dc.relation | [1] S. Bose, Higth temperature coating. 2007.
[2] R. Vaßen and D. Sebold, “Corrosion behaviour of new thermal barrier coatings,” CESF, vol. 28, no. 0, pp. 27–38, 2007.
[3] Empresas Publicas de Medellín, “HOT GAS PATH UNIDAD 2 Contenido,” 2017.
[4] International Agency Energy, “World energy outlook 2016,” 2016, 2016. [Online]. Available: https://www.iea.org/publications/freepublications/publication/WEO2016_ExecutiveSummary_Spanishversion.pdf.
[5] C. U. Hardwicke and Y.-C. Lau, “Advances in thermal spray coatings for gas turbines and energy generation: a review,” J. Therm. Spray Technol., vol. 22, no. 5, pp. 564–576, 2013.
[6] D. Zambrano, “Estudio calorimétrico mediante análisis por DSC y TGA de la degradación de recubrimientos de YSZ depositados por Air Plasma Spray (Tesis de maestria),” p. 110, 2015.
[7] S. G. Garrido, “Especial Turbinas de Gas,” Energiza.org, pp. 4–30, 2011.
[8] A. C. Barrios, “Efecto del ángulo de impacto en la resistencia a la erosión a alta temperatura en barreras térmicas de zirconia estabilizada con itria,” Med. Clin. (Barc)., vol. 141, no. 12, p. 561, 2013.
[9] M. P. Boyce, Gas turbine engineering handbook. 2012.
[10] T. Giampaolo, Gas Turbine Handbook. 2009.
[11] D. R. Clarke, M. Oechsner, and N. P. Padture, “Thermal-barrier coatings for more efficient gas-turbine engines,” MRS Bull., vol. 37, no. 10, pp. 891–898, 2012.
[12] Z. Lu et al., “Microstructure evolution and interface stability of thermal barrier coatings with vertical type cracks in cyclic thermal exposure,” J. Therm. Spray Technol., vol. 22, pp. 671–679, 2013.
[13] J. D. Mattingly and H. von Ohain, Elements of Propulsion : Gas Turbines and Rockets Department of Mechanical Engineering. 2006.
[14] General Electric, “Gas Turbine 7FA-GT,” 2011.
[15] D. F. David Balevic, Robert Burger, “Heavy-Duty Gas Turbine Operating and Maintenance Considerations,” GER-3620K, pp. 1–60, 2004.
[16] R. Eldrid, L. Kaufman, and P. Marks, “The 7FB: The Next Evolution of the F Gas Turbine,” GER-4194, 2001.
[17] The American Ceramic Society, Progress in Thermal Barrier Coatings. 2009.
[18] R. Rajendran, “Gas turbine coatings – An overview,” Eng. Fail. Anal., vol. 26, pp. 355–369, 2012.
[19] W. R. Chen, X. Wu, B. R. Marple, D. R. Nagy, and P. C. Patnaik, “TGO growth behaviour in TBCs with APS and HVOF bond coats,” Surf. Coatings Technol., vol. 202, no. 12, pp. 267–2683, 2008.
[20] G. Narayanan, “Life Prediction of Functionally Graded Thermal Barrier Coatings,” no. January, 2017.
[21] R. F. Geller and P. J. Yavorsky, “Efects of some additions on the thermal length changes of zirconia,” vol. 35, pp. 87–110, 1945.
[22] D. Zhu and R. A. Miller, “Thermal conductivity and elastic modulus evolution of thermal barrier coatings under high heat flux conditions,” J. Therm. Spray Technol., vol. 9, no. 2, pp. 175–180, 2000.
[23] J. de la Roche Yepes, “Hot Corrosion Resistance of Dense Ceria-Yttria Stabilized Zirconia/Yttria Stabilized Zirconia (CYSZ/YSZ) Bilayer Coatings Deposited by Atmospheric Plasma Spray,” 2019.
[24] X. Cao, R. Vassen, and D. Stoever, “Ceramic Materials for Thermal Barrier Coatings,” J. Eur. Ceram. Soc., vol. 24, pp. 1–10, Jan. 2004.
[25] A. G. Evans, D. R. Clarke, and C. G. Levi, “The influence of oxides on the performance of advanced gas turbines,” J. Eur. Ceram. Soc., vol. 28, no. 7, pp. 1405–1419, 2008.
[26] L. CHEN, “Yttria-Stabilized Zirconia Thermal Barrier Coatings—A Review,” Surf. Rev. Lett., vol. 13, pp. 535–544, Oct. 2006.
[27] P. Robotti and G. Zappini, “Chapter 10 - Thermal Plasma Spray Deposition of Titanium and Hydroxyapatite on PEEK Implants,” in Plastics Design Library, S. M. B. T.-P. B. H. (Second E. Kurtz, Ed. William Andrew Publishing, 2019, pp. 147–177.
[28] P. L. Fauchais, J. V. R. Heberlein, and M. I. Boulos, Thermal Spray Fundamentals, vol. 1, no. 0. Boston, MA: Springer US, 2014.
[29] J. R. Davis and A. S. M. I. T. S. S. T. Committee, Handbook of Thermal Spray Technology. ASM International, 2004.
[30] L. Pawlowski, The Science and Engineering of Thermal Spray Coatings. 1995.
[31] K. E. Schneider, V. Belashchenko, M. Dratwinski, S. Siegmann, and A. Zagorski, Thermal Spraying for Power Generation Components. Wiley, 2006.
[32] M. Kandeva, A. Vencl, and D. Karastoyanov, Advanced Tribological Coatings for Heavy-Duty Applications: Case Studies. 2016.
[33] Thermal Spray Society, “Thermal Spray Technology,” February, 2017. [Online]. Available: https://www.asminternational.org/web/tss/news/-/journal_content/56/10192/27140877/NEWS.
[34] R. Darolia, “Thermal barrier coatings technology: Critical review, progress update, remaining challenges and prospects,” Int. Mater. Rev., vol. 58, no. 6, pp. 315–348, 2013.
[35] D. R. Mumm and G. A. Evans, “Mechanisms controlling the performance and durability of thermal barrier coatings,” Key Eng. Mater., vol. 197, pp. 199–230, 2001.
[36] G. Witz, V. Shklover, W. Steurer, S. Bachegowda, and H.-P. Bossmann, “Phase Evolution in Yttria‐Stabilized Zirconia Thermal Barrier Coatings Studied by Rietveld Refinement of X‐Ray Powder Diffraction Patterns,” J. Am. Ceram. Soc., vol. 90, no. 9, pp. 2938–2940, 2007.
[37] F. Cernuschi, L. Lorenzoni, S. Ahmaniemi, P. Vuoristo, and T. Mäntylä, “Studies of the Sintering Kinetics of Thick Thermal Barrier Coatings by Thermal Diffusivity Measurements,” J. Eur. Ceram. Soc. - J EUR CERAM SOC, vol. 25, pp. 393–400, Apr. 2005.
[38] A. G. Evans, M. Y. He, A. Suzuki, M. Gigliotti, B. Hazel, and T. M. Pollock, “A mechanism governing oxidation-assisted low-cycle fatigue of superalloys,” Acta Mater., vol. 57, no. 10, pp. 2969–2983, 2009.
[39] W. Stamm, “Taking the Heat,” Siemens, 2011.
[40] E. M. Gutiérrez Mojica, “Determinacion y analisis de los indices de autenticidad del diagnostico de una turbina de gas,” Inst. Politec. Nac. Mex., 2009.
[41] D. R. Clarke and C. G. Levi, “Materials Design for the Next Generation Thermal Barrier Coatings,” Annu. Rev. Mater. Res., vol. 33, pp. 383–417, 2003.
[42] B. N. Popov, Corrosion Engineering -Principles and Solved Problems. Elsevier, 2015.
[43] R. Rapp, “Hot corrosion of materials: A fluxing mechanism?,” Corros. Sci., vol. 44, pp. 209–221, Feb. 2002.
[44] R. L. Jones, “Some Aspects of the Hot Corrosion of Thermal Barrier Coatings,” J. Therm. Spray Technol., vol. 6, pp. 77–84, 1997.
[45] I. Zaplatynsky, “REACTIONS OF YTTRIA-STABILIZED ZIRCONIA WITH OXIDES AND SULFATES OF VARIOUS ELEMENTS,” 2018.
[46] D. W. McKee and P. A. Siemers, “Resistance of thermal barrier ceramic coatings to hot salt corrosion,” Thin Solid Films, vol. 73, no. 2, pp. 439–445, 1980.
[47] A. S. Nagelberg, “Destabilization of yttria-stabilized zirconia induced by molten sodium vanadate-sodium sulfate melts,” J. Electrochem. Soc., vol. 132, no. 10, pp. 2502–2507, 1985.
[48] Y.-S. Hwang and R. A. Rapp, “Thermochemistry and Solubilities of Oxides in Sodium Sulfate-Vanadate Solutions,” CORROSION, vol. 45, no. 11, pp. 933–937, 1989.
[49] Y. S. Zhang and R. A. Rapp, “Solubilities of CeO2, HfO2 and Y2O3 in Fused Na2SO4-30 mol% NaVO3 and CeO2 in Pure Na2SO4 at 900 C,” CORROSION, vol. 43, no. 6, pp. 348–352, 1987.
[50] R. L. Jones, C. E. Williams, and A. J. Jones, “Reaction of vanadium compounds with ceramic oxides,” J. Electrochem. Soc., vol. 133, no. 1, 1986.
[51] I. Gurrappa, “Thermal Barrier Coatings for Hot Corrosion Resistance of CM 247 LC Superalloy,” J. Mater. Sci. Lett. Vol., vol. 17, no. 15, pp. 1267–1269, 1998.
[52] W. Hertl, “Vanadia reactions with yttria stabilized zirconia,” J. Appl. Phys., vol. 63, no. 11, pp. 5514–5520, 1988.
[53] P. Mohan, “ENVIRONMENTAL DEGRADATION OF OXIDATION RESISTANT AND THERMAL BARRIER COATINGS FOR FUEL-FLEXIBLE GAS TURBINE APPLICATIONS,” Jan. 2010.
[54] M. Daroonparvar, M. A. M. Yajid, N. M. Yusof, H. R. Bakhsheshi-Rad, E. Hamzah, and M. Nazoktabar, “Investigation of three steps of hot corrosion process in Y2O3 stabilized ZrO2 coatings including nano zones,” J. Rare Earths, vol. 32, no. 10, pp. 989–1002, 2014.
[55] Z. Chen, N. Q. Wu, J. Singh, and S. X. Mao, “Effect of Al2O3 overlay on hot-corrosion behavior of yttria-stabilized zirconia coating in molten sulfate-vanadate salt,” Thin Solid Films, vol. 443, no. 1, pp. 46–52, 2003.
[56] I. N. Qureshi, M. Shahid, A. Nusair Khan, and Y. A. Durrani, “Evaluation of Titanium Nitride-Modified Bondcoat System Used in Thermal Barrier Coating in Corrosive Salts Environment at High Temperature,” J. Therm. Spray Technol., vol. 24, no. 8, pp. 1520–1528, 2015.
[57] Z. Chen, S. Speakman, J. Howe, H. Wang, W. Porter, and R. Trice, “Investigation of reactions between vanadium oxide and plasma-sprayed yttria-stabilized zirconia coatings,” J. Eur. Ceram. Soc., vol. 29, no. 8, pp. 1403–1411, 2009.
[58] Z. Chen, J. Mabon, J. G. Wen, and R. Trice, “Degradation of plasma-sprayed yttria-stabilized zirconia coatings via ingress of vanadium oxide,” J. Eur. Ceram. Soc., vol. 29, no. 9, pp. 1647–1656, 2009.
[59] P. Mohan, B. Yuan, T. Patterson, V. H. Desai, and Y. H. Sohn, “Degradation of Yttria-Stabilized Zirconia Thermal Barrier Coatings by Vanadium Pentoxide, Phosphorous Pentoxide, and Sodium Sulfate,” J. Am. Ceram. Soc., vol. 90, no. 11, pp. 3601–3607, 2007.
[60] R. W. Trice et al., “Effect of heat treatment on phase stability, microstructure, and thermal conductivity of plasma-sprayed YSZ,” J. Mater. Sci., vol. 37, pp. 2359–2365, 2002.
[61] B. R. Marple, J. Voyer, C. Moreau, and D. R. Nagy, “Corrosion of thermal barrier coatings by vanadium and sulfur compounds,” Mater. High Temp., vol. 17, no. 3, pp. 397–412, Aug. 2000.
[62] D. Susnitzky, W. HERTL, and C. Carter, “Destabilization of Zirconia Thermal Barriers in the Presence of V2O5,” J. Am. Ceram. Soc., vol. 71, pp. 992–1004, Mar. 2005.
[63] M. H. Vidal-Setif, N. Chellah, C. Rio, C. Sanchez, and O. Lavigne, “Calcium-magnesium-alumino-silicate (CMAS) degradation of EB-PVD thermal barrier coatings: Characterization of CMAS damage on ex-service high pressure blade TBCs,” Surf. Coatings Technol., vol. 208, pp. 39–45, 2012.
[64] M. . Borom, C. . Johnson, and L. . Peluso, “Role of environment deposits and operating surface temperature in spallation of air plasma sprayed thermal barrier coatings,” Surf. Coatings Technol., vol. 116, pp. 86–87, 1996.
[65] J. L. Smialek, F. A. Archer, and R. G. Garlick, “The Chemistry of Saudi Arabian Sand: A Deposition Problem on Helicopter Turbine Airfoils,” in Advances in Synthesis and Processes, 3rd Int. SAMPE Metals Conf. F.H. Froes, 1992, pp. M63–M77.
[66] W. Braue, “Environmental stability of the YSZ layer and the YSZ/TGO interface of an in-service EB-PVD coated high-pressure turbine blade,” J. Mater. Sci., vol. 44, no. 7, pp. 1664–1675, 2009.
[67] C. Mercer, S. Faulhaber, A. G. Evans, and R. Darolia, “A delamination mechanism for thermal barrier coatings subject to calcium–magnesium–alumino-silicate (CMAS) infiltration,” Acta Mater., vol. 53, no. 4, pp. 1029–1039, 2005.
[68] S. Krämer et al., “Mechanisms of cracking and delamination within thick thermal barrier systems in aero-engines subject to calcium-magnesium-alumino-silicate (CMAS) penetration,” Mater. Sci. Eng. A, vol. 490, no. 1–2, pp. 26–35, 2008.
[69] S. Krämer, J. Yang, C. G. Levi, and C. A. Johnson, “Thermochemical Interaction of Thermal Barrier Coatings with Molten CaO–MgO–Al2O3–SiO2 (CMAS) Deposits,” J. Am. Ceram. Soc., vol. 89, no. 10, pp. 3167–3175, 2006.
[70] A. Aygun, A. Vasiliev, N. Padture, and X. Ma, “Novel Thermal Barrier Coatings That Are Resistant to High-Temperature Attack by Glassy Deposits,” Acta Mater. - ACTA MATER, vol. 55, pp. 6734–6745, Dec. 2007.
[71] L. Li, N. Hitchman, and J. Knapp, “Failure of Thermal Barrier Coatings Subjected to CMAS Attack,” J. Therm. Spray Technol., vol. 19, no. 1, pp. 148–155, 2010.
[72] A. D. Foster, H. E. Von Doering, and M. B. Hil, “Fuels Flexibility in Heavy-Duty Gas Turbines,” GE Co., vol. GER 3428a, p. 33, 1983.
[73] General Electric, “Specification for Fuel Gases for Combustion in Heavy-Duty Gas Turbines,” GE Power Syst., no. January, pp. 1–28, 2009.
[74] J. A. Arboleda, “Efecto de los parametros de aspersión sobre la microestructura de recubrimientos de Al2O3 + 13%TiO2 aplicados mediante aspersión térmica por combustión.,” 2016.
[75] S. Metco, “Product Data Sheet Sinplex Pro TM Universal Plasma Spray Guns,” 2013.
[76] M. R. Loghman-Estarki, R. Shoja Razavi, and H. Jamali, “Effect of molten V2O5 salt on the corrosion behavior of micro- and nano-structured thermal sprayed SYSZ and YSZ coatings,” Ceram. Int., vol. 42, no. 11, pp. 12825–12837, 2016.
[77] ASTM E1920-03, “Standard Guide for Metallographic Preparation of Thermal Sprayed Coatings,” ASTM Int., pp. 1–6, 2014.
[78] ASTM E2109-14, “Standard Test Methods for determining area percentage porosity in thermal sprayed coatings,” ASTM Int., vol. 04, no. Reapproved 2014, pp. 4–7, 1999.
[79] R. Naraparaju, J. T. Gomez Chavez, U. Schulz, and C. V. Ramana, “Interaction and infiltration behavior of Eyjafjallajökull, Sakurajima volcanic ashes and a synthetic CMAS containing FeO with/in EB-PVD ZrO2-65 wt% Y2 O3 coating at high temperature,” Acta Mater., vol. 136, pp. 164–180, 2017.
[80] A. G. González, F. M. Hurtado, H. Ageorges, E. López, and F. Vargas, “Evaluation of hot corrosion behavior of yttria-stabilized-zirconia coating elaborated by atmospheric plasma spraying,” Rev. Latinoam. Metal. y Mater., vol. 37, no. 1, pp. 2–10, 2017.
[81] C. Zhou, X. W. Li, and R. Y. Pan, “Combined effect of thermal shock and hot corrosion on the failure of yttria stabilized zirconia thermal barrier coatings,” J. Met. Mater. Res., vol. 1, no. 1, Jan. 2019.
[82] A. Manceau, J. F. Berar, and J. L. Hazemann, Physics and Chemistry of Minerals (Germany). 1992.
[83] P. Romero-Gómez, J. C. González, A. Bustamante, A. Ruiz-Conde, and P. J. Sánchez-Soto, “Estudio in-situ de la transformación térmica de limonita utilizada como pigmento procedente de Perú,” Bol. la Soc. Esp. Ceram. y Vidr., vol. 52, no. 3, pp. 127–131, 2013.
[84] P. R. Palacios, L. D. L. S. Valladares, and A. Bustamante, “Estudio De La Deshidroxilación En El Óxido Férrico Hidratado Denominado Limonita,” Rev. la Soc. Química del Perú, vol. 78, no. 3, pp. 198–207, 2012.
[85] W. H. Barnes, F. R. Ahmed, and H. . Bachmann, Zeitschrift fuer Kristallographie, Kristallgeometrie, Kristallphysik, Kristallchemie (145,1977-148,1979). 1961.
| |