dc.contributorGonzález Osorio, Fabio Augusto
dc.contributorVanegas Ramírez, Jorge Andrés
dc.contributorMindLab
dc.creatorContreras Ordoñez, Victor Hugo
dc.date.accessioned2021-01-20T17:04:11Z
dc.date.available2021-01-20T17:04:11Z
dc.date.created2021-01-20T17:04:11Z
dc.date.issued2019-10-31
dc.identifierContreras, V. H. (2019) Multimodal Non-linear Latent Semantic Method for Information Retrieval [Master's thesis, Universidad Nacional de Colombia]. SINAB
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/78848
dc.description.abstractLa búsqueda y recuperación de datos multimodales es una importante tarea dentro del campo de búsqueda y recuperación de información, donde las consultas y los elementos de la base de datos objetivo están representados por un conjunto de modalidades, donde cada una de ellas captura un aspecto de un fenómeno de interés. Cada modalidad contiene información complementaria y común a otras modalidades. Con el fin de tomar ventaja de la información adicional distribuida a través de las distintas modalidades han sido desarrollados muchos algoritmos y métodos que utilizan las propiedades estadísticas en los datos multimodales para encontrar correlaciones implícitas, otros aprenden a calcular distancias heterogéneas, otros métodos aprenden a proyectar los datos desde el espacio de entrada hasta un espacio semántico común, donde las diferentes modalidades son comparables y se puede construir un ranking a partir de ellas. En esta tesis se presenta el diseño de un sistema para la búsqueda y recuperación de información multimodal que aprende varias proyecciones no lineales a espacios semánticos latentes donde las distintas modalidades son representadas en conjunto y es posible realizar comparaciones y medidas de similitud para construir rankings multimodales. Adicionalmente se propone un método kernelizado para la proyección de datos a un espacio semántico latente usando la información de las etiquetas como método de supervisión para construir índice multimodal que integra los datos multimodales y la información de las etiquetas; este método puede proyectar los datos a tres diferentes espacios semánticos donde varias configuraciones de búsqueda y recuperación de información pueden ser aplicadas. El sistema y el método propuestos fueron evaluados en un conjunto de datos compuesto por casos médicos, donde cada caso consta de una imagen de tejido prostático, un reporte de texto del patólogo y un valor de Gleason score como etiqueta de supervisión. Combinando la información multimodal y la información en las etiquetas se generó un índice multimodal que se utilizó para realizar la tarea de búsqueda y recuperación de información por contenido obteniendo resultados sobresalientes. Las proyecciones no-lineales permiten al modelo una mayor flexibilidad y capacidad de representación. Sin embargo calcular estas proyecciones no-lineales en un conjunto de datos enorme es computacionalmente costoso, para reducir este costo y habilitar el modelo para procesar datos a gran escala, la técnica del budget fue utilizada, mostrando un buen compromiso entre efectividad y velocidad.
dc.description.abstractMultimodal information retrieval is an information retrieval sub-task where queries and database target elements are composed of several modalities or views. A modality is a representation of complex phenomena, captured and measured by different sensors or information sources, each one encodes some information about it. Each modality representation contains complementary and shared information about the phenomenon of interest, this additional information can be used to improve the information retrieval process. Several methods have been developed to take advantage of additional information distributed across different modalities. Some of them exploit statistical properties in multimodal data to find correlations and implicit relationships, others learn heterogeneous distance functions, and others learn linear and non-linear projections that transform data from the original input space to a common latent semantic space where different modalities are comparable. In spite of the attention dedicated to this issue, multimodal information retrieval is still an open problem. This thesis presents a multimodal information retrieval system designed to learn several mapping functions to transform multimodal data to a latent semantic space, where different modalities are combined and can be compared to build a multimodal ranking and perform a multimodal information retrieval task. Additionally, a multimodal kernelized latent semantic embedding method is proposed to construct a supervised multimodal index, integrating multimodal data and label supervision. This method can perform mappings to three different spaces where some information retrieval task setups can be performed. The proposed system and method were evaluated in a multimodal medical case-based retrieval task where data is composed of whole-slide images of prostate tissue samples, pathologist’s text report and Gleason score as a supervised label. Multimodal data and labels were combined to produce a multimodal index. This index was used to retrieve multimodal information and achieves outstanding results compared with previous works on this topic. Non-linear mappings provide more flexibility and representation capacity to the proposed model. However, constructing the non-linear mapping in a large dataset using kernel methods can be computationally costly. To reduce the cost and allow large scale applications, the budget technique was introduced, showing good performance between speed and effectiveness.
dc.languageeng
dc.publisherBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y Computación
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationAbadi, Mart´ın: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. 2015. – Software available from tensorflow.org
dc.relationArevalo, John ; Solorio, Thamar ; Montes-y Gomez ´ , Manuel ; Gonzalez ´ , Fabio A.: Gated multimodal units for information fusion. In: arXiv preprint arXiv:1702.01992 (2017)
dc.relationArora, Sanjeev ; Ge, Rong ; Kannan, Ravi ; Moitra, Ankur: Computing a nonnegative matrix factorization—Provably. In: SIAM Journal on Computing 45 (2016), Nr. 4, S. 1582–1611
dc.relationIn: Beitzel, Steven M. ; Jensen, Eric C. ; Frieder, Ophir: GMAP. Boston, MA : Springer US, 2009, S. 1256. – ISBN 978–0–387–39940–9
dc.relationIn: Benesty, Jacob ; Chen, Jingdong ; Huang, Yiteng ; Cohen, Israel: Pearson Correlation Coefficient. Berlin, Heidelberg : Springer Berlin Heidelberg, 2009, S. 1–4. – ISBN 978–3–642–00296–0
dc.relationBottou, L´eon: Large-scale machine learning with stochastic gradient descent. In: Proceedings of COMPSTAT’2010. Springer, 2010, S. 177–186
dc.relationBottou, L´eon ; Cun, Yann L.: Large scale online learning. In: Advances in neural information processing systems, 2004, S. 217–224
dc.relationBottou, L´eon ; Murata, Noboru: Stochastic approximations and efficient learning. In: The Handbook of Brain Theory and Neural Networks, Second edition,. The MIT Press, Cambridge, MA (2002)
dc.relationBottou, L´eon ; Le Cun, Yann: On-line learning for very large data sets. In: Applied stochastic models in business and industry 21 (2005), Nr. 2, S. 137–151
dc.relationBozzon, Alessandro ; Fraternali, Piero: Multimedia and multimodal information retrieval. In: Search Computing. Springer, 2010, S. 135–155
dc.relation] Bruno, Eric ; Marchand-Maillet, Stephane: Multiview clustering: a late fusion approach using latent models. In: Proceedings of the 32nd international ACM SIGIR conference on Research and development in information retrieval, 2009, S. 736–737
dc.relationCaicedo, Juan C. ; Gonzalez ´ , Fabio A.: Online Matrix Factorization for Multimodal Image Retrieval. (2012), S. 340–347
dc.relationCavallanti, Giovanni ; Cesa-Bianchi, Nicolo ; Gentile, Claudio: Tracking the best hyperplane with a simple budget perceptron. In: Machine Learning 69 (2007), Nr. 2-3, S. 143–167
dc.relationChitta, Radha ; Jin, Rong ; Jain, Anil K.: Efficient kernel clustering using random fourier features. In: 2012 IEEE 12th International Conference on Data Mining IEEE, 2012, S. 161–170
dc.relationContreras, Victor H. ; Lara, Juan S. ; Perdomo, Oscar J. ; Gonzalez ´ , Fabio A.: Supervised online matrix factorization for histopathological multimodal retrieval. In: 14th International Symposium on Medical Information Processing and Analysis Bd. 10975 International Society for Optics and Photonics, 2018, S. 109750Y
dc.relationCosta Pereira, Jose ; Coviello, Emanuele: On the role of correlation and abstraction in cross-modal multimedia retrieval. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 36 (2014), Nr. 3, S. 521–535. – ISBN 0162–8828 VO – 36
dc.relationDe Lathauwer, Lieven ; De Moor, Bart ; Vandewalle, Joos: A multilinear singular value decomposition. In: SIAM journal on Matrix Analysis and Applications 21 (2000), Nr. 4, S. 1253–1278
dc.relationDeerwester, Scott ; Dumais, Susan T. ; Furnas, George W. ; Landauer, Thomas K. ; Harshman, Richard: Indexing by latent semantic analysis. In: Journal of the American society for information science 41 (1990), Nr. 6, S. 391–407
dc.relationDekel, Ofer ; Shalev-Shwartz, Shai ; Singer, Yoram: The Forgetron: A kernelbased perceptron on a fixed budget. In: Advances in neural information processing systems, 2006, S. 259–266
dc.relationDepeursinge, Adrien ; Muller ¨ , Henning: Fusion techniques for combining textual and visual information retrieval. In: ImageCLEF. Springer, 2010, S. 95–114
dc.relationEbert, Sandra ; Fritz, Mario ; Schiele, Bernt: Semi-supervised learning on a budget: scaling up to large datasets. In: Asian Conference on Computer Vision Springer, 2012, S. 232–245
dc.relationFeng, Fangxiang ; Li, Ruifan ; Wang, Xiaojie: Deep correspondence restricted Boltzmann machine for cross-modal retrieval. In: Neurocomputing 154 (2015), S. 50–60
dc.relationFeng, Fangxiang ; Wang, Xiaojie ; Li, Ruifan: Cross-modal retrieval with correspondence autoencoder. In: Proceedings of the 22nd ACM international conference on Multimedia, 2014, S. 7–16
dc.relationFowlkes, Charless ; Belongie, Serge ; Chung, Fan ; Malik, Jitendra: Spectral grouping using the Nystrom method. In: IEEE transactions on pattern analysis and machine intelligence 26 (2004), Nr. 2, S. 214–225
dc.relationFowlkes, Charless ; Belongie, Serge ; Malik, Jitendra: Efficient spatiotemporal grouping using the nystrom method. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001 Bd. 1 IEEE, 2001, S. I–I
dc.relationGhosh, Payel ; Antani, Sameer ; Long, L R. ; Thoma, George R.: Review of medical image retrieval systems and future directions. In: 2011 24th International Symposium on Computer-Based Medical Systems (CBMS) IEEE, 2011, S. 1–6
dc.relationGillis, Nicolas: Introduction to nonnegative matrix factorization. In: arXiv preprint arXiv:1703.00663 (2017)
dc.relationGonzalez ´ , Fabio A. ; Caicedo, Juan C. ; Nasraoui, Olfa ; Ben-Abdallah, Jaafar: NMF-based multimodal image indexing for querying by visual example. In: CIVR ACM, 2010, S. 366–373
dc.relationGower, J C.: Properties of Euclidean and non-Euclidean distance matrices. In: Linear Algebra and its Applications 67 (1985), S. 81–97. – ISSN 0024–3795
dc.relationGulli, Antonio ; Pal, Sujit: Deep Learning with Keras. Packt Publishing Ltd, 2017
dc.relationGunes, Hatice ; Piccardi, Massimo: Affect recognition from face and body: early fusion vs. late fusion. In: 2005 IEEE international conference on systems, man and cybernetics Bd. 4 IEEE, 2005, S. 3437–3443
dc.relationGupta, Amarnath ; Jain, Ramesh: Visual information retrieval. In: Communications of the ACM 40 (1997), Nr. 5, S. 70–78
dc.relationHan, Jiawei ; Kamber, Micheline ; Pei, Jian: 2 - Getting to Know Your Data. In: Han, Jiawei (Hrsg.) ; Kamber, Micheline (Hrsg.) ; Pei, Jian (Hrsg.): Data Mining (Third Edition). Third Edit. Boston : Morgan Kaufmann, 2012 (The Morgan Kaufmann Series in Data Management Systems). – ISBN 978–0–12–381479–1, S. 39–82
dc.relationHe, Jianfeng ; Ma, Bingpeng ; Wang, Shuhui ; Liu, Yugui ; Huang, Qingming: Cross-modal Retrieval by Real Label Partial Least Squares. In: Proceedings of the 2016 ACM on Multimedia Conference ACM, 2016, S. 227–231
dc.relationHernando, Antonio ; Bobadilla, Jes´us ; Ortega, Fernando: A non negative matrix factorization for collaborative filtering recommender systems based on a Bayesian probabilistic model. In: Knowledge-Based Systems 97 (2016), S. 188–202
dc.relationHofmann, Thomas: Probabilistic latent semantic analysis. In: Proceedings of the Fifteenth conference on Uncertainty in artificial intelligence Morgan Kaufmann Publishers Inc., 1999, S. 289–296
dc.relationHofmann, Thomas: Unsupervised learning by probabilistic latent semantic analysis. In: Machine learning 42 (2001), Nr. 1-2, S. 177–196
dc.relationHoyer, Patrik O.: Non-negative matrix factorization with sparseness constraints. In: Journal of machine learning research 5 (2004), Nr. Nov, S. 1457–1469
dc.relationJohnson, Rie ; Zhang, Tong: Accelerating stochastic gradient descent using predictive variance reduction. In: Advances in neural information processing systems, 2013, S. 315–323
dc.relationKludas, Jana ; Bruno, Eric ; Marchand-Maillet, Stephane: Information fusion in multimedia information retrieval. In: International Workshop on Adaptive Multimedia Retrieval Springer, 2007, S. 147–159
dc.relationKolda, Tamara G. ; O’leary, Dianne P.: A semidiscrete matrix decomposition for latent semantic indexing information retrieval. In: ACM Transactions on Information Systems (TOIS) 16 (1998), Nr. 4, S. 322–346
dc.relationKorenius, Tuomo ; Laurikkala, Jorma ; Juhola, Martti: On principal component analysis, cosine and Euclidean measures in information retrieval. In: Information Sciences 177 (2007), Nr. 22, S. 4893–4905
dc.relationKumar, Sanjiv ; Mohri, Mehryar ; Talwalkar, Ameet: Ensemble nystrom method. In: Advances in Neural Information Processing Systems, 2009, S. 1060–1068
dc.relationLahat, Dana ; Adali, T¨ulay ; Jutten, Christian: Multimodal data fusion: an overview of methods, challenges, and prospects. In: Proceedings of the IEEE 103 (2015), Nr. 9, S. 1449–1477
dc.relationLandauer, Thomas K. ; Foltz, Peter W. ; Laham, Darrell: An introduction to latent semantic analysis. In: Discourse processes 25 (1998), Nr. 2-3, S. 259–284
dc.relationLau, Jey H. ; Baldwin, Timothy: An empirical evaluation of doc2vec with practical insights into document embedding generation. In: arXiv preprint arXiv:1607.05368 (2016)
dc.relationLee, Daniel D. ; Seung, H S.: Learning the parts of objects by non-negative matrix factorization. In: Nature 401 (1999), Nr. 6755, S. 788–791
dc.relationLee, Daniel D. ; Seung, H S.: Algorithms for non-negative matrix factorization. In: Advances in neural information processing systems, 2001, S. 556–562
dc.relationLi, Chao ; Deng, Cheng ; Li, Ning ; Liu, Wei ; Gao, Xinbo ; Tao, Dacheng: Selfsupervised adversarial hashing networks for cross-modal retrieval. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, S. 4242–4251
dc.relationLi, Zhongyu ; Zhang, Xiaofan ; Muller ¨ , Henning ; Zhang, Shaoting: Large-scale retrieval for medical image analytics: A comprehensive review. In: Medical image analysis 43 (2018), S. 66–84
dc.relationLiu, Dong ; Lai, Kuan-Ting ; Ye, Guangnan ; Chen, Ming-Syan ; Chang, Shih-Fu: Sample-specific late fusion for visual category recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2013, S. 803–810
dc.relationLiu, Wei ; Wang, Jun ; Ji, Rongrong ; Jiang, Yu-Gang ; Chang, Shih-Fu: Supervised hashing with kernels. In: Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on IEEE, 2012, S. 2074–2081
dc.relationLiu, Wei ; Wang, Jun ; Kumar, Sanjiv ; Chang, Shih-Fu: Hashing with graphs. In: Proceedings of the 28th international conference on machine learning (ICML-11) Citeseer, 2011, S. 1–8
dc.relationLiu, Xinwang ; Zhu, Xinzhong ; Li, Miaomiao ; Wang, Lei ; Tang, Chang ; Yin, Jianping ; Shen, Dinggang ; Wang, Huaimin ; Gao, Wen: Late fusion incomplete multi-view clustering. In: IEEE transactions on pattern analysis and machine intelligence 41 (2018), Nr. 10, S. 2410–2423
dc.relationMa, Lei ; Li, Hongliang ; Meng, Fanman ; Wu, Qingbo ; Ngan, King N.: Global and local semantics-preserving based deep hashing for cross-modal retrieval. In: Neurocomputing 312 (2018), S. 49–62
dc.relationManning, Christopher ; Raghavan, Prabhakar ; Schutze ¨ , Hinrich: Introduction to information retrieval. In: Natural Language Engineering 16 (2010), Nr. 1, S. 100–103
dc.relationManning, Christopher D. ; Raghavan, Prabhakar ; Schutze ¨ , Hinrich: Ch. 1 - Boolean retrieval. In: Introduction to Information Retrieval (2009), Nr. c, S. 1–18. – ISBN 0521865719
dc.relationMorvant, Emilie ; Habrard, Amaury ; Ayache, St´ephane: Majority vote of diverse classifiers for late fusion. In: Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR) Springer, 2014, S. 153–162
dc.relationMourao˜ , Andr´e ; Martins, Fl´avio ; Magalhaes ˜ , Jo˜ao: Multimodal medical information retrieval with unsupervised rank fusion. In: Computerized Medical Imaging and Graphics 39 (2015), S. 35–45
dc.relationMuller ¨ , Henning ; Michoux, Nicolas ; Bandon, David ; Geissbuhler, Antoine: A review of content-based image retrieval systems in medical applications - Clinical benefits and future directions. In: International Journal of Medical Informatics 73 (2004), Nr. 1, S. 1–23. – ISBN 1386–5056
dc.relationMuller ¨ , Henning ; Michoux, Nicolas ; Bandon, David ; Geissbuhler, Antoine: A review of content-based image retrieval systems in medical applications-clinical benefits and future directions. In: International journal of medical informatics 73 (2004), Nr. 1, S. 1–23
dc.relationNiblack, Carlton W. ; Barber, Ron ; Equitz, Will ; Flickner, Myron D. ; Glasman, Eduardo H. ; Petkovic, Dragutin ; Yanker, Peter ; Faloutsos, Christos ; Taubin, Gabriel: QBIC project: querying images by content, using color, texture, and shape. In: Storage and retrieval for image and video databases Bd. 1908 International Society for Optics and Photonics, 1993, S. 173–187
dc.relationPeng, Xiaojiang ; Wang, Limin ; Wang, Xingxing ; Qiao, Yu: Bag of visual words and fusion methods for action recognition: Comprehensive study and good practice. In: Computer Vision and Image Understanding 150 (2016), S. 109–125
dc.relationPeng, Yuxin ; Huang, Xin ; Qi, Jinwei: Cross-media shared representation by hierarchical learning with multiple deep networks. In: IJCAI, 2016, S. 3846–3853
dc.relationPereira, Jose C. ; Coviello, Emanuele ; Doyle, Gabriel ; Rasiwasia, Nikhil ; Lanckriet, Gert R. ; Levy, Roger ; Vasconcelos, Nuno: On the role of correlation and abstraction in cross-modal multimedia retrieval. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 36 (2014), Nr. 3, S. 521–535
dc.relationRahimi, Ali ; Recht, Benjamin: Random features for large-scale kernel machines. In: Advances in neural information processing systems, 2008, S. 1177–1184
dc.relationRasiwasia, Nikhil ; Costa Pereira, Jose ; Coviello, Emanuele ; Doyle, Gabriel: A new approach to cross-modal multimedia retrieval. In: Mm (2010), S. 251–260. ISBN 9781605589336
dc.relationRastegar, Sarah ; Soleymani, Mahdieh ; Rabiee, Hamid R. ; Mohsen Shojaee, Seyed: Mdl-cw: A multimodal deep learning framework with cross weights. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, S. 2601–2609
dc.relationScholkopf ¨ , Bernhard ; Burges, Christopher J. ; Smola, Alexander J. [u. a.]: Advances in kernel methods: support vector learning. MIT press, 1999
dc.relationShalev-Shwartz, Shai [u. a.]: Online learning and online convex optimization. In: Foundations and TrendsR in Machine Learning 4 (2012), Nr. 2, S. 107–194
dc.relationShao, Jie ; Wang, Leiquan ; Zhao, Zhicheng ; Cai, Anni [u. a.]: Deep canonical correlation analysis with progressive and hypergraph learning for cross-modal retrieval. In: Neurocomputing 214 (2016), S. 618–628
dc.relationShawe-Taylor, John ; Cristianini, Nello [u. a.]: Kernel methods for pattern analysis. Cambridge university press, 2004
dc.relationSinghal, Amit [u. a.]: Modern information retrieval: A brief overview. In: IEEE Data Eng. Bull. 24 (2001), Nr. 4, S. 35–43
dc.relationSnoek, Cees G. ; Worring, Marcel ; Smeulders, Arnold W.: Early versus late fusion in semantic video analysis. In: Proceedings of the 13th annual ACM international conference on Multimedia ACM, 2005, S. 399–402
dc.relationSrivastava, Nitish ; Salakhutdinov, Ruslan: Learning representations for multimodal data with deep belief nets. In: International conference on machine learning workshop Bd. 79, 2012
dc.relationSrivastava, Nitish ; Salakhutdinov, Russ R.: Multimodal learning with deep boltzmann machines. In: Advances in neural information processing systems, 2012, S. 2222–2230
dc.relationdel Toro, Oscar J. ; Atzori, Manfredo ; Otalora ´ , Sebastian ; Andersson, Mats ; Euren´ , Kristian ; Hedlund, Martin ; Ronnquist ¨ , Peter ; Muller ¨ , Henning: Convolutional neural networks for an automatic classification of prostate tissue slides with high-grade gleason score. In: Medical Imaging 2017: Digital Pathology Bd. 10140 International Society for Optics and Photonics, 2017, S. 101400O
dc.relationJimenez-del Toro, Oscar ; Otalora ´ , Sebastian ; Andersson, Mats ; Euren´ , Kristian ; Hedlund, Martin ; Rousson, Mikael ; Muller ¨ , Henning ; Atzori, Manfredo: Analysis of histopathology images: From traditional machine learning to deep learning. In: Biomedical Texture Analysis. Elsevier, 2018, S. 281–314
dc.relationJimenez-del Toro, Oscar ; Otalora ´ , Sebastian ; Atzori, Manfredo ; Muller ¨ , Henning: Deep Multimodal Case–Based Retrieval forLarge Histopathology Datasets. In: Wu, Guorong (Hrsg.) ; Munsell, Brent C. (Hrsg.) ; Zhan, Yiqiang (Hrsg.) ; Bai, Wenjia (Hrsg.) ; Sanroma, Gerard (Hrsg.) ; Coupe´, Pierrick (Hrsg.): Patch-Based Techniques in Medical Imaging. Cham : Springer International Publishing, 2017. – ISBN 978–3–319–67434–6, S. 149–157
dc.relationTREC: trec eval Evaluation Report. – Forschungsbericht
dc.relationVanegas, Jorge A.: Large-scale non-linear multimodal semantic embedding. Junio 2018. – Doctor en Ingenier´ıa. L´ınea de investigaci´on: Ciencias de la computaci´on
dc.relationVanegas, Jorge A. ; Escalante, Hugo J. ; Gonzalez ´ , Fabio A.: Semi-supervised Online Kernel Semantic Embedding for Multi-label Annotation. In: Mendoza, Marcelo (Hrsg.) ; Velast´ın, Sergio (Hrsg.): Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. Cham : Springer International Publishing, 2018. – ISBN 978–3–319–75193–1, S. 693–701
dc.relationVavasis, Stephen A.: On the complexity of nonnegative matrix factorization. In: SIAM Journal on Optimization 20 (2010), Nr. 3, S. 1364–1377
dc.relationWang, Daixin ; Cui, Peng ; Ou, Mingdong ; Zhu, Wenwu: Learning compact hash codes for multimodal representations using orthogonal deep structure. In: IEEE Transactions on Multimedia 17 (2015), Nr. 9, S. 1404–1416
dc.relationWang, Zhuang ; Vucetic, Slobodan: Twin vector machines for online learning on a budget. In: Proceedings of the 2009 SIAM International Conference on Data Mining SIAM, 2009, S. 906–917
dc.relationWu, Lin ; Wang, Yang ; Shao, Ling: Cycle-consistent deep generative hashing for cross-modal retrieval. In: IEEE Transactions on Image Processing 28 (2018), Nr. 4, S. 1602–1612
dc.relationXu, Wei ; Liu, Xin ; Gong, Yihong: Document clustering based on non-negative matrix factorization. In: Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval ACM, 2003, S. 267–273
dc.relationYang, Tianbao ; Li, Yu-Feng ; Mahdavi, Mehrdad ; Jin, Rong ; Zhou, Zhi-Hua: Nystr¨om method vs random fourier features: A theoretical and empirical comparison. In: Advances in neural information processing systems, 2012, S. 476–484
dc.relationYe, Guangnan ; Liu, Dong ; Jhuo, I-Hong ; Chang, Shih-Fu: Robust late fusion with rank minimization. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition IEEE, 2012, S. 3021–3028
dc.relationIn: Zhang, Ethan ; Zhang, Yi: Average Precision. Boston, MA : Springer US, 2009, S. 192–193. – ISBN 978–0–387–39940–9
dc.relationZhang, Jian ; Peng, Yuxin ; Yuan, Mingkuan: Unsupervised generative adversarial cross-modal hashing. In: Thirty-Second AAAI Conference on Artificial Intelligence, 2018
dc.relationZhang, Xiaofan ; Dou, Hang ; Ju, Tao ; Xu, Jun ; Zhang, Shaoting: Fusing heterogeneous features from stacked sparse autoencoder for histopathological image analysis. In: IEEE journal of biomedical and health informatics 20 (2016), Nr. 5, S. 1377–1383
dc.relationZhang, Zhong ; Qin, Zhili ; Li, Peiyan ; Yang, Qinli ; Shao, Junming: Multi-view Discriminative Learning via Joint Non-negative Matrix Factorization. In: International Conference on Database Systems for Advanced Applications Springer, 2018, S. 542–557
dc.relationZheng, Liang ; Wang, Shengjin ; Tian, Lu ; He, Fei ; Liu, Ziqiong ; Tian, Qi: Queryadaptive late fusion for image search and person re-identification. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, S. 1741–1750
dc.relationZong, Linlin ; Zhang, Xianchao ; Zhao, Long ; Yu, Hong ; Zhao, Qianli: Multi-view clustering via multi-manifold regularized non-negative matrix factorization. In: Neural Networks 88 (2017), S. 74–89
dc.rightsAtribución-SinDerivadas 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleMultimodal non-linear latent semantic method for information retrieval
dc.typeOtro


Este ítem pertenece a la siguiente institución