dc.relation | [1] C. M. Jewell, C. M. Jewell, and J. H. Collier, “Biomaterials Science,” 2019.
[2] P. Chem, “Polymer Chemistry,” no. Scheme 1, pp. 1763–1768, 2012.
[3] M. Alami-Milani, P. Zakeri-Milani, H. Valizadeh, R. Salehi, and M. Jelvehgari, “Preparation and evaluation of PCL-PEG-PCL micelles as potential nanocarriers for ocular delivery of dexamethasone,” Iran. J. Basic Med. Sci., vol. 21, no. 2, pp. 153– 164, 2018.
[4] M. A. Osorio-delgado, L. J. Henao-tamayo, J. A. Velásquez-cock, A. Isabel, L. M. Restrepo-múnera, P. F. Gañán-rojo, R. O. Zuluaga-, I. C. Ortiz-trujillo, and C. I. Castro-herazo, “Biomedical applications of polymeric biomaterials Aplicaciones biomédicas de biomateriales poliméricos,” vol. 84, no. 201, pp. 241–252, 2017.
[5] L. H. Azouz, F. Dahmoune, F. Rezgui, and C. G. Sell, “Full factorial design optimization of anti-in fl ammatory drug release by PCL – PEG – PCL microspheres,” Mater. Sci. Eng. C, vol. 58, pp. 412–419, 2016.
[6] R. Oropesa and U. Jáuregui, “Las nanopartículas como portadores de fármacos : características y perspectivas Nanoparticles as drug carriers : characteristics and perspectives,” CENIC Ciebcias Biológicas, vol. 43, no. 3, 2012.
[7] S. A. Castleberry, M. A. Quadir, M. A. Sharkh, K. E. Shopsowitz, and P. T. Hammond, “AC PT US CR,” J. Control. Release, 2017.
[8] J. C. Villamil, C. M. Parra-giraldo, and L. D. Pérez, “Enhancing the performance of PEG-b-PCL copolymers as precursors of micellar vehicles for amphotericin B through its conjugation with cholesterol,” Colloids Surfaces A, vol. 572, no. March, pp. 79–87, 2019.
[9] L. Wang, “Positively charged micelles based on a triblock copolymer demonstrate enhanced corneal penetration,” pp. 6027–6037, 2015.
[10] R. J. Hamill, “Amphotericin B formulations: A comparative review of efficacy and toxicity,” Drugs, vol. 73, no. 9, pp. 919–934, 2013.
[11] X. Tang, L. Xu, Z. Huo, J. Dai, Y. Qian, J. Wang, W. Hou, R. Jiao, C. Xie, W. Xu, and Y. Liang, “Improved antifungal activity of amphotericin B-loaded TPGS-b-(PCL-ranPGA) nanoparticles,” Int. J. Clin. Exp. Med., vol. 8, no. 4, pp. 5150–5162, 2015.
[12] T. A. Diezi and G. Kwon, “Amphotericin B/sterol co-loaded PEG-phospholipid micelles: effects of sterols on aggregation state and hemolytic activity of amphotericin B.,” Pharm. Res., vol. 29, no. 7, pp. 1737–1744, 2012.
[13] H. Van De Ven, C. Paulussen, P. B. Feijens, A. Matheeussen, P. Rombaut, P. Kayaert, and G. Van Den Mooter, “PLGA nanoparticles and nanosuspensions with amphotericin B : Potent in vitro and in vivo alternatives to Fungizone and AmBisome,” J. Control. Release, vol. 161, no. 3, pp. 795–803, 2012.
[14] J. Barwicz and P. Tancrède, “The effect of aggregation state of amphotericin-B on its interactions with cholesterol- or ergo sterol-containing phosphatidylcholine monolayers,” Chem. Phys. Lipids, vol. 85, no. 2, pp. 145–155, 1997.
[15] “Tesis de doctor en ingeniería química síntesis y caracterización de copolímeros bloque biocompatibles franco leonardo redondo,” 2018.
[16] H. Cabral, K. Miyata, K. Osada, and K. Kataoka, “Block Copolymer Micelles in Nanomedicine Applications,” Chem. Rev., vol. 118, no. 14, pp. 6844–6892, 2018.
[17] K. Matyjaszewski, “Inner Sphere and Outer Sphere Electron Transfer Reactions in Atom Transfer Radical Polymerization,” Macromol. Symp., vol. 134, pp. 105–118, 1998.
[18] H. Erothu, A. A. Sohdi, A. C. Kumar, A. J. Sutherland, C. Dagron-Lartigau, A. Allal, R. C. Hiorns, and P. D. Topham, “Facile synthesis of poly(3-hexylthiophene)-blockpoly(ethylene oxide) copolymers via Steglich esterification,” Polym. Chem., vol. 4, no. 13, pp. 3652–3655, 2013.
[19] M. E. Coustet, “Síntesis y propiedades de Copolímeros en Bloque constituidos por bloques hidrofílico-hidrofóbico,” p. 123, 2014.
[20] B. Li, E. H. Moriyama, F. Li, M. T. Jarvi, C. Allen, and B. C. Wilson, “Diblock copolymer micelles deliver hydrophobic protoporphyrin IX for photodynamic therapy,” Photochem. Photobiol., vol. 83, no. 6, pp. 1505–1512, 2007.
[21] M. L. Adams, A. Lavasanifar, and G. S. Kwon, “Amphiphilic block copolymers for drug delivery - Adams - 2003 - Journal of Pharmaceutical Sciences - Wiley Online Library,” J. Pharm. …, vol. 92, no. 7, pp. 1343–1355, 2003.
[22] A. C. Albertsson and I. K. Varma, “Recent developments in ring opening polymerization of lactones for biomedical applications,” Biomacromolecules, vol. 4, no. 6, pp. 1466–1486, 2003. [
23] G. Odian, PRINCIPLES OF..
[24] S. T. Cohen-Anisfeld and P. T. Lansbury, “A Practical, Convergent Method for Glycopeptide Synthesis,” J. Am. Chem. Soc., vol. 115, no. 23, pp. 10531–10537, 1993.
[25] K. M. Stridsberg, M. Ryner, and A.-C. Albertsson, “Controlled Ring-Opening Polymerization: Polymers with designed Macromolecular Architecture,” Degrad. Aliphatic Polyesters, vol. 157, pp. 41–65, 2007.
[26] W.-F. Su, Principles of Polymer Design and Synthesis, vol. 82. 2013.
[27] M. Labet and W. Thielemans, “Synthesis of polycaprolactone: A review,” Chem. Soc. Rev., vol. 38, no. 12, pp. 3484–3504, 2009.
[28] K. Zhang, Y. Wang, W. Zhu, X. Li, and Z. Shen, “Synthesis , Characterization , and Micellization of PCL- g -PEG Copolymers by Combination of ROP and ‘“ Click ”’ Chemistry via ‘“ Graft Onto ”’ Method,” pp. 2045–2052, 2012.
[29] D. Mecerreyes, R. Jérôme, and P. Dubois, “Novel Macromolecular Architectures Based on Aliphatic Polyesters: Relevance of the ‘Coordination-Insertion’ RingOpening Polymerization,” Macromol. Archit., vol. 147, pp. 1–59, 2007.
[30] D. Bourissou, O. Dechy-Cabaret, and B. Martin-Vaca, “Controlled ring-opening polymerization of lactide and glycolide,” Chem. Rev., vol. 104, no. 12, pp. 6147– 6176, 2004.
[31] “Simple Method for the Esterification of Carboxylic Acids "],” vol. 553, no. 7, pp. 12– 14, 1978.
[32] I. Katime, “MICELAS,” vol. 4, no. 2, pp. 123–151, 2003.
[33] M. E. M. Braga and A. Sosnik, Hermínio C. de Sousa Mara E. M. Braga Alejandro Sosnik (editores). 2015.
[34] H. M. Aliabadi and A. Lavasanifar, “Polymeric micelles for drug delivery,” Expert Opin. Drug Deliv., vol. 3, no. 1, pp. 139–162, 2006.
[35] L. Piñeiro, M. Novo, and W. Al-sou, “Fluorescence emission of pyrene in surfactant solutions,” vol. 215, pp. 1–12, 2015.
[36] Y. Wang, X. Ke, Z. X. Voo, S. S. L. Yap, C. Yang, S. Gao, S. Liu, S. Venkataraman, S. A. O. Obuobi, J. S. Khara, Y. Y. Yang, and P. L. R. Ee, “Biodegradable functional polycarbonate micelles for controlled release of amphotericin B,” Acta Biomater., vol. 46, pp. 211–220, 2016.
[37] N. Scholz, T. Behnke, and U. Resch, “Determination of the Critical Micelle Concentration of Neutral and Ionic Surfactants with Fluorometry , Conductometry , and Surface Tension — A Method Comparison,” J. Fluoresc., vol. 0, no. 0, p. 0, 2018.
[38] I. L. Diaz and L. D. Perez, “Synthesis and micellization properties of triblock copolymers PDMAEMA-b-PCL-b-PDMAEMA and their applications in the fabrication of amphotericin B-loaded nanocontainers,” Colloid Polym. Sci., vol. 293, no. 3, pp. 913–923, 2015.
[39] C. Charbonneau, I. Fournier, S. Dufresne, J. Barwicz, and P. Tancrède, “The interactions of amphotericin B with various sterols in relation to its possible use in anticancer therapy,” Biophys. Chem., vol. 91, no. 2, pp. 125–133, 2001.
[40] A. S. Zahr, M. De Villiers, and M. V. Pishko, “Encapsulation of drug nanoparticles in self-assembled macromolecular nanoshells,” Langmuir, vol. 21, no. 1, pp. 403–410, 2005.
[41] A. Neira, D. Yáñez, P. Aguirre, Y. Amar, S. Vidal, and R. Egaña, “Encapsulación de Biomoléculas Usando Polímeros Naturales : ‘ Un Nuevo Enfoque en la Entrega de Fármacos en Medicina ,’” Av. en Ciencias Vet., vol. 28, no. 2, pp. 31–40, 2013.
[42] J. Nicolas, S. Mura, D. Brambilla, N. MacKiewicz, and P. Couvreur, “Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery,” Chem. Soc. Rev., vol. 42, no. 3, pp. 1147–1235, 2013
[43] E. Hernáez Laviña, L. Sanz Angulo, I. Katime Amashta, and V. Sáez, “Liberación controlada de fármacos: micropartículas,” Rev. Iberoam. Polímeros, vol. 5, no. 2, p. 3, 2004.
[44] “Microesferas biodegradables de liberación controlada para administración parenteral,” Rev. Cuba. Farm., vol. 34, no. 1, pp. 70–77, 2000.
[45] A. Lavasanifar, J. Samuel, S. Sattari, and G. S. Kwon, “Block Copolymer Micelles for the Amphotericin B,” Pharm. Res., vol. 19, no. 4, pp. 418–422, 2002.
[46] J. D. Cleary, “Amphotericin B: A New Look at Cellular Binding,” Open Antimicrob. Agents J., vol. 3, no. 1, pp. 30–36, 2011.
[47] R. Espada, S. Valdespina, C. Alfonso, G. Rivas, M. P. Ballesteros, and J. J. Torrado, “Effect of aggregation state on the toxicity of different amphotericin B preparations,” Int. J. Pharm., vol. 361, no. 1–2, pp. 64–69, 2008.
[48] J. A. Sánchez-Brunete, M. A. Dea, S. Rama, F. Bolás, J. M. Alunda, S. TorradoSantiago, and J. J. Torrado, “Amphotericin B molecular organization as an essential factor to improve activity/toxicity ratio in the treatment of visceral leishmaniasis,” J. Drug Target., vol. 12, no. 7, pp. 453–460, 2004.
[49] M. Noemı and R. Laniado-laborı, “Revista Iberoamericana ´ a de Micologı Amphotericin B : side effects and toxicity,” vol. 26, no. 4, pp. 223–227, 2009.
[50] Y. H. Shim, Y. C. Kim, H. J. Lee, F. Bougard, P. Dubois, K. C. Choi, C. W. Chung, D. H. Kang, and Y. Il Jeong, “Amphotericin b aggregation inhibition with novel nanoparticles prepared with poly(ε-caprolactone)/poly(N,N-dimethylamino-2-ethyl methacrylate) diblock copolymer,” J. Microbiol. Biotechnol., vol. 21, no. 1, pp. 28–36, 2011.
[51] J. L. Italia, M. M. Yahya, D. Singh, and M. N. V. R. Kumar, “Biodegradable Nanoparticles Improve Oral Bioavailability of Amphotericin B and Show Reduced Nephrotoxicity Compared to Intravenous Fungizone ®,” vol. 26, no. 6, pp. 1324– 1331, 2009.
[52] C. Weber, T. Yildirim, D. Kalden, G. Festag, N. Fritz, S. Schubert, M. Westerhausen, S. Schubert, M. Westerhausen, and U. S. Schubert, “Polymer Chemistry,” 2017.
[53] Y. H. Bae and K. Moo, “Amphiphilic poly(ethylene glycol)-poly(ε-caprolactone) AB2 miktoarm copolymers for self-assembled nanocarrier systems: synthesis, characterization, and effects of morphology on antitumor activity,” Polym. Chem., vol. 6, no. 4, pp. 531–542, 2014.
[54] X. Shuai, T. Merdan, F. Unger, M. Wittmar, and T. Kissel, “Novel Biodegradable Ternary Copolymers hy -PEI- g -PCL- b -PEG : Synthesis , Characterization , and Potential as Efficient Nonviral Gene Delivery Vectors,” pp. 5751–5759, 2003.
[55] M. M. Mok, R. Thiagarajan, M. Flores, D. C. Morse, and T. P. Lodge, “Apparent critical micelle concentrations in block copolymer/ionic liquid solutions: Remarkably weak dependence on solvophobic block molecular weight,” Macromolecules, vol. 45, no. 11, pp. 4818–4829, 2012.
[56] R. Alex and R. Bodmeier, “Encapsulation of water-soluble drugs by a modified solvent evaporation Method. I. Effect of process and formulation variables on drug entrapment,” J. Microencapsul., vol. 7, no. 3, pp. 347–355, 1990.
[57] M. Hamedi, J. Wigenius, F. Tai, P. Björk, and D. Aili, “Linköping University Post Print Polypeptide-guided assembly of conducting polymer nanocomposites PolypeptideGuided Assembly of Conducting Polymer Nanocomposites,” no. 2, pp. 2058–2061, 2010.
[58] C. Tan, S. Xiong, and C. Chen, “Fast and Controlled Ring-Opening Polymerization of Cyclic Esters by Alkoxides and Cyclic Amides,” 2018.
[59] J. Lu, I. D. Shin, S. Nojima, and A. E. Tonelli, “Formation and characterization of the inclusion compounds between copolymer and a - and g -cyclodextrin,” vol. 41, pp. 5871–5883, 2000.
[60] T. Chakraborty and I. Chakraborty, “The methods of determination of critical micellar concentrations of the amphiphilic systems in aqueous medium,” Arab. J. Chem., vol. 4, no. 3, pp. 265–270, 2011.
[61] S. D. Allen and Y. Liu, “Biomaterials Science anti-in fl ammatory treatment for atherosclerosis †,” 2018.
[62] J. Chen, M. Liu, H. Gong, Y. Huang, and C. Chen, “Synthesis and Self-Assembly of Thermoresponsive PEG- b -PNIPAM- b - PCL ABC Triblock Copolymer through the Combination of Atom Transfer Radical Polymerization , Ring-Opening Polymerization , and Click Chemistry,” pp. 14947–14955, 2011.
[63] “Block Copolymers in Solution : Fundamentals and Applications Block Copolymers in Solution : Fundamentals and Applications.”
[64] Ö. Topel, B. Acar, L. Budama, and N. Hoda, “Determination of critical micelle concentration of polybutadiene- block -poly ( ethyleneoxide ) diblock copolymer by fl uorescence spectroscopy and dynamic light scattering,” vol. 177, pp. 40–43, 2013.
[65] V. P. Torchilin, “Block copolymer micelles as a solution for drug delivery,” pp. 63–75, 2005.
[66] J. Gohy, “Block Copolymer Micelles,” no. October, pp. 65–136, 2005.
[67] D. Press, “pH-sensitive micelles self-assembled from polymer brush ( PAE- g - cholesterol ) - b -PEG- b - ( PAE- g -cholesterol ) for anticancer drug delivery and controlled release,” pp. 2215–2226, 2017.
[68] D. S. Horne, “Steric stabilization and casein micelle stability,” J. Colloid Interface Sci., vol. 111, no. 1, pp. 250–260, 1986.
[69] I. Gruda and N. Dussault, “Effect of the aggregation state of amphotericin B on its interaction with ergosterol,” Biochem. Cell Biol., vol. 66, no. 3, pp. 177–183, 2009.
[70] I. L. Diaz, C. Parra, M. Linarez, and L. D. Perez, “Design of Micelle Nanocontainers Based on PDMAEMA-b-PCL-b-PDMAEMA Triblock Copolymers for the Encapsulation of Amphotericin B,” AAPS PharmSciTech, vol. 16, no. 5, pp. 1069– 1078, 2015.
[71] C.-Y. Pan, L. Qiu, and C.-Y. Hong, “Doxorubicin-loaded aromatic imine-contained amphiphilic branched star polymer micelles: synthesis, self-assembly, and drug delivery,” Int. J. Nanomedicine, p. 3623, 2015.
[72] R. Vakil and G. S. Kwon, “Effect of cholesterol on the release of amphotericin B from PEG-phospholipid micelles,” Mol. Pharm., vol. 5, no. 1, pp. 98–104, 2008.
[73] M. L. Adams and G. S. Kwon, “Relative aggregation state and hemolytic activity of amphotericin B encapsulated by poly(ethylene oxide)-block-poly(N-hexyl-Laspartamide)-acyl conjugate micelles: Effects of acyl chain length,” J. Control. Release, vol. 87, no. 1–3, pp. 23–32, 2003.
[74] B. Jeong, Y. Han Bae, and S. Wan Kim, “Biodegradable thermosensitive micelles of PEG-PLGA-PEG triblock copolymers,” Colloids Surfaces B Biointerfaces, vol. 16, no. 1–4, pp. 185–193, 1999. | |