dc.contributor | González Osorio, Fabio Augusto | |
dc.contributor | Vanegas Ramírez, Jorge Andrés | |
dc.contributor | MindLab | |
dc.creator | Contreras Ordoñez, Victor Hugo | |
dc.date.accessioned | 2021-01-20T17:04:11Z | |
dc.date.available | 2021-01-20T17:04:11Z | |
dc.date.created | 2021-01-20T17:04:11Z | |
dc.date.issued | 2019-10-31 | |
dc.identifier | Contreras, V. H. (2019) Multimodal Non-linear Latent Semantic Method for Information Retrieval [Master's thesis, Universidad Nacional de Colombia]. SINAB | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/78848 | |
dc.description.abstract | La búsqueda y recuperación de datos multimodales es una importante tarea dentro del campo de búsqueda y recuperación de información, donde las consultas y los elementos de la base de datos objetivo están representados por un conjunto de modalidades, donde cada una de ellas captura un aspecto de un fenómeno de interés. Cada modalidad contiene información complementaria y común a otras modalidades. Con el fin de tomar ventaja de
la información adicional distribuida a través de las distintas modalidades han sido desarrollados muchos algoritmos y métodos que utilizan las propiedades estadísticas en los datos multimodales para encontrar correlaciones implícitas, otros aprenden a calcular distancias heterogéneas, otros métodos aprenden a proyectar los datos desde el espacio de entrada hasta un espacio semántico común, donde las diferentes modalidades son comparables y se puede construir un ranking a partir de ellas. En esta tesis se presenta el diseño de un sistema para la búsqueda y recuperación de información multimodal que aprende varias proyecciones no lineales a espacios semánticos
latentes donde las distintas modalidades son representadas en conjunto y es posible realizar comparaciones y medidas de similitud para construir rankings multimodales. Adicionalmente se propone un método kernelizado para la proyección de datos a un espacio semántico latente usando la información de las etiquetas como método de supervisión para construir
índice multimodal que integra los datos multimodales y la información de las etiquetas; este método puede proyectar los datos a tres diferentes espacios semánticos donde varias configuraciones de búsqueda y recuperación de información pueden ser aplicadas. El sistema y el método propuestos fueron evaluados en un conjunto de datos compuesto por casos médicos, donde cada caso consta de una imagen de tejido prostático, un reporte de
texto del patólogo y un valor de Gleason score como etiqueta de supervisión. Combinando la información multimodal y la información en las etiquetas se generó un índice multimodal
que se utilizó para realizar la tarea de búsqueda y recuperación de información por contenido obteniendo resultados sobresalientes. Las proyecciones no-lineales permiten al modelo una mayor flexibilidad y capacidad de representación. Sin embargo calcular estas proyecciones no-lineales en un conjunto de datos enorme es computacionalmente costoso, para reducir este costo y habilitar el modelo para procesar datos a gran escala, la técnica del budget fue utilizada, mostrando un buen compromiso entre efectividad y velocidad. | |
dc.description.abstract | Multimodal information retrieval is an information retrieval sub-task where queries and database target elements are composed of several modalities or views. A modality is a representation of complex phenomena, captured and measured by different sensors or information sources, each one encodes some information about it. Each modality representation contains complementary and shared information about the phenomenon of interest,
this additional information can be used to improve the information retrieval process. Several methods have been developed to take advantage of additional information distributed across different modalities. Some of them exploit statistical properties in multimodal data to find correlations and implicit relationships, others learn heterogeneous distance functions, and others learn linear and non-linear projections that transform data from the original input space to a common latent semantic space where different modalities are comparable. In spite of the attention dedicated to this issue, multimodal information retrieval is still an open problem. This thesis presents a multimodal information retrieval system designed to learn several mapping functions to transform multimodal data to a latent semantic space, where different modalities are combined and can be compared to build a multimodal ranking and perform a multimodal information retrieval task. Additionally, a multimodal kernelized latent semantic embedding method is proposed to construct a supervised multimodal index, integrating
multimodal data and label supervision. This method can perform mappings to three different spaces where some information retrieval task setups can be performed.
The proposed system and method were evaluated in a multimodal medical case-based retrieval task where data is composed of whole-slide images of prostate tissue samples, pathologist’s text report and Gleason score as a supervised label. Multimodal data and labels were combined to produce a multimodal index. This index was used to retrieve multimodal information and achieves outstanding results compared with previous works on this topic. Non-linear mappings provide more flexibility and representation capacity to the proposed model. However, constructing the non-linear mapping in a large dataset using kernel methods can be computationally costly. To reduce the cost and allow large scale applications, the budget technique was introduced, showing good performance between speed and effectiveness. | |
dc.language | eng | |
dc.publisher | Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y Computación | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | Abadi, Mart´ın: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
2015. – Software available from tensorflow.org | |
dc.relation | Arevalo, John ; Solorio, Thamar ; Montes-y Gomez ´ , Manuel ; Gonzalez ´ ,
Fabio A.: Gated multimodal units for information fusion. In: arXiv preprint
arXiv:1702.01992 (2017) | |
dc.relation | Arora, Sanjeev ; Ge, Rong ; Kannan, Ravi ; Moitra, Ankur: Computing a nonnegative matrix factorization—Provably. In: SIAM Journal on Computing 45 (2016),
Nr. 4, S. 1582–1611 | |
dc.relation | In: Beitzel, Steven M. ; Jensen, Eric C. ; Frieder, Ophir: GMAP. Boston, MA :
Springer US, 2009, S. 1256. – ISBN 978–0–387–39940–9 | |
dc.relation | In: Benesty, Jacob ; Chen, Jingdong ; Huang, Yiteng ; Cohen, Israel: Pearson
Correlation Coefficient. Berlin, Heidelberg : Springer Berlin Heidelberg, 2009, S. 1–4.
– ISBN 978–3–642–00296–0 | |
dc.relation | Bottou, L´eon: Large-scale machine learning with stochastic gradient descent. In:
Proceedings of COMPSTAT’2010. Springer, 2010, S. 177–186 | |
dc.relation | Bottou, L´eon ; Cun, Yann L.: Large scale online learning. In: Advances in neural
information processing systems, 2004, S. 217–224 | |
dc.relation | Bottou, L´eon ; Murata, Noboru: Stochastic approximations and efficient learning.
In: The Handbook of Brain Theory and Neural Networks, Second edition,. The MIT
Press, Cambridge, MA (2002) | |
dc.relation | Bottou, L´eon ; Le Cun, Yann: On-line learning for very large data sets. In: Applied
stochastic models in business and industry 21 (2005), Nr. 2, S. 137–151 | |
dc.relation | Bozzon, Alessandro ; Fraternali, Piero: Multimedia and multimodal information
retrieval. In: Search Computing. Springer, 2010, S. 135–155 | |
dc.relation | ] Bruno, Eric ; Marchand-Maillet, Stephane: Multiview clustering: a late fusion
approach using latent models. In: Proceedings of the 32nd international ACM SIGIR
conference on Research and development in information retrieval, 2009, S. 736–737 | |
dc.relation | Caicedo, Juan C. ; Gonzalez ´ , Fabio A.: Online Matrix Factorization for Multimodal
Image Retrieval. (2012), S. 340–347 | |
dc.relation | Cavallanti, Giovanni ; Cesa-Bianchi, Nicolo ; Gentile, Claudio: Tracking the
best hyperplane with a simple budget perceptron. In: Machine Learning 69 (2007), Nr.
2-3, S. 143–167 | |
dc.relation | Chitta, Radha ; Jin, Rong ; Jain, Anil K.: Efficient kernel clustering using random
fourier features. In: 2012 IEEE 12th International Conference on Data Mining IEEE,
2012, S. 161–170 | |
dc.relation | Contreras, Victor H. ; Lara, Juan S. ; Perdomo, Oscar J. ; Gonzalez ´ , Fabio A.:
Supervised online matrix factorization for histopathological multimodal retrieval. In:
14th International Symposium on Medical Information Processing and Analysis Bd.
10975 International Society for Optics and Photonics, 2018, S. 109750Y | |
dc.relation | Costa Pereira, Jose ; Coviello, Emanuele: On the role of correlation and abstraction in cross-modal multimedia retrieval. In: IEEE Transactions on Pattern Analysis
and Machine Intelligence 36 (2014), Nr. 3, S. 521–535. – ISBN 0162–8828 VO – 36 | |
dc.relation | De Lathauwer, Lieven ; De Moor, Bart ; Vandewalle, Joos: A multilinear
singular value decomposition. In: SIAM journal on Matrix Analysis and Applications
21 (2000), Nr. 4, S. 1253–1278 | |
dc.relation | Deerwester, Scott ; Dumais, Susan T. ; Furnas, George W. ; Landauer,
Thomas K. ; Harshman, Richard: Indexing by latent semantic analysis. In: Journal
of the American society for information science 41 (1990), Nr. 6, S. 391–407 | |
dc.relation | Dekel, Ofer ; Shalev-Shwartz, Shai ; Singer, Yoram: The Forgetron: A kernelbased perceptron on a fixed budget. In: Advances in neural information processing
systems, 2006, S. 259–266 | |
dc.relation | Depeursinge, Adrien ; Muller ¨ , Henning: Fusion techniques for combining textual
and visual information retrieval. In: ImageCLEF. Springer, 2010, S. 95–114 | |
dc.relation | Ebert, Sandra ; Fritz, Mario ; Schiele, Bernt: Semi-supervised learning on a budget:
scaling up to large datasets. In: Asian Conference on Computer Vision Springer, 2012,
S. 232–245 | |
dc.relation | Feng, Fangxiang ; Li, Ruifan ; Wang, Xiaojie: Deep correspondence restricted Boltzmann machine for cross-modal retrieval. In: Neurocomputing 154 (2015), S. 50–60 | |
dc.relation | Feng, Fangxiang ; Wang, Xiaojie ; Li, Ruifan: Cross-modal retrieval with correspondence autoencoder. In: Proceedings of the 22nd ACM international conference on
Multimedia, 2014, S. 7–16 | |
dc.relation | Fowlkes, Charless ; Belongie, Serge ; Chung, Fan ; Malik, Jitendra: Spectral
grouping using the Nystrom method. In: IEEE transactions on pattern analysis and
machine intelligence 26 (2004), Nr. 2, S. 214–225 | |
dc.relation | Fowlkes, Charless ; Belongie, Serge ; Malik, Jitendra: Efficient spatiotemporal
grouping using the nystrom method. In: Proceedings of the 2001 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition. CVPR 2001 Bd. 1 IEEE,
2001, S. I–I | |
dc.relation | Ghosh, Payel ; Antani, Sameer ; Long, L R. ; Thoma, George R.: Review of medical
image retrieval systems and future directions. In: 2011 24th International Symposium
on Computer-Based Medical Systems (CBMS) IEEE, 2011, S. 1–6 | |
dc.relation | Gillis, Nicolas: Introduction to nonnegative matrix factorization. In: arXiv preprint
arXiv:1703.00663 (2017) | |
dc.relation | Gonzalez ´ , Fabio A. ; Caicedo, Juan C. ; Nasraoui, Olfa ; Ben-Abdallah, Jaafar:
NMF-based multimodal image indexing for querying by visual example. In: CIVR
ACM, 2010, S. 366–373 | |
dc.relation | Gower, J C.: Properties of Euclidean and non-Euclidean distance matrices. In: Linear
Algebra and its Applications 67 (1985), S. 81–97. – ISSN 0024–3795 | |
dc.relation | Gulli, Antonio ; Pal, Sujit: Deep Learning with Keras. Packt Publishing Ltd, 2017 | |
dc.relation | Gunes, Hatice ; Piccardi, Massimo: Affect recognition from face and body: early
fusion vs. late fusion. In: 2005 IEEE international conference on systems, man and
cybernetics Bd. 4 IEEE, 2005, S. 3437–3443 | |
dc.relation | Gupta, Amarnath ; Jain, Ramesh: Visual information retrieval. In: Communications
of the ACM 40 (1997), Nr. 5, S. 70–78 | |
dc.relation | Han, Jiawei ; Kamber, Micheline ; Pei, Jian: 2 - Getting to Know Your Data. In:
Han, Jiawei (Hrsg.) ; Kamber, Micheline (Hrsg.) ; Pei, Jian (Hrsg.): Data Mining
(Third Edition). Third Edit. Boston : Morgan Kaufmann, 2012 (The Morgan Kaufmann
Series in Data Management Systems). – ISBN 978–0–12–381479–1, S. 39–82 | |
dc.relation | He, Jianfeng ; Ma, Bingpeng ; Wang, Shuhui ; Liu, Yugui ; Huang, Qingming:
Cross-modal Retrieval by Real Label Partial Least Squares. In: Proceedings of the 2016
ACM on Multimedia Conference ACM, 2016, S. 227–231 | |
dc.relation | Hernando, Antonio ; Bobadilla, Jes´us ; Ortega, Fernando: A non negative matrix factorization for collaborative filtering recommender systems based on a Bayesian
probabilistic model. In: Knowledge-Based Systems 97 (2016), S. 188–202 | |
dc.relation | Hofmann, Thomas: Probabilistic latent semantic analysis. In: Proceedings of the Fifteenth conference on Uncertainty in artificial intelligence Morgan Kaufmann Publishers
Inc., 1999, S. 289–296 | |
dc.relation | Hofmann, Thomas: Unsupervised learning by probabilistic latent semantic analysis.
In: Machine learning 42 (2001), Nr. 1-2, S. 177–196 | |
dc.relation | Hoyer, Patrik O.: Non-negative matrix factorization with sparseness constraints. In:
Journal of machine learning research 5 (2004), Nr. Nov, S. 1457–1469 | |
dc.relation | Johnson, Rie ; Zhang, Tong: Accelerating stochastic gradient descent using predictive
variance reduction. In: Advances in neural information processing systems, 2013, S.
315–323 | |
dc.relation | Kludas, Jana ; Bruno, Eric ; Marchand-Maillet, Stephane: Information fusion in
multimedia information retrieval. In: International Workshop on Adaptive Multimedia
Retrieval Springer, 2007, S. 147–159 | |
dc.relation | Kolda, Tamara G. ; O’leary, Dianne P.: A semidiscrete matrix decomposition for
latent semantic indexing information retrieval. In: ACM Transactions on Information
Systems (TOIS) 16 (1998), Nr. 4, S. 322–346 | |
dc.relation | Korenius, Tuomo ; Laurikkala, Jorma ; Juhola, Martti: On principal component analysis, cosine and Euclidean measures in information retrieval. In: Information
Sciences 177 (2007), Nr. 22, S. 4893–4905 | |
dc.relation | Kumar, Sanjiv ; Mohri, Mehryar ; Talwalkar, Ameet: Ensemble nystrom method.
In: Advances in Neural Information Processing Systems, 2009, S. 1060–1068 | |
dc.relation | Lahat, Dana ; Adali, T¨ulay ; Jutten, Christian: Multimodal data fusion: an
overview of methods, challenges, and prospects. In: Proceedings of the IEEE 103
(2015), Nr. 9, S. 1449–1477 | |
dc.relation | Landauer, Thomas K. ; Foltz, Peter W. ; Laham, Darrell: An introduction to latent
semantic analysis. In: Discourse processes 25 (1998), Nr. 2-3, S. 259–284 | |
dc.relation | Lau, Jey H. ; Baldwin, Timothy: An empirical evaluation of doc2vec with practical
insights into document embedding generation. In: arXiv preprint arXiv:1607.05368
(2016) | |
dc.relation | Lee, Daniel D. ; Seung, H S.: Learning the parts of objects by non-negative matrix
factorization. In: Nature 401 (1999), Nr. 6755, S. 788–791 | |
dc.relation | Lee, Daniel D. ; Seung, H S.: Algorithms for non-negative matrix factorization. In:
Advances in neural information processing systems, 2001, S. 556–562 | |
dc.relation | Li, Chao ; Deng, Cheng ; Li, Ning ; Liu, Wei ; Gao, Xinbo ; Tao, Dacheng: Selfsupervised adversarial hashing networks for cross-modal retrieval. In: Proceedings of
the IEEE conference on computer vision and pattern recognition, 2018, S. 4242–4251 | |
dc.relation | Li, Zhongyu ; Zhang, Xiaofan ; Muller ¨ , Henning ; Zhang, Shaoting: Large-scale
retrieval for medical image analytics: A comprehensive review. In: Medical image
analysis 43 (2018), S. 66–84 | |
dc.relation | Liu, Dong ; Lai, Kuan-Ting ; Ye, Guangnan ; Chen, Ming-Syan ; Chang, Shih-Fu:
Sample-specific late fusion for visual category recognition. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2013, S. 803–810 | |
dc.relation | Liu, Wei ; Wang, Jun ; Ji, Rongrong ; Jiang, Yu-Gang ; Chang, Shih-Fu: Supervised
hashing with kernels. In: Computer Vision and Pattern Recognition (CVPR), 2012
IEEE Conference on IEEE, 2012, S. 2074–2081 | |
dc.relation | Liu, Wei ; Wang, Jun ; Kumar, Sanjiv ; Chang, Shih-Fu: Hashing with graphs.
In: Proceedings of the 28th international conference on machine learning (ICML-11)
Citeseer, 2011, S. 1–8 | |
dc.relation | Liu, Xinwang ; Zhu, Xinzhong ; Li, Miaomiao ; Wang, Lei ; Tang, Chang ; Yin,
Jianping ; Shen, Dinggang ; Wang, Huaimin ; Gao, Wen: Late fusion incomplete
multi-view clustering. In: IEEE transactions on pattern analysis and machine intelligence 41 (2018), Nr. 10, S. 2410–2423 | |
dc.relation | Ma, Lei ; Li, Hongliang ; Meng, Fanman ; Wu, Qingbo ; Ngan, King N.: Global and
local semantics-preserving based deep hashing for cross-modal retrieval. In: Neurocomputing 312 (2018), S. 49–62 | |
dc.relation | Manning, Christopher ; Raghavan, Prabhakar ; Schutze ¨ , Hinrich: Introduction to
information retrieval. In: Natural Language Engineering 16 (2010), Nr. 1, S. 100–103 | |
dc.relation | Manning, Christopher D. ; Raghavan, Prabhakar ; Schutze ¨ , Hinrich: Ch. 1 -
Boolean retrieval. In: Introduction to Information Retrieval (2009), Nr. c, S. 1–18. –
ISBN 0521865719 | |
dc.relation | Morvant, Emilie ; Habrard, Amaury ; Ayache, St´ephane: Majority vote of diverse
classifiers for late fusion. In: Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic Pattern Recognition
(SSPR) Springer, 2014, S. 153–162 | |
dc.relation | Mourao˜ , Andr´e ; Martins, Fl´avio ; Magalhaes ˜ , Jo˜ao: Multimodal medical information retrieval with unsupervised rank fusion. In: Computerized Medical Imaging and
Graphics 39 (2015), S. 35–45 | |
dc.relation | Muller ¨ , Henning ; Michoux, Nicolas ; Bandon, David ; Geissbuhler, Antoine:
A review of content-based image retrieval systems in medical applications - Clinical
benefits and future directions. In: International Journal of Medical Informatics 73
(2004), Nr. 1, S. 1–23. – ISBN 1386–5056 | |
dc.relation | Muller ¨ , Henning ; Michoux, Nicolas ; Bandon, David ; Geissbuhler, Antoine: A
review of content-based image retrieval systems in medical applications-clinical benefits
and future directions. In: International journal of medical informatics 73 (2004), Nr.
1, S. 1–23 | |
dc.relation | Niblack, Carlton W. ; Barber, Ron ; Equitz, Will ; Flickner, Myron D. ; Glasman, Eduardo H. ; Petkovic, Dragutin ; Yanker, Peter ; Faloutsos, Christos ;
Taubin, Gabriel: QBIC project: querying images by content, using color, texture, and
shape. In: Storage and retrieval for image and video databases Bd. 1908 International
Society for Optics and Photonics, 1993, S. 173–187 | |
dc.relation | Peng, Xiaojiang ; Wang, Limin ; Wang, Xingxing ; Qiao, Yu: Bag of visual words
and fusion methods for action recognition: Comprehensive study and good practice. In:
Computer Vision and Image Understanding 150 (2016), S. 109–125 | |
dc.relation | Peng, Yuxin ; Huang, Xin ; Qi, Jinwei: Cross-media shared representation by hierarchical learning with multiple deep networks. In: IJCAI, 2016, S. 3846–3853 | |
dc.relation | Pereira, Jose C. ; Coviello, Emanuele ; Doyle, Gabriel ; Rasiwasia, Nikhil ;
Lanckriet, Gert R. ; Levy, Roger ; Vasconcelos, Nuno: On the role of correlation
and abstraction in cross-modal multimedia retrieval. In: IEEE Transactions on Pattern
Analysis and Machine Intelligence 36 (2014), Nr. 3, S. 521–535 | |
dc.relation | Rahimi, Ali ; Recht, Benjamin: Random features for large-scale kernel machines. In:
Advances in neural information processing systems, 2008, S. 1177–1184 | |
dc.relation | Rasiwasia, Nikhil ; Costa Pereira, Jose ; Coviello, Emanuele ; Doyle, Gabriel:
A new approach to cross-modal multimedia retrieval. In: Mm (2010), S. 251–260. ISBN
9781605589336 | |
dc.relation | Rastegar, Sarah ; Soleymani, Mahdieh ; Rabiee, Hamid R. ; Mohsen Shojaee,
Seyed: Mdl-cw: A multimodal deep learning framework with cross weights. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016,
S. 2601–2609 | |
dc.relation | Scholkopf ¨ , Bernhard ; Burges, Christopher J. ; Smola, Alexander J. [u. a.]: Advances in kernel methods: support vector learning. MIT press, 1999 | |
dc.relation | Shalev-Shwartz, Shai [u. a.]: Online learning and online convex optimization. In:
Foundations and TrendsR in Machine Learning 4 (2012), Nr. 2, S. 107–194 | |
dc.relation | Shao, Jie ; Wang, Leiquan ; Zhao, Zhicheng ; Cai, Anni [u. a.]: Deep canonical
correlation analysis with progressive and hypergraph learning for cross-modal retrieval.
In: Neurocomputing 214 (2016), S. 618–628 | |
dc.relation | Shawe-Taylor, John ; Cristianini, Nello [u. a.]: Kernel methods for pattern analysis.
Cambridge university press, 2004 | |
dc.relation | Singhal, Amit [u. a.]: Modern information retrieval: A brief overview. In: IEEE Data
Eng. Bull. 24 (2001), Nr. 4, S. 35–43 | |
dc.relation | Snoek, Cees G. ; Worring, Marcel ; Smeulders, Arnold W.: Early versus late
fusion in semantic video analysis. In: Proceedings of the 13th annual ACM international
conference on Multimedia ACM, 2005, S. 399–402 | |
dc.relation | Srivastava, Nitish ; Salakhutdinov, Ruslan: Learning representations for multimodal data with deep belief nets. In: International conference on machine learning
workshop Bd. 79, 2012 | |
dc.relation | Srivastava, Nitish ; Salakhutdinov, Russ R.: Multimodal learning with deep
boltzmann machines. In: Advances in neural information processing systems, 2012, S.
2222–2230 | |
dc.relation | del Toro, Oscar J. ; Atzori, Manfredo ; Otalora ´ , Sebastian ; Andersson, Mats
; Euren´ , Kristian ; Hedlund, Martin ; Ronnquist ¨ , Peter ; Muller ¨ , Henning:
Convolutional neural networks for an automatic classification of prostate tissue slides
with high-grade gleason score. In: Medical Imaging 2017: Digital Pathology Bd. 10140
International Society for Optics and Photonics, 2017, S. 101400O | |
dc.relation | Jimenez-del Toro, Oscar ; Otalora ´ , Sebastian ; Andersson, Mats ; Euren´ , Kristian ; Hedlund, Martin ; Rousson, Mikael ; Muller ¨ , Henning ; Atzori, Manfredo:
Analysis of histopathology images: From traditional machine learning to deep learning.
In: Biomedical Texture Analysis. Elsevier, 2018, S. 281–314 | |
dc.relation | Jimenez-del Toro, Oscar ; Otalora ´ , Sebastian ; Atzori, Manfredo ; Muller ¨ ,
Henning: Deep Multimodal Case–Based Retrieval forLarge Histopathology Datasets.
In: Wu, Guorong (Hrsg.) ; Munsell, Brent C. (Hrsg.) ; Zhan, Yiqiang (Hrsg.) ; Bai,
Wenjia (Hrsg.) ; Sanroma, Gerard (Hrsg.) ; Coupe´, Pierrick (Hrsg.): Patch-Based
Techniques in Medical Imaging. Cham : Springer International Publishing, 2017. –
ISBN 978–3–319–67434–6, S. 149–157 | |
dc.relation | TREC: trec eval Evaluation Report. – Forschungsbericht | |
dc.relation | Vanegas, Jorge A.: Large-scale non-linear multimodal semantic embedding. Junio
2018. – Doctor en Ingenier´ıa. L´ınea de investigaci´on: Ciencias de la computaci´on | |
dc.relation | Vanegas, Jorge A. ; Escalante, Hugo J. ; Gonzalez ´ , Fabio A.: Semi-supervised
Online Kernel Semantic Embedding for Multi-label Annotation. In: Mendoza, Marcelo
(Hrsg.) ; Velast´ın, Sergio (Hrsg.): Progress in Pattern Recognition, Image Analysis,
Computer Vision, and Applications. Cham : Springer International Publishing, 2018. –
ISBN 978–3–319–75193–1, S. 693–701 | |
dc.relation | Vavasis, Stephen A.: On the complexity of nonnegative matrix factorization. In: SIAM
Journal on Optimization 20 (2010), Nr. 3, S. 1364–1377 | |
dc.relation | Wang, Daixin ; Cui, Peng ; Ou, Mingdong ; Zhu, Wenwu: Learning compact hash
codes for multimodal representations using orthogonal deep structure. In: IEEE Transactions on Multimedia 17 (2015), Nr. 9, S. 1404–1416 | |
dc.relation | Wang, Zhuang ; Vucetic, Slobodan: Twin vector machines for online learning on a
budget. In: Proceedings of the 2009 SIAM International Conference on Data Mining
SIAM, 2009, S. 906–917 | |
dc.relation | Wu, Lin ; Wang, Yang ; Shao, Ling: Cycle-consistent deep generative hashing for
cross-modal retrieval. In: IEEE Transactions on Image Processing 28 (2018), Nr. 4, S.
1602–1612 | |
dc.relation | Xu, Wei ; Liu, Xin ; Gong, Yihong: Document clustering based on non-negative matrix
factorization. In: Proceedings of the 26th annual international ACM SIGIR conference
on Research and development in informaion retrieval ACM, 2003, S. 267–273 | |
dc.relation | Yang, Tianbao ; Li, Yu-Feng ; Mahdavi, Mehrdad ; Jin, Rong ; Zhou, Zhi-Hua:
Nystr¨om method vs random fourier features: A theoretical and empirical comparison.
In: Advances in neural information processing systems, 2012, S. 476–484 | |
dc.relation | Ye, Guangnan ; Liu, Dong ; Jhuo, I-Hong ; Chang, Shih-Fu: Robust late fusion
with rank minimization. In: 2012 IEEE Conference on Computer Vision and Pattern
Recognition IEEE, 2012, S. 3021–3028 | |
dc.relation | In: Zhang, Ethan ; Zhang, Yi: Average Precision. Boston, MA : Springer US, 2009,
S. 192–193. – ISBN 978–0–387–39940–9 | |
dc.relation | Zhang, Jian ; Peng, Yuxin ; Yuan, Mingkuan: Unsupervised generative adversarial
cross-modal hashing. In: Thirty-Second AAAI Conference on Artificial Intelligence,
2018 | |
dc.relation | Zhang, Xiaofan ; Dou, Hang ; Ju, Tao ; Xu, Jun ; Zhang, Shaoting: Fusing
heterogeneous features from stacked sparse autoencoder for histopathological image
analysis. In: IEEE journal of biomedical and health informatics 20 (2016), Nr. 5, S.
1377–1383 | |
dc.relation | Zhang, Zhong ; Qin, Zhili ; Li, Peiyan ; Yang, Qinli ; Shao, Junming: Multi-view
Discriminative Learning via Joint Non-negative Matrix Factorization. In: International
Conference on Database Systems for Advanced Applications Springer, 2018, S. 542–557 | |
dc.relation | Zheng, Liang ; Wang, Shengjin ; Tian, Lu ; He, Fei ; Liu, Ziqiong ; Tian, Qi: Queryadaptive late fusion for image search and person re-identification. In: Proceedings of
the IEEE conference on computer vision and pattern recognition, 2015, S. 1741–1750 | |
dc.relation | Zong, Linlin ; Zhang, Xianchao ; Zhao, Long ; Yu, Hong ; Zhao, Qianli: Multi-view
clustering via multi-manifold regularized non-negative matrix factorization. In: Neural
Networks 88 (2017), S. 74–89 | |
dc.rights | Atribución-SinDerivadas 4.0 Internacional | |
dc.rights | Acceso abierto | |
dc.rights | http://creativecommons.org/licenses/by-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Derechos reservados - Universidad Nacional de Colombia | |
dc.title | Multimodal non-linear latent semantic method for information retrieval | |
dc.type | Otro | |