dc.contributorOrdoñez Santos, Luis Eduardo
dc.contributorMejía España, Diego Fernando
dc.contributorGrupo de Investigación en Procesos Agroindustriales (Gipa)
dc.creatorChaves Morillo, Diana Melisa
dc.date.accessioned2022-03-24T16:31:42Z
dc.date.accessioned2022-09-21T15:41:57Z
dc.date.available2022-03-24T16:31:42Z
dc.date.available2022-09-21T15:41:57Z
dc.date.created2022-03-24T16:31:42Z
dc.date.issued2022-03-23
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/81363
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3383984
dc.description.abstractEl objetivo de esta investigación fue evaluar el almidón de papa nativa (Solanum phureja) variedad Ratona blanca, como sustituto de la harina de trigo en un producto de panificación de masa batida como los cupcakes. Para ello, inicialmente se realizó una comparación de las propiedades fisicoquímicas, funcionales y bromatológicas del almidón de papa nativa, con almidones comerciales. Se evaluó también, el efecto de la sustitución de harina de trigo por almidón de papa en algunas propiedades tanto en masas como en producto horneado. Se optimizaron las proporciones de harina de trigo y almidón de papa para obtener un cupcake con mejores características y se evaluaron sensorialmente. Se obtuvo que las masas con almidón de papa fueron bien aireadas sin embargo su viscosidad era más baja que las masas con mayor proporción de harina de trigo, el almidón tuvo una influencia antagónica en todas las propiedades evaluadas, a excepción de la luminosidad (L*) la cual fue mayor a medida que aumentaba la sustitución. Por otro lado, el almidón exhibió un efecto positivo en variables como contenido de almidón resiste (AR), fibra dietaria total (FDT), masticabilidad y luminosidad de la corteza del cupcake (L*), mientras que tuvo efecto contrario en el resto de propiedades. De acuerdo a la optimización realizada, la proporción 49,3% harina de trigo y 50,7% almidón de papa, exhibió las mejores características en cuanto a masas y producto horneado. El análisis de perfil de textura sensorial demostró que no hay diferencias estadísticamente significativas entre el testigo (100% harina de trigo) y la mezcla optimizada. Con ello, se concluye que el almidón de papa variedad Ratona blanca, presenta características potenciales para lograr un producto de panificación de buena calidad. (Texto tomado de la fuente)
dc.description.abstractThe objective of this research was to evaluate the native potato starch (Solanum phureja) variety Ratona blanca, as a substitute for wheat flour in a whipped batter bakery product such as cupcakes. To do this, initially a comparison of the physicochemical, functional and nutritional properties of native potato starch with commercial starches was made. The effect of substituting wheat flour for potato starch on some properties in both batter and baked product was also evaluated. The proportions of wheat flour and potato starch were optimized to obtain a cupcake with better characteristics and they were sensory evaluated. It was obtained that the batters with potato starch were well aerated, however their viscosity was lower than the batters with a higher proportion of wheat flour, the starch had an antagonistic influence on all the evaluated properties, except for the luminosity (L *) which was greater as the substitution increased. On the other hand, starch exhibited a positive effect on variables such as resistant starch content (RS), total dietary fiber (TDF), chewiness and lightness of the cupcake crust (L *), while it had the opposite effect on the rest of properties. According to the optimization carried out, the proportion 49,7% wheat flour and 50,7% potato starch exhibited the best characteristics in terms of batter and baked product,. The sensory texture profile analysis showed that there are no statistically significant differences between the control (100% wheat flour) and the optimized mixture. With this, it is concluded that the potato starch variety "Ratona blanca" has potential characteristics to achieve a good quality bakery product.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherPalmira - Ingeniería y Administración - Maestría en Ingeniería Agroindustrial
dc.publisherFacultad de Ingeniería y Administración
dc.publisherPalmira
dc.publisherUniversidad Nacional de Colombia - Sede Palmira
dc.relationAACC. (2000). Rapeesed displacement-Baking quality. Approved Methods of Analysis. http://methods.aaccnet.org/summaries/10-05-01.aspx
dc.relationbadia, B., Abbate, P. E., Álvarez, C., Aramburu Merlos, F., Barraco, M., Bartosik, R., Bujan, J., Campaña, L. E., Cardos, M. J., Cardoso, L., Carmona, D., Calviño, P., Correndo, A. A., de la Torre, D., Divito, G., Ernst, O., Faberi, A. J., Fraschina, J. A., García, F. O., … Tulli, M. C. (2017). Manual del Cultivo del Trigo. In G. Divito & F. García (Eds.), Instituto Internacional de Nutrición y Plantas (1st ed.). Instituto Internacional de Nutrición y Plantas. http://lacs.ipni.net
dc.relationAbera, G., Woldeyes, B., Dessalegn Demash, H., & Miyake, G. M. (2019). Comparison of physicochemical properties of indigenous Ethiopian tuber crop (Coccinia abyssinica) starch with commercially available potato and wheat starches. International Journal of Biological Macromolecules, 140, 43–48. https://doi.org/10.1016/j.ijbiomac.2019.08.118
dc.relationAgama-Acevedo, E., Flores-Silva, P. C., & Bello-Perez, L. A. (2019). Cereal starch production for food applications. In Starches for Food Application: Chemical, Technological and Health Properties. Elsevier Inc. https://doi.org/10.1016/B978-0-12-809440-2.00003-4
dc.relationAgama-Acevedo, E., Islas-Hernández, J. J., Pacheco-Vargas, G., Osorio-Díaz, P., & Bello-Pérez, L. A. (2012). Starch digestibility and glycemic index of cookies partially substituted with unripe banana flour. LWT - Food Science and Technology, 46(1), 177–182. https://doi.org/10.1016/j.lwt.2011.10.010
dc.relationAhuja, A., Lee, R., Latshaw, A., & Foster, P. (2020). Rheology of starch dispersions at high temperatures. Journal of Texture Studies. https://doi.org/10.1111/jtxs.12517
dc.relationAi, J., Witt, T., Cowin, G., Dhital, S., Turner, M. S., Stokes, J. R., & Gidley, M. J. (2018). Anti-staling of high-moisture starchy food: Effect of hydrocolloids, emulsifiers and enzymes on mechanics of steamed-rice cakes. Food Hydrocolloids, 83, 454–464. https://doi.org/10.1016/j.foodhyd.2018.05.028
dc.relationAi, Y., & Jane, J. L. (2015). Gelatinization and rheological properties of starch. Starch/Staerke, 67(3–4), 213–224. https://doi.org/10.1002/star.201400201
dc.relationAi, Y., & Jane, J. L. (2018). Understanding Starch Structure and Functionality. In Starch in Food: Structure, Function and Applications: Second Edition. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-100868-3.00003-2
dc.relationAleman, R. S., Paz, G., Morris, A., Prinyawiwatkul, W., Moncada, M., & King, J. M. (2021). High protein brown rice flour, tapioca starch & potato starch in the development of gluten-free cupcakes. Lwt, 152(August), 112326. https://doi.org/10.1016/j.lwt.2021.112326
dc.relationAlonso-Gomez, L., Niño-López, A., Romero-Garzón, A., Pineda-Gomez, P., Real-López, A., & Rodriguez-García, M. (2016). Physicochemical transformation of cassava starch during fermentation for production of sour starch in Colombia. Starch/Staerke, 68, 1–9. https://doi.org/10.1002/star.201600059
dc.relationAlsaffar, A. A. (2011). Effect of food processing on the resistant starch content of cereals and cereal products – a review. International Journal of Food Science & Technology, 46(3), 455–462. https://doi.org/10.1111/J.1365-2621.2010.02529.X
dc.relationAlvani, K., Qi, X., Tester, R. F., & Snape, C. E. (2011). Physico-chemical properties of potato starches. Food Chemistry, 125(3), 958–965. https://doi.org/10.1016/j.foodchem.2010.09.088
dc.relationÁlvarez, D., & Chaves, D. (2017). The wheat crop in Colombia: Its agony and possible disappearance. Cienc. Agr. Julio-Diciembre, 34(2), 125–137. https://doi.org/10.22267/rcia.173402.77
dc.relationAlvarez, M. D., Herranz, B., Fuentes, R., Cuesta, F. J., & Canet, W. (2017). Replacement of Wheat Flour by Chickpea Flour in Muffin Batter: Effect on Rheological Properties. Journal of Food Process Engineering, 40(2), 1–13. https://doi.org/10.1111/jfpe.12372
dc.relationAlvis, A., Vélez, C. A., Villada, H. S., & Rada-Mendoza, M. (2008). Análisis físico-químico y morfológico de almidones de ñame, yuca y papa y determinación de la viscosidad de las pastas. Informacion Tecnologica, 19(1), 19–28. https://doi.org/10.4067/s0718-07642008000100004
dc.relationAmaral, O., Guerreiro, C. S., Gomes, A., & Cravo, M. (2016). Resistant starch production in wheat bread: effect of ingredients, baking conditions and storage. European Food Research and Technology, 242(10), 1747–1753. https://doi.org/10.1007/s00217-016-2674-4
dc.relationAnderson, R., Conway, H., Pheiser, V., & Griffin, E. (1969). Gelatinization of corn grits by roll and extrusion cooking. Cereal Science Today, 14, 4–12.
dc.relationAnwar Saeed, M., Ma, H., Yue, S., Wang, Q., & Tu, M. (2018). Concise review on ethanol production from food waste: development and sustainability. Environmental Science and Pollution Research 2018 25:29, 25(29), 28851–28863. https://doi.org/10.1007/S11356-018-2972-4
dc.relationAnzaldúa, A. (1994). La evaluación sensorial de los alimentos en la teoría y la práctica. Editorial Acribia, S.A.
dc.relationAristizábal, J., Sánchez, T., & Mejía-Lorío, D. (2007). Análisis fisicoquímico del almidón. In FAO (Ed.), Guía técnica para producción y análisis de almidón de yuca (FAO, p. 153). FAO. http://www.fao.org/genetic-resources/es/%0Ahttp://faostat3.fao.org/browse/Q/*/S%5Cnhttp://faostat3.fao.org/download/Q/QC/S%0Ahttp://www.fao.org/about/who-we-are/es/
dc.relationAristizabal, J., Sánchez, T., & Mejía, D. (2007). Guía técnica para producción y análisis de almidón de yuca. FAO.
dc.relationAshwar, B. A., Gani, A., Shah, A., Wani, I. A., & Masoodi, F. A. (2016). Preparation, health benefits and applications of resistant starch - A review. Starch/Staerke, 68(3–4), 287–301. https://doi.org/10.1002/star.201500064
dc.relationAwuchi, C. G., Godswill, C., Somtochukwu, V., & Kate, C. (2019). The Functional Properties of Foods and Flours. International Journal of Advanced Academic Research | Sciences, 5(11), 2488–9849.
dc.relationAydogdu, A., Sumnu, G., & Sahin, S. (2018). Effects of addition of different fibers on rheological characteristics of cake batter and quality of cakes. Journal of Food Science and Technology, 55(2), 667–677. https://doi.org/10.1007/s13197-017-2976-y
dc.relationAzari-Anpar, M., Khomeiri, M., Ghafouri-Oskuei, H., & Aghajani, N. (2017). Response surface optimization of low-fat ice cream production by using resistant starch and maltodextrin as a fat replacing agent. Journal of Food Science and Technology, 54(5), 1175–1183. https://doi.org/10.1007/s13197-017-2492-0
dc.relationBae, I. Y., Lee, H. I., Ko, A., & Lee, H. G. (2013). Substituting whole grain flour for wheat flour: Impact on cake quality and glycemic index. Food Science and Biotechnology, 22(5), 1–7. https://doi.org/10.1007/s10068-013-0216-4
dc.relationBahanawan, A., Kusumah, S. S., Darmawan, T., Masruchin, N., Pramasari, D. A., Triwibowo, D., Kusumaningrum, W. B., Wibowo, E. S., Syamani, F. A., R A Krishanti, N. P., Lestari, E., Amin, Y., Sufiandi, S., Syahrir, A., & Dwianto, W. (2019). Moisture content, color quantification and starch content of oil palm trunk (Elaeis guineensis Jacq.). IOP Conference : Earth and Environmental Science, 374, 1–48. https://doi.org/10.1088/1755-1315/374/1/012041
dc.relationBaixauli, R., Sanz, T., Salvador, A., & Fiszman, S. M. (2008). Muffins with resistant starch: Baking performance in relation to the rheological properties of the batter. Journal of Cereal Science, 47(3), 502–509. https://doi.org/10.1016/j.jcs.2007.06.015
dc.relationBajaj, R., Singh, N., & Kaur, A. (2019). Effect of native and gelatinized starches from various sources on sponge cake making characteristics of wheat flour. Journal of Food Science and Technology, 2016. https://doi.org/10.1007/s13197-019-03632-w
dc.relationBajaj, R., Singh, N., Kaur, A., & Inouchi, N. (2018). Structural, morphological, functional and digestibility properties of starches from cereals, tubers and legumes: a comparative study. Journal of Food Science and Technology, 55(9), 3799–3808. https://doi.org/10.1007/s13197-018-3342-4
dc.relationBalet, S., Guelpa, A., Fox, G., & Manley, M. (2019). Rapid Visco Analyser (RVA) as a Tool for Measuring Starch-Related Physiochemical Properties in Cereals: a Review. Food Analytical Methods, 12(10), 2344–2360. https://doi.org/10.1007/s12161-019-01581-w
dc.relationBao, J., & Bergman, C. J. (2017). Rice Flour and Starch Functionality. In Starch in Food: Structure, Function and Applications: Second Edition (pp. 373–419). Elsevier Ltd. https://doi.org/10.1016/B978-0-08-100868-3.00010-X
dc.relationBejarano-Luján, D. L., & Netto, F. M. (2010). Effect of alternative processes on the yield and physicochemical characterization of protein concentrates from Amaranthus cruentus. LWT - Food Science and Technology, 43(5), 736–743. https://doi.org/10.1016/J.LWT.2009.11.013
dc.relationBelhadi, B., Djabali, D., Souilah, R., Yousfi, M., & Nadjemi, B. (2013). Three small-scale laboratory steeping and wet-milling procedures for isolation of starch from sorghum grains cultivated in Sahara of Algeria. Food and Bioproducts Processing, 91(3), 225–232. https://doi.org/10.1016/j.fbp.2012.09.008
dc.relationBeMiller, J. N. (2019). Starches: Molecular and granular structures and properties. In Carbohydrate Chemistry for Food Scientists (pp. 159–189). Elsevier. https://doi.org/10.1016/B978-0-12-812069-9.00006-6
dc.relationBent, A. J., Bennion, E. B., & Bamford, G. S. . (1997). The Technology of Cake Baking (6th ed.). Springer US. https://doi.org/10.1007/978-1-4757-6690-5
dc.relationBlennow, A., Bay-Smidt, A. M., Olsen, C. E., & Møller, B. L. (2000). The distribution of covalently bound phosphate in the starch granule in relation to starch crystallinity. International Journal of Biological Macromolecules, 27(3), 211–218. https://doi.org/10.1016/S0141-8130(00)00121-5
dc.relationBonierbale, M., Amoros, W., Espinoza, J., Mihovilich, E., Roca, W., & Gomez, R. (2004). Recursos Genéticos de la papa: don del pasado, legado para el futuro. Suplementeo Revista Latinoamericana de La Papa, 1, 9–12.
dc.relationBozdogan, N., Kumcuoglu, S., & Tavman, S. (2019). Investigation of the effects of using quinoa flour on gluten-free cake batters and cake properties. Journal of Food Science and Technology, 56(2), 683–694. https://doi.org/10.1007/s13197-018-3523-1
dc.relationBuléon, A., Colonna, P., Planchot, V., & Ball, S. (1998). Starch granules: structure and biosynthesis. International Journal of Biological Macromolecules, 23(2), 85–112. https://doi.org/10.1016/S0141-8130(98)00040-3
dc.relationBurmeister, A., Bondiek, S., Apel, L., Kühne, C., Hillebrand, S., & Fleischmann, P. (2011). Comparison of carotenoid and anthocyanin profiles of raw and boiled Solanum tuberosum and Solanum phureja tubers. Journal of Food Composition and Analysis, 24(6), 865–872. https://doi.org/10.1016/j.jfca.2011.03.006
dc.relationCáceres, M., Mestres, C., Pons, B., Gibert, O., Amoros, W., Salas, E., Dufour, D., Bonierbale, M., & Pallet, D. (2012). Physico-chemical characterization of starches extracted from potatoes of the group Phureja. Starch/Staerke, 64(8), 621–630. https://doi.org/10.1002/star.201100166
dc.relationCamire, M. E. (2016). Potatoes and Human Health. Advances in Potato Chemistry and Technology: Second Edition, 8398(January), 685–704. https://doi.org/10.1016/B978-0-12-800002-1.00023-6
dc.relationCao, M., & Gao, Q. (2020). Effect of dual modification with ultrasonic and electric field on potato starch. International Journal of Biological Macromolecules, 150, 637–643. https://doi.org/10.1016/j.ijbiomac.2020.02.008
dc.relationCarrero, M., & Armendariz, J. (2013). Elaboraciones de pastelería y repostería (A. Cerviño & N. Duarte (eds.); 1st ed.). Ediciones Paraninfo S.A.
dc.relationCasas, N., & Pardo, D. (2005). Análisis de perfil de textura y propiedades de relajacion de geles de mezclas de almidón de maíz cersos entrecruzado-Gelana. Revista Mexicana de Ingeniería Química, 4(1), 107–121.
dc.relationCauvain, S. (2015a). Other Cereals in Breadmaking. In Technology of Breadmaking (pp. 377–397). Springer International Publishing. https://doi.org/10.1007/978-3-319-14687-4_13
dc.relationCauvain, S. (2015b). Technology of breadmaking. In Technology of Breadmaking (pp. 1–408). Springer, Cham. https://doi.org/10.1007/978-3-319-14687-4
dc.relationCentro Internacional de la papa. (1984). Informe anual 1984 (CIP (ed.); 1st ed.). CIP.
dc.relationCevolia, C., Balestra, F., Ragnia, L., & Fabbri, A. (2013). Rheological characterisation of selected food hydrocolloids by traditional and simplified techniques. Food Hydrocolloids, 33(1), 142–150.
dc.relationChen, W., Zhou, H., Yang, H., & Cui, M. (2015). Effects of charge-carrying amino acids on the gelatinization and retrogradation properties of potato starch. Food Chemistry, 167, 180–184. https://doi.org/10.1016/j.foodchem.2014.06.089
dc.relationChompoorat, P., Rayas-Duarte, P., Hernández-Estrada, Z. J., Phetcharat, C., & Khamsee, Y. (2018). Effect of heat treatment on rheological properties of red kidney bean gluten free cake batter and its relationship with cupcake quality. Journal of Food Science and Technology, 55(12), 4937–4944. https://doi.org/10.1007/s13197-018-3428-z
dc.relationCisneros, F. H., Zevillanos, R., Figueroa, M., Gonzalez, G., & Cisneros-Zevallos, L. (2018). Characterization of Starch from Two Andean Potatoes: Ccompis (Solanum tuberosum spp. andigena) and Huayro (Solanum x chaucha). Starch/Staerke, 70(3–4), 1–8. https://doi.org/10.1002/star.201700134
dc.relationCobana, M., & Antezana, R. (2007). Proceso de extraccion de almidon de yuca por via seca. Revista Boliviana de Quimica , 24(1), 77–83.
dc.relationCorgneau, M., Gaiani, C., Petit, J., Nikolova, Y., Banon, S., Ritié-Pertusa, L., Le, D. T. L., & Scher, J. (2019). Digestibility of common native starches with reference to starch granule size, shape and surface features towards guidelines for starch-containing food products. International Journal of Food Science and Technology, 54(6), 2132–2140. https://doi.org/10.1111/ijfs.14120
dc.relationCorrea, N., Perez, A., & Villegas, A. (2016). Caracterización morfológica y perfil viscoamilográfico de almidón nativo de ñame (Dioscorea bulbifera L.). Saber, 28(2), 250–256.
dc.relationCosta, M., Landi, C., Soares, M., & Caliari, M. (2015). Structural characteristics and gelatinization properties of sour cassava starch. Journal of Thermal Analysis Calorimetry, 123(2), 919–926. https://doi.org/10.1007/s10973-015-4990-5
dc.relationCraig, S., Maningat, C., Seib, P., & Hoseney, R. (1942). Starch paste clarity. Cereal Chemistry, 66(3), 173–182. https://www.cerealsgrains.org/publications/cc/backissues/1989/Documents/66_173.pdf
dc.relationCruz, G., Ribotta, P., Ferrero, C., & Iturriaga, L. (2016). Physicochemical and rheological characterization of Andean tuber starches: Potato (Solanum tuberosum ssp. Andigenum), Oca (Oxalis tuberosa Molina) and Papalisa (Ullucus tuberosus Caldas). Starch/Staerke, 68(11–12), 1084–1094. https://doi.org/10.1002/star.201600103
dc.relationde Oliveira do Nascimento, K., do Nascimento Dias Paes, S., & Maria Augusta, I. (2018). A Review “Clean Labeling”: Applications of Natural Ingredients in Bakery Products. Journal of Food and Nutrition Research, 6(5), 285–294. https://doi.org/10.12691/jfnr-6-5-2
dc.relationDe Piero, A., Bassett, N., Rossi, A., & Sammán, N. (2015). Tendencia en el consumo de alimentos de estudiantes universitarios. Nutr Hosp, 31(4), 1824–1831. https://doi.org/10.3305/nh.2015.31.4.8361
dc.relationDhingra, D., Michael, M., Rajput, H., & Patil, R. T. (2012). Dietary fibre in foods: a review. Journal of Food Science and Technology, 49(3), 255. https://doi.org/10.1007/S13197-011-0365-5
dc.relationDhital, S., Brennan, C., & Gidley, M. J. (2019). Location and interactions of starches in planta : Effects on food and nutritional functionality. Trends in Food Science & Technology, 93(September), 158–166. https://doi.org/10.1016/j.tifs.2019.09.011
dc.relationDíaz, A., Dini, C., Viña, S. Z., & García, M. A. (2016). Starch extraction process coupled to protein recovery from leguminous tuberous roots (Pachyrhizus ahipa). Carbohydrate Polymers, 152, 231–240. https://doi.org/10.1016/j.carbpol.2016.07.004
dc.relationDos Santos, T., Leonel, M., Garcia, É., do Carmo, E., & Franco, C. (2016). Crystallinity, thermal and pasting properties of starches from different potato cultivars grown in Brazil. International Journal of Biological Macromolecules, 82, 144–149.
dc.relationDupuis, J. H., & Liu, Q. (2019). Potato Starch: a Review of Physicochemical, Functional and Nutritional Properties. American Journal of Potato Research, 96(2), 127–138. https://doi.org/10.1007/s12230-018-09696-2
dc.relationDuta, D. E., & Culetu, A. (2015). Evaluation of rheological, physicochemical, thermal, mechanical and sensory properties of oat-based gluten free cookies. Journal of Food Engineering, 162, 1–8. https://doi.org/10.1016/j.jfoodeng.2015.04.002
dc.relationEdwards, W. (2007). The Science of Bakery Products. In The Science of Bakery Products (1st ed.). The Royal Society of Chemistry. https://doi.org/10.1039/9781847557797
dc.relationElgadir, M. A., Bakar, J., Zaidul, I. S. M., Rahman, R. A., Abbas, K. A., Hashim, D. M., & Karim, R. (2009). Thermal behavior of selected starches in presence of other food ingredients studied by differential scanning calorimetery (DSC)-review. Comprehensive Reviews in Food Science and Food Safety, 8(3), 195–201. https://doi.org/10.1111/j.1541-4337.2009.00078.x
dc.relationEliasson, A.-C., & Larsson, K. (1993). Cereals in breadmaking : a molecular colloidal approach. Marcel Dekker. https://www.crcpress.com/Cereals-in-Breadmaking-A-Molecular-Colloidal-Approach/liasson/p/book/9780824788162
dc.relationEliasson, A., & Ryang, H. (1992). Changes in rheological properties of hydroxipropyl potato starch paste during freeze-thaw treatments. Journal of Texture Studies, 23(3), 279–296.
dc.relationEllis, R. P., Cochrane, M. P., Dale, M. F. B., Duþus, C. M., Lynn, A., Morrison, I. M., Prentice, R. D. M., Swanston, J. S., & Tiller, S. a. (1998). Starch Production and Industrial Use. Journal of the Science of Food and Agriculture, 77, 289–311. https://doi.org/10.1002/(SICI)1097-0010(199807)77:3<289::AID-JSFA38>3.0.CO;2-D
dc.relationEncina-zelada, C. R., Cadavez, V., & Teixeira, J. A. (2019). Bread by a Mixture Design of Xanthan, Guar, and Hydroxypropyl Methyl Cellulose Gums Christian. Foods, 8(156), 1–23.
dc.relationEnglyst, K. N., Hudson, G. J., & Englyst, H. N. (2006). Starch Analysis in Food. In Encyclopedia of Analytical Chemistry. John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470027318.a1029
dc.relationEspinal, C., Martínez, H., & Prieto, L. (2006). La Cadena del trigo en Colombia (No. 126). www.agrocadenas.gov.co Esteller, M. S., & Lannes, S. C. S. (2008). Production and characterization of sponge-dough bread using scalded rye. Journal of Texture Studies, 39(1), 56–67. https://doi.org/10.1111/J.1745-4603.2007.00130.X
dc.relationEzekiel, R., Rana, G., Singh, N., & Singh, S. (2010). Physico-chemical and pasting properties of starch from stored potato tubers. Journal of Food Science and Technology, 47(2), 195–201. https://doi.org/10.1007/s13197-010-0025-1
dc.relationFadda, C., Sanguinetti, A. M., Caro, A. Del, Collar, C., & Piga, A. (2014). Bread Staling: Updating the View. Comprehensive Reviews in Food Science and Food Safety, 13(4), 473–492. https://doi.org/10.1111/1541-4337.12064
dc.relationFAO-Organización de las Naciones Unidas para la alimentación y la agricultura. (2017). Food Outlook - Biannual Report on Global Food Markets. Rome, Italy. https://www.fao.org/3/i7343e/i7343e.pdf
dc.relationFAO-Organización de las Naciones Unidas para la alimentación y la agricultura. (2021). Estadísticas de producción de cultivos. FAOSTAT.
dc.relationFAO. (1999). Análisis físicoquimico del almidón. Guía Técnica Para La Producción y Análisis de Almidon de Yuca., 140, 61–134.
dc.relationFedepapa. (2012). La papa, alimento esencial y saludable. Revista Papa, 11-17(26)., 11, 17(26).
dc.relationFerreira, L. F., de Oliveira, A. C. S., Begali, D. de O., Neto, A. R. de S., Martins, M. A., de Oliveira, J. E., Borges, S. V., Yoshida, M. I., Tonoli, G. H. D., & Dias, M. V. (2021). Characterization of cassava starch/soy protein isolate blends obtained by extrusion and thermocompression. Industrial Crops and Products, 160(March 2020), 113092. https://doi.org/10.1016/j.indcrop.2020.113092
dc.relationFlores, E., García, F., Flores, E., Núñez, M., González, R., & Bello, L. (2004). Rendimiento del proceso de extracción de almidón a partir de frutos de platano ( Musa paradisiaca ). Acta Cientifica Venezolana, 55, 86–90.
dc.relationFood and Agriculture Organization of the United Nations. (2019). OECD‑FAO Agricultural Outlook 2019‑2028 (FAO (ed.); 1st ed.). OECD/FAO. https://doi.org/https://doi.org/10.1787/agr_outlook-2019-en
dc.relationFuentes-Zaragoza, E., Riquelme-Navarrete, M. J., Sánchez-Zapata, E., & Pérez-Álvarez, J. A. (2010). Resistant starch as functional ingredient: A review. Food Research International, 43(4), 931–942. https://doi.org/10.1016/j.foodres.2010.02.004
dc.relationGallant, D. J., Bouchet, B., & Baldwin, P. M. (1997). Microscopy of starch: Evidence of a new level of granule organization. Carbohydrate Polymers, 32(3–4), 177–191. https://doi.org/10.1016/S0144-8617(97)00008-8
dc.relationGalliard, T., & Bowler, P. (1987). Morphology and Composition of Starch. In John Wiley & Sons (Ed.), Starch: Properties and Potential (1st ed., pp. 280–291). https://doi.org/10.4236/fns.2014.53035
dc.relationGao, Y., Janes, M. E., Chaiya, B., Brennan, M. A., Brennan, C. S., & Prinyawiwatkul, W. (2018). Gluten-free bakery and pasta products: prevalence and quality improvement. International Journal of Food Science and Technology, 53(1), 19–32. https://doi.org/10.1111/ijfs.13505
dc.relationGarcia, E. L., do Carmo, E. L., de Pádua, J. G., Franco, C. M. L., & Leonel, M. (2019). Potato cultivars as a source of starch in brazil: Physicochemical characteristics of the starches and their correlations. Australian Journal of Crop Science, 13(11), 1786–1792. https://doi.org/10.21475/ajcs.19.13.11.p1567
dc.relationGarnica, A., Romero, A., Cerón, M., & Prieto, L. (2010). Características funcionales de almidones nativos extraídos de clones promisorios de papa (Solanum tuberosum l. subespecie andigena ) para la industria de alimentos. Revista Alimentos Hoy, 19(21), 3–15. http://alimentoshoy.acta.org.co/index.php/hoy/article/view/1/10
dc.relationGhaboos, H., Ardabili, S., & Kashaninejad, M. (2016). Physico-chemical, textural and sensory evaluation of sponge cake supplemented with pumpkin flour. International Food Research Journal, 25(April), 854–860.
dc.relationGómez, M., Manchón, L., Oliete, B., Ruiz, E., & Caballero, P. A. (2010). Adequacy of wholegrain non-wheat flours for layer cake elaboration. LWT - Food Science and Technology, 43(3), 507–513. https://doi.org/10.1016/J.LWT.2009.09.019
dc.relationGómez, M., Ronda, F., Caballero, P. A., Blanco, C. A., & Rosell, C. M. (2007). Functionality of different hydrocolloids on the quality and shelf-life of yellow layer cakes. Food Hydrocolloids, 21(2), 167–173. https://doi.org/10.1016/J.FOODHYD.2006.03.012
dc.relationGoñi, I., García-Diz, L., Mañas, E., & Saura-Calixto, F. (1996). Analysis of resistant starch: a method for foods and food products. Food Chemistry, 56(4), 445–449. https://doi.org/10.1016/0308-8146(95)00222-7
dc.relationGray, J. A., & Bemiller, J. N. (2003). Bread Staling: Molecular Basis and Control. Comprehensive Reviews in Food Science and Food Safety, 2(1), 1–21. https://doi.org/10.1111/j.1541-4337.2003.tb00011.x
dc.relationGuadarrama-Lezama, A. Y., Carrillo-Navas, H., Pérez-Alonso, C., Vernon-Carter, E. J., & Alvarez-Ramirez, J. (2016). Thermal and rheological properties of sponge cake batters and texture and microstructural characteristics of sponge cake made with native corn starch in partial or total replacement of wheat flour. LWT - Food Science and Technology, 70, 46–54. https://doi.org/10.1016/j.lwt.2016.02.031
dc.relationGuinesi, L. S., da Róz, A. L., Corradini, E., Mattoso, L. H. C., Teixeira, E. de M., & Curvelo, A. A. d. S. (2006). Kinetics of thermal degradation applied to starches from different botanical origins by non-isothermal procedures. Thermochimica Acta, 447(2), 190–196. https://doi.org/10.1016/J.TCA.2006.06.002
dc.relationHadnadev, M., Dapcevic-hadnadev, T., & Dokic, L. (2018). Functionality of Starch Derivatives in Bakery and Confectionery Products. In A. Mihai Grumezescu & M. Holban (Eds.), Bakery and Confectionary Products (Vol. 20, pp. 279–311). https://doi.org/10.1016/B978-0-12-811449-0/00009-8
dc.relationHallström, E., Sestili, F., Lafiandra, D., Björck, I., & Ostman, E. (2011). A novel wheat variety with elevated content of amylose increases resistant starch formation and may beneficially influence glycaemia in healthy subjects. Food & Nutrition Research, 55(7074), 1–8. https://doi.org/10.3402/FNR.V55I0.7074
dc.relationHedayati, S., Majzoobi, M., & Farahnaky, A. (2018). Batter Rheology and Quality of Sponge Cake Enriched with High Percentage of Resistant Starch (Hi-maize). International Journal of Food Engineering, 14(5–6), 1–10. https://doi.org/10.1515/ijfe-2017-0293
dc.relationHedayati, S., & Tehrani, M. M. (2018). Effect of total replacement of egg by soymilk and lecithin on physical properties of batter and cake. Food Science & Nutrition, 6(4), 1154–1161. https://doi.org/10.1002/FSN3.656
dc.relationHernández, M., Torruco, J. G., Chel, L., & Betancur, D. (2008). Caracterización fisicoquímica de almidones de tubérculos cultivados en Yucatán, México. Ciência e Tecnologia de Alimentos, 28(3), 718–726. https://doi.org/10.1590/S0101-20612008000300031
dc.relationHesso, N., Garnier, C., Loisel, C., Chevallier, S., Bouchet, B., & Le-Bail, A. (2015). Formulation effect study on batter and cake microstructure: Correlation with rheology and texture. Food Structure, 5, 31–41. https://doi.org/10.1016/J.FOOSTR.2015.03.002
dc.relationHijmans, R., Spooner, D. ., Salas, A. ., Guarino, L., & de la Cruz, J. (2002). Atlas of wild potatoes. Systematic and Ecogeographic Studies on Crop Genepools. No. 10 (I. P. R. I. (IPGRI). Genetic (ed.); 1st ed.).
dc.relationHirslchler, R. (2012). Whiteness, Yellowness, and Browning in Food Colorimetry: A Critical Review. In J. Caivano & M. Buera (Eds.), Color in food: Technological and psychophysical aspects (p. 478). CRC press, Taylor y Francis group.
dc.relationHoover, R., & Vasanthan, T. (1994). Effect of Heat-Moisture Treatment on the Structure and Physicochemical Properties of cereal, legume and tubers starches. Carbohydrate Research, 242, 33–53.
dc.relationHorstmann, S., Lynch, K., & Arendt, E. (2017). Starch Characteristics Linked to Gluten-Free Products. Foods, 6(12), 29. https://doi.org/10.3390/foods6040029
dc.relationHouben, A., Höchstötter, A., & Becker, T. (2012). Possibilities to increase the quality in gluten-free bread production: an overview. European Food Research and Technology, 235(2), 195–208. https://doi.org/10.1007/s00217-012-1720-0
dc.relationHui, Y. (2006). Bakery Products science and technology (H. Corke, I. De Leyn, W. Nip, & N. Cross (eds.); 3rd ed.). Blackwell Publishing. https://doi.org/10.1002/9781118827123
dc.relationHüttner, E. K., Bello, F. D., & Arendt, E. K. (2010). Rheological properties and bread making performance of commercial wholegrain oat flours. Journal of Cereal Science, 52(1), 65–71. https://doi.org/10.1016/J.JCS.2010.03.004
dc.relationNTC 3932. Análisis sensorial. Identificación y selección de descriptores para establecer un perfil sensorial por una aproximación multidimensional., Pub. L. No. 3932, 35 (1996).
dc.relationNTC 4489. Análisis sensorial. Metodología. Perfil de textura., 24 (1998). https://ecollection-icontec-org.ezproxy.unal.edu.co/pdfview/viewer.aspx?locale=fr-FR&Q=71B2C9528576FBC0E7679457E0A84EB8312408EA304CDFA9&Req=
dc.relationGTC 280. Análisis sensorial. Directrices para la selección, entrenamiento y seguimiento de evaluadores sensoriales seleccionados y expertos, Pub. L. No. 280, 45 (2017).
dc.relationNTC 341-Papa para consumo. Clasificación, 5 (2018).
dc.relationGTC 232. Análisis sensorial. Metodología. Guía general para el establecimiento de un perfil sensorial, Pub. L. No. 242, 52 (2020).
dc.relationNorma ISO 6647: Determination de la teneur en amylose., 3 (1987).
dc.relationJagadeesan, S., Govindaraju, I., & Mazumder, N. (2020). An Insight into the Ultrastructural and Physiochemical Characterization of Potato Starch: a Review. American Journal of Potato Research, 97(5), 464–476. https://doi.org/10.1007/s12230-020-09798-w
dc.relationJan, K. N., Panesar, P. S., & Singh, S. (2017). Process standardization for isolation of quinoa starch and its characterization in comparison with other starches. Journal of Food Measurement and Characterization, 11(4), 1919–1927. https://doi.org/10.1007/s11694-017-9574-6
dc.relationJan, R., Saxena, D. C., & Singh, S. (2016). Pasting, thermal, morphological, rheological and structural characteristics of Chenopodium (Chenopodium album) starch. LWT - Food Science and Technology, 66, 267–274. https://doi.org/10.1016/J.LWT.2015.10.040
dc.relationJane, J. (2006). Current understanding on starch granule structures. Journal of Applied Glycoscience, 53, 205–213.
dc.relationJerome, R. E., Singh, S. K., & Dwivedi, M. (2019). Process analytical technology for bakery industry: A review. Journal of Food Process Engineering, 25(May), 1–21. https://doi.org/10.1111/jfpe.13143
dc.relationJuarez, J. (2012). Extensión de vida de anaquel en productos de pastelería para una industria panificadora. Universidad Nacional Autónoma de México.
dc.relationJyotsna, R., Soumya, C., Swati, S., & Prabhasankar, P. (2016). Rheology, texture, quality characteristics and immunochemical validation of millet based gluten free muffins. Journal of Food Measurement and Characterization, 10(4), 762–772. https://doi.org/10.1007/s11694-016-9361-9
dc.relationKasim, R., & Kasim, M. U. (2015). Biochemical changes and color properties of fresh-cut green bean (Phaseolus vulgaris L. cv.gina) treated with calcium chloride during storage. Food Science and Technology, 35(2), 266–272. https://doi.org/10.1590/1678-457X.6523
dc.relationKaur, A., Shevkani, K., Singh, N., Sharma, P., & Kaur, S. (2015). Effect of guar gum and xanthan gum on pasting and noodle-making properties of potato, corn and mung bean starches. Journal of Food Science and Technology, 52(12), 8113–8121. https://doi.org/10.1007/s13197-015-1954-5
dc.relationKaur, A., Singh, N., Ezekiel, R., & Guraya, H. S. (2007). Physicochemical, thermal and pasting properties of starches separated from different potato cultivars grown at different locations. Food Chemistry, 101(2), 643–651. https://doi.org/10.1016/j.foodchem.2006.01.054
dc.relationKaur, M., Sandhu, K. S., Arora, A. P., & Sharma, A. (2015). Gluten free biscuits prepared from buckwheat flour by incorporation of various gums: Physicochemical and sensory properties. LWT - Food Science and Technology, 62(1), 628–632. https://doi.org/10.1016/j.lwt.2014.02.039
dc.relationKim, H., & Yokohama, W. (2014). Nutritional Attributes of Bakery Products. In Bakery Products Science and Technology: Second Edition (2nd ed., pp. 409–414). Wiley-Blackwell.
dc.relationKim, J. H., Kim, H. R., Choi, S. J., Park, C.-S., & Moon, T. W. (2016). Production of an in Vitro Low-Digestible Starch via Hydrothermal Treatment of Amylosucrase-Modified Normal and Waxy Rice Starches and Its Structural Properties. Journal of Agricultural and Food Chemistry, 64(24), 5045–5052. https://doi.org/10.1021/ACS.JAFC.6B01055
dc.relationKirbaş, Z., Kumcuoglu, S., & Tavman, S. (2019). Effects of apple, orange and carrot pomace powders on gluten-free batter rheology and cake properties. Journal of Food Science and Technology, 56(2), 914–926. https://doi.org/10.1007/s13197-018-03554-z
dc.relationKlostermann, C. E., Buwalda, P. L., Leemhuis, H., de Vos, P., Schols, H. A., & Bitter, J. H. (2021). Digestibility of resistant starch type 3 is affected by crystal type, molecular weight and molecular weight distribution. Carbohydrate Polymers, 265, 118069. https://doi.org/10.1016/J.CARBPOL.2021.118069
dc.relationKossmann, J., & Lloyd, J. (2000). Understanding and influencing starch biochemistry. Critical Reviews in Plant Sciences, 19(3), 171–226. https://doi.org/10.1080/07352680091139204
dc.relationKrupa-kozak, U., Drabinska, N., Rosell, C., Fadda, C., Anders, A., Jelinski, T., & Ostaszyk, A. (2018). Broccoli leaf powder as an attractive by-product ingredient : effect on batter behaviour , technological properties and sensory quality of gluten-free mini sponge cake. International Journal of Food Science and Technology, 54(4), 1121–1129. https://doi.org/10.1111/ijfs.13972
dc.relationKumar, A., Sahoo, U., Baisakha, B., Okpani, O. A., Ngangkham, U., Parameswaran, C., Basak, N., Kumar, G., & Sharma, S. G. (2018). Resistant starch could be decisive in determining the glycemic index of rice cultivars. Journal of Cereal Science, 79, 348–353. https://doi.org/10.1016/j.jcs.2017.11.013
dc.relationLagos-Burbano, T., Mejía-España, D., Martínez-Moncayp, C., Andrade-Díaz, D., Latorre-Vasquez, L., Trejo-Escobar, D., & Valencia-Flórez, L. F. (2021). Avances en el mejoramiento genético de la papa para el sur de Colombia (Tulio Lagos-Burbano (ed.); 1st ed.). Universidad de Nariño.
dc.relationLakshminarayan, S. M., Rathinam, V., & KrishnaRau, L. (2006). Effect of maltodextrin and emulsifiers on the viscosity of cake batter and on the quality of cakes. Journal of the Science of Food and Agriculture, 86(5), 706–712. https://doi.org/10.1002/jsfa.2400
dc.relationLe-Bail, P., Hesso, N., & Le-Bail, A. (2018). Starch in Baked Products. In Starch in Food: Structure, Function and Applications: Second Edition (Issue 1972). Elsevier Ltd. https://doi.org/10.1016/B978-0-08-100868-3.00015-9
dc.relationLe, T. M. T., Hoang, D. A., Nguyen, H. P., Trhin, V. Van, Tran, T. H., Dang, T. M. A., & Ha, T. Q. (2020). Using cassava waste of the cassava starch processing as food for raising African Nightcrawler (Eudrilus eugeniae) to obtain vermicomposting and earthworm biomass. Journal of Vietnamese Environment, 12(2), 169–176. https://doi.org/10.13141/JVE.VOL12.NO2.PP169-176
dc.relationLeonel, M., do Carmo, E. L., Fernandes, A. M., Soratto, R. P., Ebúrneo, J. A. M., Garcia, É. L., & Dos Santos, T. P. R. (2017). Chemical composition of potato tubers: the effect of cultivars and growth conditions. Journal of Food Science and Technology, 54(8), 2372–2378. https://doi.org/10.1007/s13197-017-2677-6
dc.relationLi, G., & Zhu, F. (2017). Physicochemical properties of quinoa flour as affected by starch interactions. Food Chemistry, 221, 1560–1568. https://doi.org/10.1016/j.foodchem.2016.10.137
dc.relationLi, S., Zhang, Y., Zhang, W., & Zhang, B. (2014). Thermal, Pasting and Gel Textural Properties of Commercial Starches from Different Botanical Sources. Journal of Bioprocessing & Biotechniques, 04(04), 1–6. https://doi.org/10.4172/2155-9821.1000161
dc.relationLigarreto, G., & Suárez, M. (2003). Evaluación del potencial de los recursos genéticos de papa criolla (solanum phureja) por calidad industrial. Agronomía Colombiana, 21(1–3), 83–94.
dc.relationLim, C. J., Basri, M., Ee, G. C. L., & Omar, D. (2017). Phytoinhibitory activities and extraction optimization of potent invasive plants as eco-friendly weed suppressant against Echinochloa colona (L.) Link. Industrial Crops and Products, 100, 19–34. https://doi.org/10.1016/J.INDCROP.2017.01.025
dc.relationLin, L., Yang, J., Ni, S., Wang, X., Bian, H., & Dai, H. (2020). Resource utilization and ionization modification of waste starch from the recycling process of old corrugated cardboard paper. Journal of Environmental Management, 271, 111031. https://doi.org/10.1016/J.JENVMAN.2020.111031
dc.relationLindeboom, N., Chang, P. R., & Tyler, R. T. (2004). Analytical, Biochemical and Physicochemical Aspects of Starch Granule Size, with Emphasis on Small Granule Starches: A Review. Starch - Stärke, 56(34), 89–99. https://doi.org/10.1002/star.200300218
dc.relationLiu, Q., Tarn, R., Lynch, D., & Skjodt, N. M. (2007). Physicochemical properties of dry matter and starch from potatoes grown in Canada. Food Chemistry, 105(3), 897–907. https://doi.org/10.1016/j.foodchem.2007.04.034
dc.relationLiu, X., Wang, Y., Yu, L., Tong, Z., Chen, L., Liu, H., & Li, X. (2013). Thermal degradation and stability of starch under different processing conditions. Starch/Staerke, 65(1–2), 48–60. https://doi.org/10.1002/star.201200198
dc.relationLostie, M., Peczalski, R., Andrieu, J., & Laurent, M. (2002). Study of sponge cake batter baking process. Part I: Experimental data. Journal of Food Engineering, 51(2), 131–137. https://doi.org/10.1016/S0260-8774(01)00049-8
dc.relationLuyts, A., Wilderjans, E., Van Haesendonck, I., Brijs, K., Courtin, C. M., & Delcour, J. A. (2013). Relative importance of moisture migration and amylopectin retrogradation for pound cake crumb firming. Food Chemistry, 141(4), 3960–3966. https://doi.org/10.1016/j.foodchem.2013.06.110
dc.relationMa, Z., & Boye, J. I. (2018). Research advances on structural characterization of resistant starch and its structure-physiological function relationship: A review. Critical Reviews in Food Science and Nutrition, 58(7), 1059–1083. https://doi.org/10.1080/10408398.2016.1230537
dc.relationMajzoobi, M., Hedayati, S., Habibi, M., Ghiasi, F., & Farahnaky, A. (2014). Effects of Corn Resistant Starch on the Physicochemical Properties of Cake. Journal of Agricutural Science and Technology, 16, 569–576.
dc.relationMajzoobi, M., Poor, Z. V., Jamalian, J., & Farahnaky, A. (2016). Improvement of the quality of gluten-free sponge cake using different levels and particle sizes of carrot pomace powder. International Journal of Food Science and Technology, 51(6), 1369–1377. https://doi.org/10.1111/ijfs.13104
dc.relationMancebo, C. M., Merino, C., Martínez, M. M., & Gómez, M. (2015). Mixture design of rice flour, maize starch and wheat starch for optimization of gluten free bread quality. Journal of Food Science and Technology, 52(10), 6323. https://doi.org/10.1007/S13197-015-1769-4
dc.relationManiglia, B. C., & Tapia-Blácido, D. R. (2016). Isolation and characterization of starch from babassu mesocarp. Food Hydrocolloids, 55, 47–55. https://doi.org/10.1016/j.foodhyd.2015.11.001
dc.relationManingat, C., Seib, P., Bassi, S., Woo, K., & Lasater, D. (2009). Wheat Starch: Production, Properties, Modification and Uses. In Starch (Third Edit, pp. 441–510). Elsevier Inc. https://doi.org/10.1016/B978-0-12-746275-2.00010-0
dc.relationMarchetti, L., Andrés, S. C., Cerruti, P., & Califano, A. N. (2020). Effect of bacterial nanocellulose addition on the rheological properties of gluten-free muffin batters. Food Hydrocolloids, 98(March 2019). https://doi.org/10.1016/j.foodhyd.2019.105315
dc.relationMarín, C., & Cárdenas, Y. (2013). Procesos básicos de pastelería y repostería (Brief Ediciones (ed.); 3rd ed.). Brief Ediciones.
dc.relationMartín, D., Cárdenas, O., & Cárdenas, A. (2013). Almidón de papa , agente gelificante alternativo en medios de cultivo para propagación in-vitro de lulo (Solanum quitoense lam). Revista de Ciencias Agrículas, 30(1), 3–11.
dc.relationMartinez, D. G., Feiden, A., Bariccatti, R., & Zara, K. R. de F. (2018). Ethanol Production from Waste of Cassava Processing. Applied Sciences 2018, Vol. 8, Page 2158, 8(11), 2158. https://doi.org/10.3390/APP8112158
dc.relationMartínez, H., Espinal, C., Pinzón, N., & Barrios, C. (2006). La papa en Colombia. Una mirada global a su estructura y dinámica 1991-2005. Ministerio de Agricultura y Desarrollo Rural. Documento de Trabajo, N° 100, Observatorio Agrocadenas Colombia, 30.
dc.relationMartínez, J., Hernández, J., & Arias, A. (2017). Propiedades fisicoquímicas y funcionales del almidón de arroz ( Oryza sativa L ) blanco e integral. Asociación Colombiana de Ciencia y Tecnología de Alimentos, 25(41), 15–30. http://alimentoshoy.acta.org.co/index.php/hoy/article/viewFile/446/364
dc.relationMartínez, P., Málaga, A., Betalleluz, I., Ibarz, A., & Velezmoro, C. (2015). Functional characterization on native starch of Peruvian native potatoes (Solanum phureja). Scientia Agropecuaria, 6(4), 291–301. https://doi.org/10.17268/sci.agropecu.2015.04.06
dc.relationMartínez, P, Peña, F., Bello-Pérez, L. A., Núñez-Santiago, C., Yee-Madeira, H., & Velezmoro, C. (2019). Physicochemical, functional and morphological characterization of starches isolated from three native potatoes of the Andean region. Food Chemistry: X, 2(April), 100030. https://doi.org/10.1016/j.fochx.2019.100030
dc.relationMartínez, Patricia, Vilcarromero, D., Pozo, D., Peña, F., Cervantes, J., Uribe-Calderon, J., & Velezmoro, C. (2021). Characterization of starches obtained from several native potato varieties grown in Cusco (Peru). Journal of Food Science, 86(3), 907–914. https://doi.org/10.1111/1750-3841.15650
dc.relationMasmoudi, M., Besbes, S., Bouaziz, M. A., Khlifi, M., Yahyaoui, D., & Attia, H. (2020). Optimization of acorn (Quercus suber L.) muffin formulations: Effect of using hydrocolloids by a mixture design approach. Food Chemistry, 328(May), 127082. https://doi.org/10.1016/j.foodchem.2020.127082
dc.relationMatignon, A., & Tecante, A. (2017). Starch retrogradation: From starch components to cereal products. Food Hydrocolloids, 68, 43–52. https://doi.org/10.1016/j.foodhyd.2016.10.032
dc.relationMatz, S. (1996). Ingredients for Bakers (Pan-Tech International (ed.); 2nd ed.). Pan-Tech International.
dc.relationMedina, J., & Salas, J. (2008). Caracterización morfológica del granulo de almidón nativo: Apariencia, forma, tamaño y su distribución. Revista de Ingeniería, 27, 56–62. http://www.scielo.org.co/pdf/ring/n27/n27a7.pdf
dc.relationMegahey, E. K., McMinn, W. A. M., & Magee, T. R. A. (2005). Experimental Study of Microwave Baking of Madeira Cake Batter. Food and Bioproducts Processing, 83(4), 277–287. https://doi.org/10.1205/FBP.05033
dc.relationMejía-España, Di. F., Trejo-Escobar, D., Latorre-Vásquez, L., Chaves-Morillo, D., Córdoba-Solarte, L., & Valencia, L. F. (2017). Caracteristicas agroindustriales de 32 variedades de papas nativas de Nariño. 30.
dc.relationMendoza, R. (2012). Evaluación de los procesos de precocción/congelación de tres presentaciones de papa criolla [Universidad Nacional de Colombia]. http://bdigital.unal.edu.co/8830/1/107445.2012.pdf
dc.relationMiñarro, B., Normahomed, I., Guamis, B., & Capellas, M. (2010). Influence of unicellular protein on gluten-free bread characteristics. European Food Research and Technology 2010 231:2, 231(2), 171–179. https://doi.org/10.1007/S00217-010-1269-8
dc.relationMinisterio de agricultura y desarrollo rural-MADR. (2019). Producción Nacional por Producto. Agronet. http://www.agronet.gov.co/Paginas/estadisticas.aspx
dc.relationDecreto 1944, 6 (1996). https://www.icbf.gov.co/cargues/avance/docs/decreto_1944_1996.htm
dc.relationMonteros, C., & Reinoso, I. (2010). Biodiversidad y oportunidades de mercado para las papas nativas ecuatorianas. INIAP, 1(1), 1–12.
dc.relationMorais, E. C. de, Cruz, A. G., & Bolini, H. M. A. (2013). Gluten-free bread: multiple time–intensity analysis, physical characterisation and acceptance test. International Journal of Food Science & Technology, 48(10), 2176–2184. https://doi.org/10.1111/IJFS.12202
dc.relationMoreno, J. D., Cerón, M. del S., & Valbuena, R. I. (2010). Caracterización morfológica de germoplasma de papa nativa de colombia. C. I. Tibaitata, Corpoica, 15.
dc.relationMurniece, I., Karklina, D., Galoburda, R., Santare, D., Skrabule, I., & Costa, H. S. (2011). Nutritional composition of freshly harvested and stored Latvian potato (Solanum tuberosum L.) varieties depending on traditional cooking methods. Journal of Food Composition and Analysis, 24(4–5), 699–710. https://doi.org/10.1016/J.JFCA.2010.09.005
dc.relationNasaruddin, F., Chin, N. L., & Yusof, Y. A. (2012). Effect of processing on instrumental textural properties of traditional dodol using back extrusion. International Journal of Food Properties, 15(3), 495–506. https://doi.org/10.1080/10942912.2010.491932
dc.relationNaushad, M., & Taylor, J. (2013). Morphology, physical, chemical, and functional properties of starches from cereals, legumes, and tubers cultivated in Africa: A review. Starch/Staerke, 65(9–10), 715–729. https://doi.org/10.1002/star.201200263
dc.relationNivelle, M. A., Remmerie, E., Bosmans, G. M., Vrinten, P., Nakamura, T., & Delcour, J. A. (2019). Amylose and amylopectin functionality during baking and cooling of bread prepared from flour of wheat containing unusual starches: A temperature-controlled time domain 1H NMR study. Food Chemistry, 295(May), 110–119. https://doi.org/10.1016/j.foodchem.2019.05.049
dc.relationNoda, T., Kottearachchi, N. S., Tsuda, S., Mori, M., Takigawa, S., Matsuura-Endo, C., Kim, S. J., Hashimoto, N., & Yamauchi, H. (2007). Starch phosphorus content in potato (Solanum tuberosum L.) cultivars and its effect on other starch properties. Carbohydrate Polymers, 68(4), 793–796. https://doi.org/10.1016/j.carbpol.2006.08.005
dc.relationNoda, T., Tsuda, S., Mori, M., Takigawa, S., Matsuura-Endo, C., Saito, K., Arachichige Mangalika, W. H., Hanaoka, A., Suzuki, Y., & Yamauchi, H. (2004). The effect of harvest dates on the starch properties of various potato cultivars. Food Chemistry, 86(1), 119–125. https://doi.org/10.1016/j.foodchem.2003.09.035
dc.relationOliveira, C., Ramíres, J., Hidalgo, D., & Piler, C. (2018). Ultrasound assisted extraction of yam (Discoreae bulbifera) starch: effecto on morphology and functional properties. Starch - Stärke, 70(5–6), 24–33. https://doi.org/https://doi.org/10.1002/star.201700185
dc.relationOluwaseyi, K., Tai, M., Jing, C., & Fu, D. (2013). Physicochemical characterization of sweet potato starches popularly used in Chinese starch industry. Food Hydrocolloids, 33(2), 169–175.
dc.relationOmoregie Egharevba, H. (2019). Chemical Properties of Starch and Its Application in the Food Industry. In Intech (Ed.), Chemical properties of starch (1st ed., p. 27). https://doi.org/10.1016/j.colsurfa.2011.12.014
dc.relationORMET Red de Observatorios Regionales del Mercado de Trabajo. (2012). Diagnóstico socioeconómico y del mercado de trabajo Ciudad de Pasto.
dc.relationOzkoc, S. O., & Seyhun, N. (2015). Effect of Gum Type and Flaxseed Concentration on Quality of Gluten-Free Breads Made from Frozen Dough Baked in Infrared-Microwave Combination Oven. Food and Bioprocess Technology 2015 8:12, 8(12), 2500–2506. https://doi.org/10.1007/S11947-015-1615-8
dc.relationPacheco, E., & Techeira, N. (2010). Propiedades químicas y funcionales del almidón nativo y modificado de ñame (Dioscorea alata). Acta Cientifica Venezolana, 61(1–2), 38–46.
dc.relationParada, J., & Aguilera, J. M. (2011). LWT - Food Science and Technology Microstructure , mechanical properties , and starch digestibility of a cooked dough made with potato starch and wheat gluten. LWT - Food Science and Technology, 44(8), 1739–1744. https://doi.org/10.1016/j.lwt.2011.03.012
dc.relationParimala, K., & Sudha, L. (2012). Effect of hydrocolloids on the rheological, microscopic, mass transfer characteristics during frying and quality characteristics of puri. Food Hydrocolloids, 27(1), 191–200. https://doi.org/10.1016/j.foodhyd.2011.07.005
dc.relationParimalavalli, R., Babu, As., & Rao, Js. (2014). A study on comparison between cereal (wheat) and non cereal (chickpea) flour characteristics. Int. J. Int. J.Cur. Tr. Res, 3(2), 70–76. www.injctr.com
dc.relationPathare, P. B., Opara, U. L., & Al-Said, F. A.-J. (2012). Colour Measurement and Analysis in Fresh and Processed Foods: A Review. Food and Bioprocess Technology 2012 6:1, 6(1), 36–60. https://doi.org/10.1007/S11947-012-0867-9
dc.relationPeña, C. B., & Restrepo, L. P. (2013). Compuestos fenólicos y carotenoides en la papa : revisión . Phenolic Compounds and Carotenoids in Potatoes – Revision . Actualizacion En Nutricion, 14, 25–32.
dc.relationPérez, E., & Pacheco, E. (2005). Características químicas, físicas y reológicas de la harina y el almidón nativo aislado de Ipomoea batatas Lam. Tecnología de Alimentos, 56(1), 9–15.
dc.relationPineda, P., Coral, D., Ramos, D., Rosales, A., & Rodríguez, M. (2011). Thermo-alkaline treatment. A process that changes the thermal properties of corn starch. Procedia Food Science, 1, 370–378.
dc.relationPingmuanglek, P., Jakrawatana, N., & Gheewala, S. H. (2017). Supply chain analysis for cassava starch production: Cleaner production opportunities and benefits. Journal of Cleaner Production, 162, 1075–1084. https://doi.org/10.1016/j.jclepro.2017.06.148
dc.relationPozo-Bayón, M., Ruíz-Rodríguez, A., Pernin, K., & Cayot, N. (2007). Influence of Eggs on the Aroma Composition of a Sponge Cake and on the Aroma Release in Model Studies on Flavored Sponge Cakes. Journal of Agricultural and Food Chemistry, 55, 1418–1426.
dc.relationPruska-Kędzior, A., Kędzior, Z., Gorący, M., Pietrowska, K., Przybylska, A., & Spychalska, K. (2008). Comparison of rheological, fermentative and baking properties of gluten-free dough formulations. European Food Research and Technology, 227(5), 1523–1536. https://doi.org/10.1007/s00217-008-0875-1
dc.relationPycia, K., Juszczak, L., Gałkowska, D., & Witczak, M. (2012). Physicochemical properties of starches obtained from Polish potato cultivars. Starch - Stärke, 64(2), 105–114. https://doi.org/10.1002/star.201100072
dc.relationPyler, E. J., & Gorton, L. A. (2009). Baking Science & Technology (4th ed.). Sosland Pub Co.
dc.relationRached, L. B., Vizcarrondo, C., Rincón, A., & Padilla, F. (2006). Evaluación de harinas y almidones de mapuey (Dioscorea trifida), variedades blanco y morado. Archivos Latinoamericanos de Nutrición, 56(4), 2006.
dc.relationRaigond, P., Ezekiel, R., & Raigond, B. (2015). Resistant starch in food: A review. Journal of the Science of Food and Agriculture, 95(10), 1968–1978. https://doi.org/10.1002/jsfa.6966
dc.relationRaija-Liisa, H. (2014). Sensory Attributes of Bakery Products. In Bakery Products Science and Technology: Second Edition (2nd ed., pp. 391–397). Wiley-Blackwell.
dc.relationRamirez, L. M., & Zarate, L. M. (2012). CARACTERIZACIÓN DE ALMIDÓN NATIVO DE CLONES PROMISORIOS DE PAPA CRIOLLA (Solanum phureja) PARA SU APLICACIÓN EN UN DERIVADO CÁRNICO [UNIVERSIDAD DE LA SALLE]. https://doi.org/10.1017/CBO9781107415324.004
dc.relationRamírez, L., Zárate, L., & Otálora, N. (2011). Caracterización de almidón nativo extraído de clones promisorios de papa criolla (Solanum phureja) para su aplicación en un derivado cárnico.
dc.relationRidout, M. J., Gunning, A. P., Parker, M. L., Wilson, R. H., & Morris, V. J. (2002). Using AFM to image the internal structure of starch granules. Carbohydrate Polymers, 50(2), 123–132. https://doi.org/10.1016/S0144-8617(02)00021-8
dc.relationRipoll, M. (2014). La Industria Molinera de Trigo en Colombia: El caso del molino tres castillos, 1940-2012. Economia y Region, 8(2), 213–265.
dc.relationRivas, M., Méndez, G., Sánchez, M., Núñez, C., & Bello, L. (2008). Caracterización morfológica, molecular y fisicoquímica del almidón de plátano oxidado y lintnerizado. Agrociencia, 42(5), 487–497.
dc.relationRobyt, J. (2009). Starch: Structure, properties, chemistry and enzymology. In Glycoscience. Chemistry and chemical biology (1st ed., Vol. 74, Issue 11, pp. 1289–1289). https://doi.org/10.1134/s0006297909110170
dc.relationRodriguez-Sandoval, E., Lascano, A., & Sandoval, G. (2012). Influencia de la sustitución parcial de la harina de trigo por harina de quinua y papa en las propiedades termomecánicas y de panificación de masas. U.D.C.A, 15(1), 199–207.
dc.relationRodriguez-Sandoval, Eduardo, Prasca-Sierra, I., & Hernandez, V. (2017). Effect of modified cassava starch as a fat replacer on the texture and quality characteristics of muffins. Journal of Food Measurement and Characterization, 11(4), 1630–1639. https://doi.org/10.1007/s11694-017-9543-0
dc.relationRodriguez, E., Lascano, A., & Sandoval, G. (2012). Influencia De La Sustitucion Parcial De La Harina De Trigo Por Harina De Quinua Y Papa En Las Propiedades Termomecanicas Y De Panificacion De Masas. 1(15), 199–207.
dc.relationRohm, H., Schäper, C., & Zahn, S. (2017). Interesterified fats in chocolate and bakery products: A concise review. LWT - Food Science and Technology, 87(1), 379–384.
dc.relationRojas, L. P., & Seminario, J. F. (2014). Productividad de diez cultivares promisorios de papa chaucha (Solanum tuberosum, grupo Phureja) de la región Cajamarca. Scientia Agropecuaria, 5, 165–175. https://doi.org/10.17268/sci.agropecu.2014.04.01
dc.relationRonda, F., Oliete, B., Gómez, M., Caballero, P. A., & Pando, V. (2011). Rheological study of layer cake batters made with soybean protein isolate and different starch sources. Journal of Food Engineering, 102(3), 272–277. https://doi.org/10.1016/j.jfoodeng.2010.09.001
dc.relationRonda, F., & Roos, Y. H. (2008). Gelatinization and freeze-concentration effects on recrystallization in corn and potato starch gels. Carbohydrate Research, 343(5), 903–911. https://doi.org/10.1016/J.CARRES.2008.01.026
dc.relationRozo, D., & Ramírez, L. (2011). La agroindustria de la papa criolla en Colombia. Situación actual y retos para su desarrollo. Gest.Soc, 4(2), 17–30.
dc.relationSahi, S. S., & Alava, J. M. (2003). Functionality of emulsifiers in sponge cake production. Journal of the Science of Food and Agriculture, 83(14), 1419–1429. https://doi.org/10.1002/jsfa.1557
dc.relationSaito, H., Tamura, M., & Ogawa, Y. (2019). Starch digestibility of various Japanese commercial noodles made from different starch sources. Food Chemistry, 283, 390–396. https://doi.org/10.1016/j.foodchem.2019.01.026
dc.relationSajilata, M. G., Singhal, R. S., & Kulkarni, P. R. (2006). Resistant Starch–A Review. Comprehensive Reviews in Food Science and Food Safety, 5(1), 1–17. https://doi.org/10.1111/J.1541-4337.2006.TB00076.X
dc.relationSalehi, F. (2017). Rheological and physical properties and quality of the new formulation of apple cake with wild sage seed gum (Salvia macrosiphon). Journal of Food Measurement and Characterization, 11(4), 2006–2012. https://doi.org/10.1007/s11694-017-9583-5
dc.relationSalehi, F. (2019). Improvement of gluten-free bread and cake properties using natural hydrocolloids: A review. Food Science and Nutrition, 7(11), 3391–3402. https://doi.org/10.1002/fsn3.1245
dc.relationSanchez-González, J. A., Echeverria, C., Lescano, L., Linares, G., Arteaga-Miñano, H. L., Soriano-Colchado, J., & Barraza-Jáuregui, G. (2019). Physico-chemical, thermal and rheological characteristics of starch isolated from four commercial potatoes cultivars. Scientia Agropecuaria, 10(1), 63–71. https://doi.org/10.17268/sci.agropecu.2019.01.07
dc.relationSandhu, K. S., & Singh, N. (2007). Some properties of corn starches II: Physicochemical, gelatinization, retrogradation, pasting and gel textural properties. Food Chemistry, 101(4), 1499–1507. https://doi.org/10.1016/J.FOODCHEM.2006.01.060
dc.relationSarabjit, S., Kim, L., & Ananingsih, K. (2014). Quality control. In Bakery Products Science and Technology: Second Edition (2nd ed., pp. 490–507). Wiley-Blackwell.
dc.relationScazzina, F., Dall’Asta, M., Pellegrini, N., & Brighenti, F. (2015). Glycaemic index of some commercial gluten-free foods. European Journal of Nutrition, 54(6), 1021–1026. https://doi.org/10.1007/s00394-014-0783-z
dc.relationSchmiele, M., Sampaio, U. M., Pedrosa, M. T., & Clerici, S. (2019). Basic Principles: Composition and Properties of Starch. In Starches for Food Application. Elsevier Inc. https://doi.org/10.1016/B978-0-12-809440-2.00001-0
dc.relationSchober, T. J., Bean, S. R., & Boyle, D. L. (2007). Gluten-Free Sorghum Bread Improved by Sourdough Fermentation: Biochemical, Rheological, and Microstructural Background. Journal of Agricultural and Food Chemistry, 55(13), 5137–5146. https://doi.org/10.1021/jf0704155
dc.relationSerinyel, G., & Öztürk, S. (2017). Investigation on potential utilization of native and modified starches containing resistant starch as a fat replacer in bakery products. Starch/Staerke, 69(3–4), 1–9. https://doi.org/10.1002/star.201600022
dc.relationShevkani, K., & Singh, N. (2014). Influence of kidney bean, field pea and amaranth protein isolates on the characteristics of starch-based gluten-free muffins. International Journal of Food Science & Technology, 49(10), 2237–2244. https://doi.org/10.1111/IJFS.12537
dc.relationShu, X., Jia, L., Gao, J., Song, Y., Zhao, H., Nakamura, Y., & Wu, D. (2007). The influences of chain length of amylopectin on resistant starch in rice (Oryza sativa L.). Starch/Staerke, 59(10), 504–509. https://doi.org/10.1002/star.200700640
dc.relationSingh, H., Sharma, B., & Singh, P. (2019). Utilization of flour from rice brokens in wheat flour chapatti: evaluation of dough rheology, starch digestibility, glycemic index and retrogradation behavior. Journal of Food Science and Technology, 56, 2490–2500. https://doi.org/10.1007/s13197-019-03726-5
dc.relationSingh, J., Dartois, A., & Kaur, L. (2010). Starch digestibility in food matrix: a review. Trends in Food Science and Technology, 21(4), 168–180. https://doi.org/10.1016/j.tifs.2009.12.001
dc.relationSingh, J., & Kaur, L. (2016). Advances in potato chemistry and technology (Nancy Maragioglio (ed.); 2nd ed.). Nikky Levy. https://books.google.es/books?hl=es&lr=&id=GO9eBwAAQBAJ&oi=fnd&pg=PP1&dq=potato&ots=ebA0_8W5_m&sig=K36C8NQ03r9Fi3HsdR-XAhqvKLs#v=onepage&q=potato&f=false
dc.relationSingh, J., Kaur, L., & Singh, N. (2004). Effect of acetylation on some properties of corn and potato starches. Starch/Staerke, 56(12), 586–601. https://doi.org/10.1002/star.200400293
dc.relationSingh, J., McCarthy, O. J., & Singh, H. (2006). Physico-chemical and morphological characteristics of New Zealand Taewa (Maori potato) starches. Carbohydrate Polymers, 64(4), 569–581. https://doi.org/10.1016/j.carbpol.2005.11.013
dc.relationSingh, J., & Singh, N. (2001). Studies on the morphological, thermal and rheological properties of starch separated from some Indian potato cultivars. Food Chemistry, 75(1), 67–77. https://doi.org/10.1016/S0308-8146(01)00189-3
dc.relationSingh, N., Kaur, L., Sandhu, K. S., Kaur, J., & Nishinari, K. (2006). Relationships between physicochemical, morphological, thermal, rheological properties of rice starches. Food Hydrocolloids, 20(4), 532–542. https://doi.org/10.1016/j.foodhyd.2005.05.003
dc.relationSingh, N., Singh, J., Kaur, L., Sodhi, N. S., & Gill, B. S. (2003). Morphological, thermal and rheological properties of starches from different botanical sources. Food Chemistry, 81(2), 219–231. https://doi.org/10.1016/S0308-8146(02)00416-8
dc.relationSolarte-Montúfar, J. G., Díaz-Murangal, A. E., Osorio-Mora, O., & Mejía-España, D. F. (2019). Propiedades Reológicas y Funcionales del Almidón. Procedente de Tres Variedades de Papa Criolla. Información Tecnológica, 30(6), 35–44. https://doi.org/10.4067/s0718-07642019000600035
dc.relationSouilah, R., Boudries, N., Djabali, D., Belhadi, B., & Nadjemi, B. (2014). Kinetic study of enzymatic hydrolysis of starch isolated from sorghum grain cultivars by various methods. Biotechnology and Conservation of Species from Arid Regions, 2–2(January), 401–410. https://doi.org/10.1007/s13197-013-0977-z
dc.relationSouza, P. F., Brancoli, P., Bolton, K., Zamani, A., & Taherzadeh, M. J. (2017). Techno-Economic and Life Cycle Assessment of Wastewater Management from Potato Starch Production: Present Status and Alternative Biotreatments. Fermentation 2017, Vol. 3, Page 56, 3(4), 56. https://doi.org/10.3390/FERMENTATION3040056
dc.relationSouza, P. F., Zamani, A., & Taherzadeh, M. J. (2017). Production of Edible Fungi from Potato Protein Liquor (PPL) in Airlift Bioreactor. Fermentation 2017, Vol. 3, Page 12, 3(1), 12. https://doi.org/10.3390/FERMENTATION3010012
dc.relationSrichuwong, S., Curti, D., Austin, S., King, R., Lamothe, L., & Gloria-Hernandez, H. (2017). Physicochemical properties and starch digestibility of whole grain sorghums, millet, quinoa and amaranth flours, as affected by starch and non-starch constituents. Food Chemistry, 233, 1–10. https://doi.org/10.1016/j.foodchem.2017.04.019
dc.relationSrichuwong, S., Isono, N., Jiang, H., Mishima, T., & Hisamatsu, M. (2012). Freeze-thaw stability of starches from different botanical sources: Correlation with structural features. Carbohydrate Polymers, 87(2), 1275–1279. https://doi.org/10.1016/j.carbpol.2011.09.004
dc.relationSrichuwong, S., & Jane, J.-L. (2007). Physicochemical properties of starch affected by molecular composition and structures: a review. Food Science and Biotechnology, 16(5), 663–674.
dc.relationStantiall, S. E., & Serventi, L. (2017). Nutritional and sensory challenges of gluten-free bakery products: a review. Https://Doi.Org/10.1080/09637486.2017.1378626, 69(4), 427–436. https://doi.org/10.1080/09637486.2017.1378626
dc.relationSun, Q., Chu, L., Xiong, L., & Si, F. (2015). Effects of different isolation methods on the physicochemical properties of pea starch and textural properties of vermicelli. Journal of Food Science and Technology, 52(1), 327–334. https://doi.org/10.1007/s13197-013-0980-4
dc.relationSwinkels, J. J. M. (1985). Composition and Properties of Commercial Native Starches. Starch - Stärke, 37(1), 1–5. https://doi.org/10.1002/star.19850370102
dc.relationTeagasc. (2017). Starch Potatoes. Carlow, Ireland. https://www.teagasc.ie/%0Acrops/crops/research/research-programme/cropquest/starch-potatoes/
dc.relationTinjacá, S., & Rodriguez, L. (2015). Catálogo de papas nativas de Nariño, Colombia (1st ed.). Universidad Nacional de Colombia.
dc.relationTorres, A., Montero, P., & Duran, M. (2013). Propiedades fisicoquímicas, morfológicas y funcionales del almidón de malanga (Colocasia esculenta). Revista Lasallista de Investigacion, 10(2), 52–61.
dc.relationTsatsaragkou, K., Papantoniou, M., & Mandala, I. (2015). Rheological, Physical, and Sensory Attributes of Gluten-Free Rice Cakes Containing Resistant Starch. Journal of Food Science, 80(2), E341–E348. https://doi.org/10.1111/1750-3841.12766
dc.relationTsatsaragkou, K., Protonotariou, S., & Mandala, I. (2016). Structural role of fibre addition to increase knowledge of non-gluten bread. Journal of Cereal Science, 67, 58–67. https://doi.org/10.1016/J.JCS.2015.10.003
dc.relationVafina, A., Proskurina, V., Vorobiev, V., Evtugin, V. G., Egkova, G., & Nikitina, E. (2018). Physicochemical and morphological characterization of potato starch modified by bacterial amylases for food industry applications. Journal of Chemistry, 2018. https://doi.org/10.1155/2018/1627540
dc.relationValencia-Flórez, L. F., Trejo-Escobar, D. M., Latorre-Vásquez, L. I., Hurtado-Benavides, A. M., & Mejía-España, D. F. (2019). Influence of storage conditions on the quality of two varieties of native potato (Solanum Tuberosum group phureja)•. DYNA, 86(209), 49–55. https://doi.org/10.15446/dyna.v86n209.72958
dc.relationVamadevan, V., & Bertoft, E. (2015). Structure-function relationships of starch components. Starch - Stärke, 67(1–2), 55–68. https://doi.org/10.1002/STAR.201400188
dc.relationVan Hung, P., Huong, N. T. M., Phi, N. T. L., & Tien, N. N. T. (2017). Physicochemical characteristics and in vitro digestibility of potato and cassava starches under organic acid and heat-moisture treatments. International Journal of Biological Macromolecules, 95, 299–305. https://doi.org/10.1016/j.ijbiomac.2016.11.074
dc.relationVelásquez Herrera, J. D., Lucas Aguirre, J. C., & Quintero Castaño, V. D. (2017). Physical-chemical characteristics determination of potato (Solanum phureja Juz. & Bukasov) starch. Acta Agronomica, 66(3), 323–330. https://doi.org/10.15446/acag.v66n3.52419
dc.relationVidaurre-Ruiz, J., Salas-Valerio, F., Schoenlechner, R., & Repo-Carrasco-Valencia, R. (2021). Rheological and textural properties of gluten-free doughs made from Andean grains. International Journal of Food Science and Technology, 56(1), 468–479. https://doi.org/10.1111/ijfs.14662
dc.relationViksø-Nielsen, A., Blennow, A., Jørgensen, K., Kristensen, K. H., Jensen, A., & Møller, B. L. (2001). Structural, physicochemical, and pasting properties of starches from potato plants with repressed r1-gene. Biomacromolecules, 2(3), 836–843. https://doi.org/10.1021/bm0155165
dc.relationVilpoux, O. F., Brito, V. H., & Cereda, M. P. (2018). Starch extracted from corms, roots, rhizomes, and tubers for food application. In Starches for Food Application: Chemical, Technological and Health Properties. Elsevier Inc. https://doi.org/10.1016/B978-0-12-809440-2.00004-6
dc.relationWaterschoot, J., Gomand, S. V., Fierens, E., & Delcour, J. A. (2015). Production, structure, physicochemical and functional properties of maize, cassava, wheat, potato and rice starches. Starch/Staerke, 67(1–2), 14–29. https://doi.org/10.1002/star.201300238
dc.relationWaterschoot, J., Gomand, S. V., Willebrords, J. K., Fierens, E., & Delcour, J. A. (2014). Pasting properties of blends of potato, rice and maize starches. Food Hydrocolloids, 41, 298–308. https://doi.org/10.1016/j.foodhyd.2014.04.033
dc.relationWhistler, R., & BeMiller, J. (1997). Carbohydrate Chemistry for Food Scientists. In Starch - Stärke (Vol. 3, Issues 7–8). Wiley. https://doi.org/10.1002/star.19970490718
dc.relationWieser, H. (2007). Chemistry of gluten proteins. Food Microbiology, 24(2), 115–119. https://doi.org/10.1016/j.fm.2006.07.004
dc.relationWilderjans, E., Luyts, A., Goesaert, H., Brijs, K., & Delcour, J. A. (2010). A model approach to starch and protein functionality in a pound cake system. Food Chemistry, 120(1), 44–51. https://doi.org/10.1016/J.FOODCHEM.2009.09.067
dc.relationWitczak, M., Ziobro, R., Juszczak, L., & Korus, J. (2016). Starch and starch derivatives in gluten-free systems - A review. Journal of Cereal Science, 67, 46–57. https://doi.org/10.1016/j.jcs.2015.07.007
dc.relationXu, Y. (2013). Resistant starch content, molecular structure and physicochemical properties of starches in Virginia-grown corn, potato and mungbean. Journal of Cereals and Oilseeds, 4(1), 10–18. https://doi.org/10.5897/jco2012.0097
dc.relationYadav, B. S., Guleria, P., & Yadav, R. B. (2013). Hydrothermal modification of Indian water chestnut starch: Influence of heat-moisture treatment and annealing on the physicochemical, gelatinization and pasting characteristics. LWT - Food Science and Technology, 53(1), 211–217. https://doi.org/10.1016/J.LWT.2013.02.007
dc.relationYang, X., & Foegeding, E. A. (2010). Effects of sucrose on egg white protein and whey protein isolate foams: Factors determining properties of wet and dry foams (cakes). Food Hydrocolloids, 24(2–3), 227–238. https://doi.org/10.1016/J.FOODHYD.2009.09.011
dc.relationZaidul, I. S. M., Norulaini, N. A. N., Omar, A. K. M., Yamauchi, H., & Noda, T. (2007). RVA analysis of mixtures of wheat flour and potato, sweet potato, yam, and cassava starches. Carbohydrate Polymers, 69(4), 784–791. https://doi.org/10.1016/j.carbpol.2007.02.021
dc.relationZaidul, I., Yamauchi, H., Matsuura, C., Suzuki, T., & Noda, T. (2007). Correlation between the compositional and pasting properties of various potato starches. Food Chemistry, 105, 164–172.
dc.relationZárate-Polanco, L., Ramírez-Suárez, L., Otálora-Santamaría, N., Garnica-Holguín, L., Prieto, L., Cerón-Lasso, M., & Argüelles, J. (2014). Extracción y caracterización de almidón de clones promisorios de papa criolla (Solanum tuberosum, Grupo Phureja). Revista Latinoamericana De La Papa, 18(1), 1–24. https://doi.org/10.1017/CBO9781107415324.004
dc.relationZhang, P., & Hamaker, B. R. (2012). Banana starch structure and digestibility. Carbohydrate Polymers, 87(2), 1552–1558. https://doi.org/10.1016/j.carbpol.2011.09.053
dc.relationZhao, X., Andersson, M., & Andersson, R. (2018). Resistant starch and other dietary fiber components in tubers from a high-amylose potato. Food Chemistry, 251(September 2017), 58–63. https://doi.org/10.1016/j.foodchem.2018.01.028
dc.relationZhou, F., Liu, Q., Zhang, H., Chen, Q., & Kong, B. (2016). Potato starch oxidation induced by sodium hypochlorite and its effect on functional properties and digestibility. International Journal of Biological Macromolecules, 84, 410–417. https://doi.org/10.1016/j.ijbiomac.2015.12.050
dc.relationZhou, W., Hui, Y. H., De Leyn, I., Pagani, M. A., Rosell, C. M., Selman, J. D., & Therdthai, N. (2014). Bakery Products Science and Technology: Second Edition. In W. Zhou (Ed.), Bakery Products Science and Technology: Second Edition (2nd ed., Vol. 9781119967). Wiley-Blackwell. https://doi.org/10.1002/9781118792001
dc.relationZhou, W., Therdthai, N., & Hui, Y. H. (2014). Introduction to Baking and Bakery Products. In Bakery Products Science and Technology: Second Edition (2nd ed., pp. 4–16). Wiley-Blackwell.
dc.relationZhu, F. (2015). Composition, structure, physicochemical properties, and modifications of cassava starch. Carbohydrate Polymers, 122, 456–480. https://doi.org/10.1016/j.carbpol.2014.10.063
dc.relationZhu, F. (2017). Properties and Food Uses of Chestnut Flour and Starch. Food and Bioprocess Technology, 10(7), 1173–1191. https://doi.org/10.1007/s11947-017-1909-0
dc.relationZhu, F., & Cui, R. (2020). Comparison of physicochemical properties of oca (Oxalis tuberosa), potato, and maize starches. International Journal of Biological Macromolecules, 148, 601–607. https://doi.org/10.1016/j.ijbiomac.2020.01.028
dc.relationZhu, F., & Liu, P. (2020). Starch gelatinization, retrogradation, and enzyme susceptibility of retrograded starch: Effect of amylopectin internal molecular structure. Food Chemistry, 316(October 2019), 126036. https://doi.org/10.1016/j.foodchem.2019.126036
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.titleAlmidón de papa var. Ratona blanca (Solanum phureja) como sustituto de harina de trigo en la elaboración de cupcakes
dc.typeTesis


Este ítem pertenece a la siguiente institución