and nanosuspensions with amphotericin B : Potent in vitro and in vivo alternatives to Fungizone and AmBisome,” J. Control. Release, vol. 161, no. 3, pp. 795–803, 2012. [14] J. Barwicz and P. Tancrède, “The effect of aggregation state of amphotericin-B on its interactions with cholesterol- or ergo sterol-containing phosphatidylcholine monolayers,” Chem. Phys. Lipids, vol. 85, no. 2, pp. 145–155, 1997. [15] “Tesis de doctor en ingeniería química síntesis y caracterización de copolímeros bloque biocompatibles franco leonardo redondo,” 2018. [16] H. Cabral, K. Miyata, K. Osada, and K. Kataoka, “Block Copolymer Micelles in Nanomedicine Applications,” Chem. Rev., vol. 118, no. 14, pp. 6844–6892, 2018. [17] K. Matyjaszewski, “Inner Sphere and Outer Sphere Electron Transfer Reactions in Atom Transfer Radical Polymerization,” Macromol. Symp., vol. 134, pp. 105–118, 1998. [18] H. Erothu, A. A. Sohdi, A. C. Kumar, A. J. Sutherland, C. Dagron-Lartigau, A. Allal, R. C. Hiorns, and P. D. Topham, “Facile synthesis of poly(3-hexylthiophene)-blockpoly(ethylene oxide) copolymers via Steglich esterification,” Polym. Chem., vol. 4, no. 13, pp. 3652–3655, 2013. [19] M. E. Coustet, “Síntesis y propiedades de Copolímeros en Bloque constituidos por bloques hidrofílico-hidrofóbico,” p. 123, 2014. [20] B. Li, E. H. Moriyama, F. Li, M. T. Jarvi, C. Allen, and B. C. Wilson, “Diblock copolymer micelles deliver hydrophobic protoporphyrin IX for photodynamic therapy,” Photochem. Photobiol., vol. 83, no. 6, pp. 1505–1512, 2007. [21] M. L. Adams, A. Lavasanifar, and G. S. Kwon, “Amphiphilic block copolymers for drug delivery - Adams - 2003 - Journal of Pharmaceutical Sciences - Wiley Online Library,” J. Pharm. …, vol. 92, no. 7, pp. 1343–1355, 2003. [22] A. C. Albertsson and I. K. Varma, “Recent developments in ring opening polymerization of lactones for biomedical applications,” Biomacromolecules, vol. 4, no. 6, pp. 1466–1486, 2003. [ 23] G. Odian, PRINCIPLES OF.. [24] S. T. Cohen-Anisfeld and P. T. Lansbury, “A Practical, Convergent Method for Glycopeptide Synthesis,” J. Am. Chem. Soc., vol. 115, no. 23, pp. 10531–10537, 1993. [25] K. M. Stridsberg, M. Ryner, and A.-C. Albertsson, “Controlled Ring-Opening Polymerization: Polymers with designed Macromolecular Architecture,” Degrad. Aliphatic Polyesters, vol. 157, pp. 41–65, 2007. [26] W.-F. Su, Principles of Polymer Design and Synthesis, vol. 82. 2013. [27] M. Labet and W. Thielemans, “Synthesis of polycaprolactone: A review,” Chem. Soc. Rev., vol. 38, no. 12, pp. 3484–3504, 2009. [28] K. Zhang, Y. Wang, W. Zhu, X. Li, and Z. Shen, “Synthesis , Characterization , and Micellization of PCL- g -PEG Copolymers by Combination of ROP and ‘“ Click ”’ Chemistry via ‘“ Graft Onto ”’ Method,” pp. 2045–2052, 2012. [29] D. Mecerreyes, R. Jérôme, and P. Dubois, “Novel Macromolecular Architectures Based on Aliphatic Polyesters: Relevance of the ‘Coordination-Insertion’ RingOpening Polymerization,” Macromol. Archit., vol. 147, pp. 1–59, 2007. [30] D. Bourissou, O. Dechy-Cabaret, and B. Martin-Vaca, “Controlled ring-opening polymerization of lactide and glycolide,” Chem. Rev., vol. 104, no. 12, pp. 6147– 6176, 2004. [31] “Simple Method for the Esterification of Carboxylic Acids "],” vol. 553, no. 7, pp. 12– 14, 1978. [32] I. Katime, “MICELAS,” vol. 4, no. 2, pp. 123–151, 2003. [33] M. E. M. Braga and A. Sosnik, Hermínio C. de Sousa Mara E. M. Braga Alejandro Sosnik (editores). 2015. [34] H. M. Aliabadi and A. Lavasanifar, “Polymeric micelles for drug delivery,” Expert Opin. Drug Deliv., vol. 3, no. 1, pp. 139–162, 2006. [35] L. Piñeiro, M. Novo, and W. Al-sou, “Fluorescence emission of pyrene in surfactant solutions,” vol. 215, pp. 1–12, 2015. [36] Y. Wang, X. Ke, Z. X. Voo, S. S. L. Yap, C. Yang, S. Gao, S. Liu, S. Venkataraman, S. A. O. Obuobi, J. S. Khara, Y. Y. Yang, and P. L. R. Ee, “Biodegradable functional polycarbonate micelles for controlled release of amphotericin B,” Acta Biomater., vol. 46, pp. 211–220, 2016. [37] N. Scholz, T. Behnke, and U. Resch, “Determination of the Critical Micelle Concentration of Neutral and Ionic Surfactants with Fluorometry , Conductometry , and Surface Tension — A Method Comparison,” J. Fluoresc., vol. 0, no. 0, p. 0, 2018. [38] I. L. Diaz and L. D. Perez, “Synthesis and micellization properties of triblock copolymers PDMAEMA-b-PCL-b-PDMAEMA and their applications in the fabrication of amphotericin B-loaded nanocontainers,” Colloid Polym. Sci., vol. 293, no. 3, pp. 913–923, 2015. [39] C. Charbonneau, I. Fournier, S. Dufresne, J. Barwicz, and P. Tancrède, “The interactions of amphotericin B with various sterols in relation to its possible use in anticancer therapy,” Biophys. Chem., vol. 91, no. 2, pp. 125–133, 2001. [40] A. S. Zahr, M. De Villiers, and M. V. Pishko, “Encapsulation of drug nanoparticles in self-assembled macromolecular nanoshells,” Langmuir, vol. 21, no. 1, pp. 403–410, 2005. [41] A. Neira, D. Yáñez, P. Aguirre, Y. Amar, S. Vidal, and R. Egaña, “Encapsulación de Biomoléculas Usando Polímeros Naturales : ‘ Un Nuevo Enfoque en la Entrega de Fármacos en Medicina ,’” Av. en Ciencias Vet., vol. 28, no. 2, pp. 31–40, 2013. [42] J. Nicolas, S. Mura, D. Brambilla, N. MacKiewicz, and P. Couvreur, “Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery,” Chem. Soc. Rev., vol. 42, no. 3, pp. 1147–1235, 2013 [43] E. Hernáez Laviña, L. Sanz Angulo, I. Katime Amashta, and V. Sáez, “Liberación controlada de fármacos: micropartículas,” Rev. Iberoam. Polímeros, vol. 5, no. 2, p. 3, 2004. [44] “Microesferas biodegradables de liberación controlada para administración parenteral,” Rev. Cuba. Farm., vol. 34, no. 1, pp. 70–77, 2000. [45] A. Lavasanifar, J. Samuel, S. Sattari, and G. S. Kwon, “Block Copolymer Micelles for the Amphotericin B,” Pharm. Res., vol. 19, no. 4, pp. 418–422, 2002. [46] J. D. Cleary, “Amphotericin B: A New Look at Cellular Binding,” Open Antimicrob. Agents J., vol. 3, no. 1, pp. 30–36, 2011. [47] R. Espada, S. Valdespina, C. Alfonso, G. Rivas, M. P. Ballesteros, and J. J. Torrado, “Effect of aggregation state on the toxicity of different amphotericin B preparations,” Int. J. Pharm., vol. 361, no. 1–2, pp. 64–69, 2008. [48] J. A. Sánchez-Brunete, M. A. Dea, S. Rama, F. Bolás, J. M. Alunda, S. TorradoSantiago, and J. J. Torrado, “Amphotericin B molecular organization as an essential factor to improve activity/toxicity ratio in the treatment of visceral leishmaniasis,” J. Drug Target., vol. 12, no. 7, pp. 453–460, 2004. [49] M. Noemı and R. Laniado-laborı, “Revista Iberoamericana ´ a de Micologı Amphotericin B : side effects and toxicity,” vol. 26, no. 4, pp. 223–227, 2009. [50] Y. H. Shim, Y. C. Kim, H. J. Lee, F. Bougard, P. Dubois, K. C. Choi, C. W. Chung, D. H. Kang, and Y. Il Jeong, “Amphotericin b aggregation inhibition with novel nanoparticles prepared with poly(ε-caprolactone)/poly(N,N-dimethylamino-2-ethyl methacrylate) diblock copolymer,” J. Microbiol. Biotechnol., vol. 21, no. 1, pp. 28–36, 2011. [51] J. L. Italia, M. M. Yahya, D. Singh, and M. N. V. R. Kumar, “Biodegradable Nanoparticles Improve Oral Bioavailability of Amphotericin B and Show Reduced Nephrotoxicity Compared to Intravenous Fungizone ®,” vol. 26, no. 6, pp. 1324– 1331, 2009. [52] C. Weber, T. Yildirim, D. Kalden, G. Festag, N. Fritz, S. Schubert, M. Westerhausen, S. Schubert, M. Westerhausen, and U. S. Schubert, “Polymer Chemistry,” 2017. [53] Y. H. Bae and K. Moo, “Amphiphilic poly(ethylene glycol)-poly(ε-caprolactone) AB2 miktoarm copolymers for self-assembled nanocarrier systems: synthesis, characterization, and effects of morphology on antitumor activity,” Polym. Chem., vol. 6, no. 4, pp. 531–542, 2014. [54] X. Shuai, T. Merdan, F. Unger, M. Wittmar, and T. Kissel, “Novel Biodegradable Ternary Copolymers hy -PEI- g -PCL- b -PEG : Synthesis , Characterization , and Potential as Efficient Nonviral Gene Delivery Vectors,” pp. 5751–5759, 2003. [55] M. M. Mok, R. Thiagarajan, M. Flores, D. C. Morse, and T. P. Lodge, “Apparent critical micelle concentrations in block copolymer/ionic liquid solutions: Remarkably weak dependence on solvophobic block molecular weight,” Macromolecules, vol. 45, no. 11, pp. 4818–4829, 2012. [56] R. Alex and R. Bodmeier, “Encapsulation of water-soluble drugs by a modified solvent evaporation Method. I. Effect of process and formulation variables on drug entrapment,” J. Microencapsul., vol. 7, no. 3, pp. 347–355, 1990. [57] M. Hamedi, J. Wigenius, F. Tai, P. Björk, and D. Aili, “Linköping University Post Print Polypeptide-guided assembly of conducting polymer nanocomposites PolypeptideGuided Assembly of Conducting Polymer Nanocomposites,” no. 2, pp. 2058–2061, 2010. [58] C. Tan, S. Xiong, and C. Chen, “Fast and Controlled Ring-Opening Polymerization of Cyclic Esters by Alkoxides and Cyclic Amides,” 2018. [59] J. Lu, I. D. Shin, S. Nojima, and A. E. Tonelli, “Formation and characterization of the inclusion compounds between copolymer and a - and g -cyclodextrin,” vol. 41, pp. 5871–5883, 2000. [60] T. Chakraborty and I. Chakraborty, “The methods of determination of critical micellar concentrations of the amphiphilic systems in aqueous medium,” Arab. J. Chem., vol. 4, no. 3, pp. 265–270, 2011. [61] S. D. Allen and Y. Liu, “Biomaterials Science anti-in fl ammatory treatment for atherosclerosis †,” 2018. [62] J. Chen, M. Liu, H. Gong, Y. Huang, and C. Chen, “Synthesis and Self-Assembly of Thermoresponsive PEG- b -PNIPAM- b - PCL ABC Triblock Copolymer through the Combination of Atom Transfer Radical Polymerization , Ring-Opening Polymerization , and Click Chemistry,” pp. 14947–14955, 2011. [63] “Block Copolymers in Solution : Fundamentals and Applications Block Copolymers in Solution : Fundamentals and Applications.” [64] Ö. Topel, B. Acar, L. Budama, and N. Hoda, “Determination of critical micelle concentration of polybutadiene- block -poly ( ethyleneoxide ) diblock copolymer by fl uorescence spectroscopy and dynamic light scattering,” vol. 177, pp. 40–43, 2013. [65] V. P. Torchilin, “Block copolymer micelles as a solution for drug delivery,” pp. 63–75, 2005. [66] J. Gohy, “Block Copolymer Micelles,” no. October, pp. 65–136, 2005. [67] D. Press, “pH-sensitive micelles self-assembled from polymer brush ( PAE- g - cholesterol ) - b -PEG- b - ( PAE- g -cholesterol ) for anticancer drug delivery and controlled release,” pp. 2215–2226, 2017. [68] D. S. Horne, “Steric stabilization and casein micelle stability,” J. Colloid Interface Sci., vol. 111, no. 1, pp. 250–260, 1986. [69] I. Gruda and N. Dussault, “Effect of the aggregation state of amphotericin B on its interaction with ergosterol,” Biochem. Cell Biol., vol. 66, no. 3, pp. 177–183, 2009. [70] I. L. Diaz, C. Parra, M. Linarez, and L. D. Perez, “Design of Micelle Nanocontainers Based on PDMAEMA-b-PCL-b-PDMAEMA Triblock Copolymers for the Encapsulation of Amphotericin B,” AAPS PharmSciTech, vol. 16, no. 5, pp. 1069– 1078, 2015. [71] C.-Y. Pan, L. Qiu, and C.-Y. Hong, “Doxorubicin-loaded aromatic imine-contained amphiphilic branched star polymer micelles: synthesis, self-assembly, and drug delivery,” Int. J. Nanomedicine, p. 3623, 2015. [72] R. Vakil and G. S. Kwon, “Effect of cholesterol on the release of amphotericin B from PEG-phospholipid micelles,” Mol. Pharm., vol. 5, no. 1, pp. 98–104, 2008. [73] M. L. Adams and G. S. Kwon, “Relative aggregation state and hemolytic activity of amphotericin B encapsulated by poly(ethylene oxide)-block-poly(N-hexyl-Laspartamide)-acyl conjugate micelles: Effects of acyl chain length,” J. Control. Release, vol. 87, no. 1–3, pp. 23–32, 2003. [74] B. Jeong, Y. Han Bae, and S. Wan Kim, “Biodegradable thermosensitive micelles of PEG-PLGA-PEG triblock copolymers,” Colloids Surfaces B Biointerfaces, vol. 16, no. 1–4, pp. 185–193, 1999.
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleAproximaciones al diseño de copolímeros anfifílicos con potencial aplicación en la encapsulación y liberación de Anfotericina B
dc.typeOtro


Este ítem pertenece a la siguiente institución