dc.contributorPrieto Gómez, Germán Andrés
dc.contributorUniversidad Nacional de Colombia
dc.contributorGRUPO DE GEOFISICA
dc.creatorMartínez Jaramillo, Daniel
dc.date.accessioned2020-08-14T18:41:37Z
dc.date.available2020-08-14T18:41:37Z
dc.date.created2020-08-14T18:41:37Z
dc.date.issued2020-06-25
dc.identifierMartínez, D. (2020). Implementación del método de relocalización Source Specific Station Terms para Colombia: Aplicación para el occidente colombiano (tesis de maestría). Universidad Nacional de Colombia, Bogotá, Colombia.
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/78040
dc.description.abstractSe relocalizan alrededor de 7400 eventos sísmicos del occidente de Colombia registrados por la Red Sismológica Nacional (RSNC) del Servicio Geológico Colombiano (SGC) a partir de la técnica Source-Specific Station Terms, que busca disminuir los efectos causados por las anomalías de velocidad en tres dimensiones obviadas por los modelos de velocidad tradicionales, generalmente unidimensionales (en capas). También se realiza correlación cruzada de formas de onda para encontrar similitud en grupos de eventos que permitan asociarlos a una misma fuente (o cercana), y poderlos localizar de manera relativa a partir del tiempo de desfase entre ellos. Además se prueban tres técnicas para hallar la solución de la inversión matricial en la que se obtienen las localizaciones finales, donde se encuentra que la solución por valor absoluto (norma L1) es la que mejores resultados arroja. Con estas nuevas localizaciones se observan estructuras que no son apreciables con la localización inicial evento por evento del catálogo consultado. Se delimitan las fallas de Murindó y Murrí, y se encuentra que la falla de Mutatá tiene manifestación sismológica mayor al sur de donde está cartografiada. Tambi ́en se encuentra un lineamiento con orientación ENE de mayor profundidad (31 km) costa afuera de Nuquí Chocó, que no ha sido reportado.
dc.description.abstractAbout 7400 seismic events in western Colombia registered by the National Seismological Network (RSNC) of Colombian Geological Survey (SGC) are relocated using the Source- Specific Stations Terms method that aims at reducing the effects caused by three-dimensional velocity anomalies not taken into account by traditional one-dimensional velocity models. Waveform cross-correlation is also performed to find similarities in clusters of events that allow the association with a similar or nearby source, and the relative relocation based on the phase delay time between them. In addition, three techniques are tested to find the solution of the matrix inversion in which the final locations are obtained, where we find that the solution by least absolute deviations (L1 norm), is the one that yields the best results. With these new locations, crustal structures are observed that are not apparent with the initial location event by event of the original catalog. The Murindó and Murrí faults are delimited, and it is found that the Mutatá fault has a greater seismological expression to the south of where it is mapped. There is also a seismicity alignment oriented towards ENE at 31 km depth offshore of Nuquí Chocó, which has not been reported.
dc.languagespa
dc.publisherBogotá - Ciencias - Maestría en Ciencias - Geología
dc.publisherDepartamento de Geociencias
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationZarifi, Z., Havskov, J., and Hanyga, A. (2007). An insight into the Bucaramanga nest. Tectonophysics, 443(1-2):93–105.
dc.relationWolfram-Research (2019). Mathematica, Version 12.0.
dc.relationWhite, L. T., Rawlinson, N., Lister, G. S., Waldhauser, F., Hejrani, B., Thompson, D. A., Tanner, D., Macpherson, C. G., Tkalcic, H., and Morgan, J. P. (2019). Earth’s deepest earthquake swarms track fluid ascent beneath nascent arc volcanoes. Earth and Planetary Science Letters, 521:25–36.
dc.relationWaldhauser, F. (2001). Hypodd–A program to compute double-difference hypocenter locations.
dc.relationWagner, L., Jaramillo, J., Ram ́ırez-Hoyos, L., Monsalve, G., Cardona, A., and Becker, T. (2017). Transient slab flattening beneath Colombia. Geophysical Research Letters, 44(13):6616–6623.
dc.relationVargas, C. A. and Mann, P. (2013). Tearing and breaking off of subducted slabs as the result of collision of the Panama arc-indenter with northwestern South America. Bulletin of the Seismological Society of America, 103(3):2025–2046.
dc.relationvan Rossum, G. (1995). Python tutorial. Technical Report CS-R9526, Centrum voor Wiskunde en Informatica (CWI), Amsterdam.
dc.relationValoroso, L., Chiaraluce, L., and Collettini, C. (2014). Earthquakes and fault zone structure. Geology, 42(4):343–346.
dc.relationTrenkamp, R., Kellogg, J. N., Freymueller, J. T., and Mora, H. P. (2002). Wide plate margin deformation, southern Central America and northwestern South America, casa GPS observations. Journal of South American Earth Sciences, 15(2):157–171.
dc.relationTaboada, A., Rivera, L. A., Fuenzalida, A., Cisternas, A., Philip, H., Bijwaard, H., Olaya, J., and Rivera, C. (2000). Geodynamics of the northern Andes: Subductions and intracontinental deformation (Colombia). Tectonics, 19(5):787–813.
dc.relationSyracuse, E., Maceira, M., Prieto, G. A., Zhang, H., and Ammon, C. J. (2017). Multiple plates subducting beneath Colombia, as illuminated by seismicity and velocity from the joint inversion of seismic and gravity data. Geochemistry Geophysics Geosystems, 444:139–149.
dc.relationSuter, F., Sartori, M., Neuwerth, R., and Gorin, G. (2008). Structural imprints at the front of the Chocó-Panamá indenter: Field data from the north Cauca valley basin, central Colombia. Tectonophysics, 460(1-4):134–157.
dc.relationSpicak, A., Vanek, J., and Hanus, V. (2009). Seismically active column and volcanic plumbing system beneath the island arc of the Izu-Bonin subduction zone. Geophysical Journal International, 179(3):1301–1312.
dc.relationSpicak, A., Hanus, V., and Vanek, J. (2004). Seismicity pattern: an indicator of source region of volcanism at convergent plate margins. Physics of the Earth and Planetary Interiors, 141(4):303–326.
dc.relationServicio Geológico Colombiano, S. (2017). Mapa estaciones servicio geológico colombiano.
dc.relationServicio Geológico Colombiano, S. (2016). Sismicidad registrada por la red sismológica nacional de Colombia del sgc desde 1993 hasta 2015.
dc.relationSalcedo-Hurtado, E. D. J. and Pérez, J. L. (2016). Caracterización sismotectónica de la región del Valle del Cauca y zonas aledañas a partir de mecanismos focales de terremotos. Boletín de Geología, 38(3).
dc.relationRichards-Dinger, K. and Shearer, P. (2000). Earthquake locations in southern California obtained using source-specific station terms. Journal of Geophysical Research: Solid Earth, 105(B5):10939–10960.
dc.relationRestrepo, J. and Toussaint, J. (1988). Terranes and continental accretion in the Colombian Andes. Episodes, 11(3):189–193.
dc.relationPrieto, G. A., Beroza, G. C., Barrett, S. A., López, G. A., and Florez, M. (2012). Earthquake nests as natural laboratories for the study of intermediate-depth earthquake mechanics. Tectonophysics, 570:42–56.
dc.relationPoveda, E., Julià, J., Schimmel, M., and Perez-Garcia, N. (2018). Up- per and middle crustal velocity structure of the Colombian Andes from ambient noise tomography: Investigating subduction-related magmatism in the overriding plate. Journal of Geophysical Research: Solid Earth, 123(2):1459–1485.
dc.relationPoupinet, G., Ellsworth, W., and Frechet, J. (1984). Monitoring velocity variations in the crust using earthquake doublets: An application to the Calaveras fault, California. Journal of Geophysical Research: Solid Earth, 89(B7):5719–5731.
dc.relationPosada, G., Monsalve, G., and Abad, A. M. (2017). Construcción de mecanismos focales en el norte de la cordillera central colombiana a partir de registros de la red sismológica nacional de Colombia. Bolet ́ın de Ciencias de la Tierra, (42):36–44.
dc.relationPennington, W. D. (1981). Subduction of the eastern Panama basin and seismotectonic of northwestern South America. Journal of Geophysical Research: Solid Earth, 86(B11):10753–10770.
dc.relationPeña, D. and Ruiz-Castillo, J. (1982). Métodos robustos de construcción de modelos de regresión. una aplicación al sector de la vivienda. Estadística Española, 97:47–76.
dc.relationPedraza Garcia, P., Vargas, C. A., Monsalve, J., et al. (2007). Geometric model of the Nazca plate subduction in southwest Colombia. Earth Sciences Research Journal, 11(2):124–134.
dc.relationParis, G. (2000). Map and database of quaternary faults and folds in colombia and its offshore regions. Technical report.
dc.relationMora-Páez, H., Diederix, H., Corchuelo-Cuervo, Y., Freymueller, J. T., Lizarazo, S., Mencin, D., and Kellogg, J. N. (2018). Crustal deformation in the northern Andes – a new GPS velocity field. Journal of South American Earth Sciences, 89:79–61.
dc.relationMonsalve, H. and Mora, H. (2005). Esquema geodinámico regional para el noroccidente de Suramérica (modelo de subducción y desplazamientos relativos). Boletín de Geología, 27(44).
dc.relationMartínez, J. M., Parra, E., Paris, G., Forero, C. A., Bustamante, M., Cardona, O. D., and Jaramillo, J. D. (1993). Los sismos del Atrato medio 17 y 18 de octubre de 1992, noroccidente de Colombia. Technical report, INGEOMINAS.
dc.relationMartínez, D. (2016). Geometría de la placa de Nazca en el Pacífico Colombiano a partir de datos microsísmicos. Tesis de pregrado, Universidad de Caldas.
dc.relationLizarazo, M., J. (2013). Relocalización de sismos volcano-tectónicos en el Volcán Galeras a partir de la correlación cruzada de formas de onda. Tesis de maestría, Universidad Nacional de Colombia.
dc.relationLin, G. and Shearer, P. (2006). The Comploc earthquake location package. Seismological Research Letters, 77(4):440–444.
dc.relationLin, G. and Shearer, P. (2005). Tests of relative earthquake location techniques using synthetic data. Journal of Geophysical Research: Solid Earth, 110(B4).
dc.relationLienert, B. R., Berg, E., and Frazer, L. N. (1986). Hypocenter: An earthquake location method using centered, scaled, and adaptively damped least squares. Bulletin of the Seismological Society of America, 76(3):771–783.
dc.relationLin, G. (2018). The source-specific station term and waveform cross-correlation earthquake location package and its applications to California and New Zealand. Seismo- logical Research Letters, 89(5):1877–1885.
dc.relationLeón, S., Cardona, A., Parra, M., Sobel, E. R., Jaramillo, J. S., Glodny, J., Valencia, V., Chew, D., Montes, C., Posada, G., Monsalve, G., and Pardo-Trujillo, A. (2018). Transition from collisional to subduction-related regimes: An example from Neogene Panama-Nazca-South América interactions. Tectonics, 37(1):119–139.
dc.relationKennan, L. and Pindell, J. L. (2009). Dextral shear, terrane accretion and basin formation in the northern Andes: best explained by interaction with a pacific-derived Caribbean plate? Geological Society, London, Special Publications, 328(1):487–531.
dc.relationJones, E., Oliphant, T., Peterson, P., et al. (2001). SciPy: Open source scientific tools for Python.
dc.relationHusen, S. and Hardebeck, J. (2011). Understanding seismicity catalogs and their problems. Community Online Resource for Statistical Seismicity Analysis.
dc.relationHilst, R. v. d. and Mann, P. (1994). Tectonic implications of tomographic images of subducted lithosphere beneath northwestern South America. Geology, 22(5):451–454.
dc.relationHavskov, J. and Ottemoller, L. (1999). Seisan earthquake analysis software. Seismological Research Letters, 70(5):532–534.
dc.relationHalpaap, F., Rondenay, S., Perrin, A., Goes, S., Ottemoller, L., Austrheim, H., Shaw, R., and Eeken, T. (2019). Earthquakes track subduction fluids from slab source to mantle wedge sink. Science Advances, 5(4)
dc.relationGeller, R. J. and Mueller, C. S. (1980). Four similar earthquakes in central California. Geophysical Research Letters, 7(10):821–824.
dc.relationFrohlich, C. (1979). An efficient method for joint hypocenter determination for large groups of earthquakes. Computers & Geosciences, 5(3-4):387–389.
dc.relationDuque-Caro, H. (1990). The Chocó block in the northwestern corner of South America: Structural, tectonostratigraphic, and paleogeographic implications. Journal of South American Earth Sciences, 3:71–84.
dc.relationDionicio, V. and Sánchez, J. J. (2012). Mapping of b-values, earthquake relocation, and Coulomb stress changes during 1992–2007 in the Murindó seismic zone, Colombia. Journal of seismology, 16(3):375–387.
dc.relationDeichmann, N. and Garcia-Fernandez, M. (1992). Rupture geometry from high-precision relative hypocentre locations of microearthquake clusters. Geophysical Journal International, 110(3):501–517.
dc.relationCox, M. (1999). Static corrections for seismic reflection surveys. Society of Exploration Geophysicists.
dc.relationCortés, M. and Angelier, J. (2005). Current states of stress in the northern Andes as indicated by focal mechanisms of earthquakes. Tectonophysics, 403(1-4):29–58.
dc.relationCorredor, F. (2003). Seismic strain rates and distributed continental deformation in the northern Andes and three-dimensional seismotectonics of northwestern South America. Tectonophysics, 372(3-4):147–166.
dc.relationChiarabba, C., De Gori, P., Faccenna, C. and Speranza, F., Seccia, D., Dionicio, V., and Prieto, G. A. (2015). Subduction system and flat slab beneath the eastern cordillera of Colombia. Geochemistry, Geophysics, Geosystems, 17(1):16–27.
dc.relationChen, K., Ying, Z., Zhang, H., and Zhao, L. (2008). Analysis of least absolute deviation. Biometrika, 95(1):107–122.
dc.relationChang, Y., Warren, L. M., and Prieto, G. A. (2017). Precise locations for intermediate-depth earthquakes in the Cauca cluster, Colombia. Bulletin of the Seismological Society of America, 107(6):2649–2663.
dc.relationChang, Y., Warren, L., Zhu, L., and Prieto, G. (2019). Earthquake focal mechanisms and stress field for the intermediate-depth Cauca cluster, Colombia. Journal of Geophysical Research: Solid Earth, 124(1):822–836.
dc.relationCardona, C., Salcedo, E. d. J., and Mora, H. (2005). Caracterización sismotectónica y geodinámica de la fuente sismogénica de Murindó-Colombia. Boletín de Geología, 27(44).
dc.relationBuchs, D. M., Irving, D., Coombs, H., Miranda, R., Wang, J., Coronado, M., Arrocha, R., Lacerda, M., Goff, C., Almengor, E., et al. (2019). Volcanic contribution to emergence of central Panama in the early miocene. Scientific reports, 9(1):1417.
dc.relationBeyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., and Wassermann, J. (2010). Obspy: A python toolbox for seismology. Seismological Research Letters, 81(3):530–533.
dc.relationBarret, S. A. (2015). Seismological constrains on the mechanics of intermediate - depth earthquakes in the Bucaramanga Nest. Phd thesis, Stanford University.
dc.relationBarat, F., de Lèpinay, B. M., Sosson, M., Muller, C., Baumgartner, P. O., and Baumgartner-Mora, C. (2014). Transition from the Farallon plate subduction to the collision between south and central America: Geological evolution of the Panama isthmus. Tectonophysics, 622:145–167.
dc.relationAdamek, S., Frohlich, C., and Pennington, W. D. (1988). Seismicity of the Caribbean-Nazca boundary: Constraints on microplate tectonics of the Panama region. Journal of Geophysical Research: Solid Earth, 93(B3):2053–2075.
dc.rightsCC0 1.0 Universal
dc.rightshttp://creativecommons.org/publicdomain/zero/1.0/
dc.rightsAcceso abierto
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleImplementación del método de relocalización Source Specific Station Terms para Colombia: aplicación para el occidente colombiano
dc.typeOtro


Este ítem pertenece a la siguiente institución