dc.contributorVillegas Palacio, Clara Ines
dc.contributorOsorio Múnera, Juan David
dc.creatorVargas Betancur, Cristina
dc.date.accessioned2021-10-08T19:21:23Z
dc.date.accessioned2022-09-21T15:40:46Z
dc.date.available2021-10-08T19:21:23Z
dc.date.available2022-09-21T15:40:46Z
dc.date.created2021-10-08T19:21:23Z
dc.date.issued2020-12-18
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/80453
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3383707
dc.description.abstractLos cambios en los ecosistemas se afectan por los procesos de decisión individual y/o colectiva que interactúan con el entorno natural en horizontes de tiempo que se extienden de un día a varias décadas (Quesnel et al., 2015) incidiendo en la dinámica de los agroecosistemas, los cuales se dividen en tres sistemas que interactúan, de decisión, operativo y biofísico (Clouaire & Rellier, 2009). Esta investigación propone el análisis de los agroecosistemas bajo el enfoque de sistemas socio-ecológicos en la Cuenca Hidrográfica Río Grande y Río Chico ubicada en los Andes Colombianos, estratégica en la provisión de agua potable para el Área Metropolitana del Valle de Aburrá. La dinámica de los agroecosistemas se realizó por medio de la identificación e interrelación de las variables de cada sistema a partir de una revisión sistemática de literatura, análisis de la trayectoria de la cuenca, características socioeconómicas, productivas, ambientales y finalmente se validó en campo con un grupo focal. Se encontró que las decisiones de los productores en los agroecosistemas de la Cuenca no sólo están influenciadas por las motivaciones económicas asociadas a los costos y ganancias de la producción, sino también por las motivaciones de carácter social y cultural, cómo la tradición, que determinan las características de la zona y la transferencia de conocimiento por generaciones, las experiencias que generan temor e incertidumbre frente a los resultados de la producción, la presencia de cooperativas, lazos de confianza entre la comunidad de los agricultores que fomentan a la cooperación y colaboración. (Texto tomado de la fuente)
dc.description.abstractChanges in ecosystems are affected by individual and / or collective decision processes that interact with the natural environment in time horizons that extend from one day to several decades (Quesnel et al., 2015), influencing the dynamics of the agroecosystems, which are divided into three interacting systems, decision, operational and biophysical (Clouaire & Rellier, 2009). This research proposes the analysis of agroecosystems under the socio-ecological systems approach in the Río Grande and Río Chico Watershed located in the Colombian Andes, strategic in the provision of drinking water for the Metropolitan Area of ​​the Valle de Aburrá. The agroecosystems dynamics was carried out by means of the identification and interrelation of the variables of each system from a systematic literature review, analysis of the trajectory of the watershed, socioeconomic, productive, environmental characteristics and finally it was validated in the field with a focus group. It was found that the decisions of the producers in the agroecosystems of the wathershed are not only influenced by the economic motivations associated with the costs and profits of production, but also by the social and cultural motivations, such as tradition, which determine the characteristics of the area and the transfer of knowledge for generations, experiences that generate fear and uncertainty regarding the results of production, the presence of cooperatives, ties of trust between the community of farmers that encourage cooperation and collaboration.
dc.publisherUniversidad Nacional de Colombia
dc.publisherMedellín - Minas - Maestría en Medio Ambiente y Desarrollo
dc.publisherDepartamento de Geociencias y Medo Ambiente
dc.publisherFacultad de Minas
dc.publisherMedellín, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Medellín
dc.relationAcevedo, M., Rosales, J., Delgado, L., Ablan, M., Davila, J., Callicot, J. B., et al. (2007). Modelos de interacción humano-ambiental: el enfoque de la Biocomplejidad. Revista Ecosistemas, 16(3), 56–68. http://www.revistaecosistemas.net/index.php/ecosistemas/article/view/93
dc.relationAdger, W. N., Brooks, N., Bentham, G., Agnew, M., & Eriksen, S. (2004). New indicators of vulnerability and adaptive capacityy.
dc.relationAlexander, S. M., Andrachuk, M., & Armitage, D. (2016). Navigating governance networks for community-based conservation. Frontiers in Ecology and the Environment, 14(3), 155–164. https://doi.org/10.1002/fee.1251
dc.relationAlhameid, A., Ibrahim, M., Kumar, S., Sexton, P., & Schumacher, T. E. (2017). Soil organic carbon changes impacted by crop rotational diversity under no-till farming in South Dakota, USA. Soil Science Society of America Journal, 81(4), 868–877. https://doi.org/10.2136/sssaj2016.04.0121
dc.relationAltieri, M. (2015). Agroecología : principios y estrategias para diseñar sistemas agrarios sustentables (Issue June).
dc.relationAltieri, M. A. (1999). The ecological role of biodiversity in agroecosystems. Agriculture, Ecosystems and Environment, 74(1–3), 19–31. https://doi.org/10.1016/S0167-8809(99)00028-6
dc.relationAltieri, M. A., Nicholls, C. I., Henao, A., & Lana, M. A. (2015). Agroecology and the design of climate change-resilient farming systems. Agronomy for Sustainable Development, 35(3), 869–890. https://doi.org/10.1007/s13593-015-0285-2
dc.relationAltieri, M., & Nicholls, C. I. (2013). Agroecología y resiliencia al cambio climatico. Agroecología, 8(1), 7–20. file:///C:/Users/PC/Downloads/182921-Texto del artículo-664981-1-10-20130923 (1).pdf
dc.relationAnderies, J. M., Janssen, M. A., & Ostrom, E. (2004). A Framework to Analyze the Robustness of Social-ecological Systems from an Institutional Perspective. Ecology and Society, 9(1), art18. https://doi.org/10.5751/ES-00610-090118
dc.relationAndrews, S. S., Karlen, D. L., & Cambardella, C. A. (2004). The soil management assessment framework: A quantitative soil quality evaluation method. Soil Science Society of America Journal, 68(6), 1945–1962. https://doi.org/10.2136/sssaj2004.1945
dc.relationBanco Mundial. (2018). Colombia Nota de Política sobre la Implementación del Seguro Agrícola Catastrófico.
dc.relationBarreiro-Hurlé, J., Espinosa-Goded, M., & Dupraz, P. (2010). Does intensity of change matter? Factors affecting adoption of agri-environmental schemes in Spain. Journal of Environmental Planning and Management, 53(7), 891–905. https://doi.org/10.1080/09640568.2010.490058
dc.relationBarton, C. M., Ullah, I. I., & Bergin, S. (2010). Land use, water and Mediterranean landscapes: Modelling long-term dynamics of complex socio-ecological systems. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368(1931), 5275–5297. https://doi.org/10.1098/rsta.2010.0193
dc.relationBeare, M. H., Parmelee, R. W., Hendrix, P. F., Cheng, W., Coleman, D. C., & Crossley, D. A. (1992). Microbial and faunal interactions and effects on litter nitrogen and decomposition in agroecosystems. Ecological Monographs, 62(4), 569–591. https://doi.org/10.2307/2937317
dc.relationBelcher, K. W., Boehm, M. M., & Fulton, M. E. (2004). Agroecosystem sustainability: A system simulation model approach. Agricultural Systems, 79(2), 225–241. https://doi.org/10.1016/S0308-521X(03)00072-6
dc.relationBERGEVOET, R. H. M. (2011). Entrepreneurship of Dutch dairy farmers.
dc.relationBergez, J. E., Debaeke, P., Deumier, J. M., Lacroix, B., Leenhardt, D., Leroy, P., et al. (2001). MODERATO: An object-oriented decision tool for designing maize irrigation schedules. Ecological Modelling, 137(1), 43–60. https://doi.org/10.1016/S0304-3800(00)00431-2
dc.relationBerrio Giraldo, L., Villegas Palacio, C., & Arango Aramburo, S. (2019). MODELACIÓN DINÁMICA DE SISTEMAS SOCIO-ECOLÓGICOS. ANALISIS DE LA DINÁMICA EN EL CAMBIO DE COBERTURA DEL SUELO EN CUENCAS ESTRATEGICAS.
dc.relationBerrouet, Lina Maria. (2018). Vulnerabilidad de sistemas sociales frente a la modificación de servicios ecosistémicos en cuencas hidrográficas de media montaña.
dc.relationBerrouet, Lina María, Machado, J., & Villegas-Palacio, C. (2018). Vulnerability of socio—ecological systems: A conceptual Framework. Ecological Indicators, 84(February 2017), 632–647. https://doi.org/10.1016/j.ecolind.2017.07.051
dc.relationBiggs, R., Schluter, M., Biggs, D., Bohensky, E. L., Burnsilver, S., Cundill, G., et al. (2012). Toward Principles for Enhancing the Resilience of Ecosystem Services. https://doi.org/10.1146/annurev-environ-051211-123836
dc.relationBlanco, C., & Carlos, J. (1982). Procedimiento para hacer un eje o un friso cronológico. 4–6.
dc.relationBlanco, J. (2008). Integrated Water Resource Management in Colombia : Paralysis by Analysis? International Journal of Water Resources, March 2008. https://doi.org/10.1080/07900620701747686
dc.relationBöhme, L., Langer, U., & Böhme, F. (2005). Microbial biomass, enzyme activities and microbial community structure in two European long-term field experiments. Agriculture, Ecosystems and Environment, 109(1–2), 141–152. https://doi.org/10.1016/j.agee.2005.01.017
dc.relationBolaños Valencia, I. V. (2017). Percepción social del riesgo por pérdida de servicios ecosistémicos - caso de estudio cuenca de los ríos grande y chico, antioquia. 151. http://bdigital.unal.edu.co/61270/
dc.relationBooth, L., & Sterman, J. D. (2000). Bathtub dynamics : initial results of a systems thinking inventory. 16(4), 249–286.
dc.relationBooth, L., & Sterman, J. D. (2000). Bathtub dynamics : initial results of a systems thinking inventory. 16(4), 249–286. Brenner, J., Jiménez, J. A., Sardá, R., & Garola, A. (2010). An assessment of the non-market value of the ecosystem services provided by the Catalan coastal zone, Spain. Ocean and Coastal Management, 53(1), 27–38. https://doi.org/10.1016/j.ocecoaman.2009.10.008
dc.relationBulatkin, G. A. (2012). Analysis of energy flows in agroecosystems. Herald of the Russian Academy of Sciences, 82(4), 326–334. https://doi.org/10.1134/S1019331612040089
dc.relationBurton, R. J. F., & Wilson, G. A. (2006). Injecting social psychology theory into conceptualisations of agricultural agency: Towards a post-productivist farmer self-identity? Journal of Rural Studies, 22(1), 95–115. https://doi.org/10.1016/j.jrurstud.2005.07.004
dc.relationCabel, J. F., & Oelofse, M. (2012). An indicator framework for assessing agroecosystem resilience. Ecology and Society, 17(1). https://doi.org/10.5751/ES-04666-170118
dc.relationCalderón, A., García, F., & Martinez, G. (2006). Indicators of Raw Milk Quality in Different Regions of Colombia. Revista MVZ Córdoba, 11(1), 725–737.
dc.relationCámara de Comercio de Bogotá. (2015a). Manual de la Papa.
dc.relationCámara de Comercio de Bogotá. (2015b). Manual de Tomate de árbol. https://www.ccb.org.co/content/download/13726/175108/file/Tomate de árbol.pdf
dc.relationCardona, H., & Estefany, P. R. (2018). Análisis de redes sociales para la gobernanza del agua: caso cuenca Río Grande, Norte de Antioquia. 1–43.
dc.relationCarpenter, S. R., Mooney, H. A., Agard, J., Capistrano, D., Defries, R. S., Diaz, S., et al. (2009). Science for managing ecosystem services: Beyond the Millennium Ecosystem Assessment. Proceedings of the National Academy of Sciences of the United States of America, 106(5), 1305–1312. https://doi.org/10.1073/pnas.0808772106
dc.relationCarulla Fornaguera, J., & Ortega García, E. (2016). Sistemas de producción lechera en Colombia: retos y oportunidades. Archivos Latinoamericanos de Producción Animal, 24(2), 83–87.
dc.relationCaso, E. L., & Módulo, D. E. L. (2008). Condiciones ambientales y producción de leche de un hato de ganado jersey en el trópico húmedo: el caso del Módulo Lechero-SDA/UCR. Agronomia Costarricense, 32(1), 87–94.
dc.relationCastaño Giraldo, N. E., & Cardona Gómez, M. A. (2014). Factores determinantes en la inestabilidad del sector agrícola colombiano. En Contexto, 2, 91–107.
dc.relationChapin, F. S., Kofinas, G. P., & Folke, C. (2009). Principles of ecosystem stewardship: Resilience-based natural resource management in a changing world. In Principles of Ecosystem Stewardship: Resilience-Based Natural Resource Management in a Changing World (Issue May 2014). https://doi.org/10.1007/978-0-387-73033-2
dc.relationChatelin, M. H., Aubry, C., Poussin, J. C., Meynard, J. M., Massé, J., Verjux, N., et al. (2005). DéciBlé, a software package for wheat crop management simulation. Agricultural Systems, 83(1), 77–99. https://doi.org/10.1016/j.agsy.2004.03.003
dc.relationCleves, A. (2018). Resiliencia de agroecosistemas citrícolas a la variabilidad climática en el Departamento del Meta , Colombia.
dc.relationClouaire, R. M., & Rellier, J. P. (2009). Modelling and simulating work practices in agriculture. International Journal of Metadata, Semantics and Ontologies, 4(1/2), 42. https://doi.org/10.1504/IJMSO.2009.026253
dc.relationCOLANTA. (2012). Manual para producir leche de calidad.
dc.relationCollins, S. L., Carpenter, S. R., Swinton, S. M., Orenstein, D. E., Childers, D. L., Gragson, T. L., et al. (2011). An integrated conceptual framework for long-term social–ecological research. Frontiers in Ecology and the Environment, 9(6), 351–357. https://doi.org/10.1890/100068
dc.relationCorantioquia. (2017). INFORME DE AVANCE DE LA EJECUCIÓN DEL PLAN DE ACCIÓN “ POR EL PATRIMONIO AMBIENTAL DE NUESTRO TERRITORIO .”
dc.relationCORANTIOQUIA. (2015a). Caracterización Biofísica de la Cuenca del Río Grande y Río Chico.
dc.relationCORANTIOQUIA. (2015b). Caracterización Socioeconómica de la Cuenca del Río Grande y Río Chico.
dc.relationCORANTIOQUIA. (2015b). Caracterización Socioeconómica de la Cuenca del Río Grande y Río Chico. Corantioquia, & Alcadia de Santa Rosa de Osos. (2015). Consolidación de iniciativas de conservación en el municipio de santa rosa de osos - antioquia. 134.
dc.relationCORANTIOQUIA, & Universidad Nacional de Colombia. (2015). Actualización y Ajuste Plan de Ordenación y Manejo de la Cuenca de los Ríos Grande y Chico.
dc.relationCros, M., Duru, M., Garcia, F., & Martin-clouaire, R. (2001). Simulating rotational grazing management. 27, 139–145.
dc.relationCumming, G. S., Barnes, G., Perz, S., Schmink, M., Sieving, K. E., Southworth, J., et al. (2005). An exploratory framework for the empirical measurement of resilience. Ecosystems, 8(8), 975–987. https://doi.org/10.1007/s10021-005-0129-z
dc.relationDANE. (2016). Efectos del clima en la producción de la ganadería de leche. Boletín Mensual INSUMOS Y FACTORES ASOCIADOS A LA PRODUCCIÓN AGROPECUARIA, 10(5). https://doi.org/10.1371/journal.pmed.1001452
dc.relationDarghouth, S., Ward, C., Gambarelli, G., Styger, E., & Roux, J. (2008). Watershed management approaches, policies, and operations: Lessons for scaling up. Water Sector Board Discussion Papers, 11, 1–164. http://documents.worldbank.org/curated/en/2008/05/9608907/watershed-management-approaches-policies-operations-lessons-scaling-up%5Cnhttp://www-wds.worldbank.org/external/default/WDSContentServer/WDSP/IB/2008/06/26/000020439_20080626162646/Rendered/PDF/442
dc.relationDávila Betancurth, J. C. (2016). Variables Explicativas de la Vulnerabilidad Biofísica y Socio Económica al Cambio Climático en Agroecosistemas de la Cuenca del Rio Grande Antioquia.
dc.relationDávila, J. C., & Vélez, L. D. (2015). Vulnerabilidad ecológica y económica de sistemas especializados en producción de leche en la Cuenca del Riogrande – Colombia. Congreso Latinoamericano de Agroecología, 1–5.
dc.relationDe Aranzabal, I., Schmitz, M. F., Aguilera, P., & Pineda, F. D. (2008). Modelling of landscape changes derived from the dynamics of socio-ecological systems. A case of study in a semiarid Mediterranean landscape. Ecological Indicators, 8(5), 672–685. https://doi.org/10.1016/j.ecolind.2007.11.003
dc.relationDe los Ríos Cardona, J. C. (2015). VULNERABILIDADE DA AGRICULTURA ÀS MUDANÇAS CLIMÁTICAS NA BACIA DO RIO GRANDE (ANTIOQUIA, COLÔMBIA): UMA ABORDAGEM A PARTIR DO TERRITÓRIO E DA RESILIÊNCIA DOS SISTEMAS SOCIO-ECOLÓGICOS. https://doi.org/10.1145/3132847.3132886
dc.relationDee, L. E., Allesina, S., Bonn, A., Eklöf, A., Gaines, S. D., Hines, J., et al. (2017). Operationalizing Network Theory for Ecosystem Service Assessments. Trends in Ecology and Evolution, 32(2), 118–130. https://doi.org/10.1016/j.tree.2016.10.011
dc.relationDenisov, V. V. (2001). Development of the crop simulation system DIASPORA. Agronomy Journal, 93(3), 660–666. https://doi.org/10.2134/agronj2001.933660x
dc.relationDepartamento Nacional de Planeación. (2017). Documento Conpes 3886. Lineamientos de política y programa nacional de pago por servicios ambientales para la construcción de paz. Consejo Nacional de Política Económica y Social, 94.
dc.relationDougill, A. J., Fraser, E. D. G., & Reed, M. S. (2010). Anticipating Vulnerability to Climate Change in Dryland Pastoral Systems: Using Dynamic Systems Models for the Kalahari. https://eprints.whiterose.ac.uk/URL:http://www.ecologyandsociety.org/vol15/iss2/art17/
dc.relationDourojeanni, A., Jouravlev, A., & Chávez, G. (2002). Gestión del agua a nivel de cuencas. teoría y práctica. In United Nations Publications (Vol. 1). https://doi.org/1680-9025
dc.relationDuque, G., & Escobar, C. (2012). Consolidación de suelos. Mecanica de Los Suelos, 80–109. http://www.bdigital.unal.edu.co/1864/10/cap9.pdf
dc.relationEivazi, F., Bayan, M. R., & Schmidt, K. (2003). Select soil enzyme activities in the historic Sanborn Field as affected by long-term cropping systems. Communications in Soil Science and Plant Analysis, 34(15–16), 2259–2275. https://doi.org/10.1081/CSS-120024062
dc.relationElsawah, S., Guillaume, J. H. A., Filatova, T., Rook, J., & Jakeman, A. J. (2015). A methodology for eliciting, representing, and analysing stakeholder knowledge for decision making on complex socio-ecological systems: From cognitive maps to agent-based models. Journal of Environmental Management, 151, 500–516. https://doi.org/10.1016/j.jenvman.2014.11.028
dc.relationEmmerling, C., Schloter, M., Hartmann, A., & Kandeler, E. (2002). Functional diversity of soil organisms - A review of recent research activities in Germany. Journal of Plant Nutrition and Soil Science, 165(4), 408–420. https://doi.org/10.1002/1522-2624(200208)165:4<408::AID-JPLN408>3.0.CO;2-3
dc.relationEmmerling, C., Schloter, M., Hartmann, A., & Kandeler, E. (2002). Functional diversity of soil organisms - A review of recent research activities in Germany. Journal of Plant Nutrition and Soil Science, 165(4), 408–420. https://doi.org/10.1002/1522-2624(200208)165:4<408::AID-JPLN408>3.0.CO;2-3
dc.relationFAO. (2007). Adaptation to climate change in agriculture , forestry and fisheries : Perspective , framework and. Interdepartmental Working Group on Climate Change, 32pp. ftp://ftp.fao.org/docrep/fao/009/j9271e/j9271e.pdf%5Cnhttp://www.fao.org/NR/climpag/index_fr.asp
dc.relationFAO. (2017). Seguros agrícolas para la agricultura familiar en américa latina y el caribe. Lineamientos para su diseño e implementación. http://www.draplvt.mamaot.pt/DRAPLVT/Comunicacao/Noticias/Documents/seminario_Agricultura_rio_maior_2017/2_Seguros_agricolas_CA Seguros.pdf
dc.relationFarm, N., Farm, N., Stewardship, C., Entry, O., Stewardship, L., & Government, U. K. (2012). Materials and Methods . Part 1 . Details of the study site Part 2 . Constructing the interaction networks. Science.
dc.relationField, C. B., Barros, V., Stocker, T. F., Dahe, Q., Dokken, D. J., Ebi, K. L., et al. (2012). Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. In Special Report of the Intergovernmental Panel on Climate Change. https://doi.org/10.1017/CBO9781139177245
dc.relationFierer, N., Strickland, M. S., Liptzin, D., Bradford, M. A., & Cleveland, C. C. (2009). Global patterns in belowground communities. Ecology Letters, 12(11), 1238–1249. https://doi.org/10.1111/j.1461-0248.2009.01360.x
dc.relationFischer, C., Leydesdorff, L., Schophaus, M., Dorland, J., Jørgensen, M. S., Chan, L., et al. (2010). The new political sociology of science: Institutions, networks, and power. In Social Studies of Science (Vol. 8, Issue 2). https://doi.org/10.1371/journal.pbio.1001195.
dc.relationFolke, C., Hahn, T., Olsson, P., & Norberg, J. (2005). Adaptive governance of social-ecological systems. In Annual Review of Environment and Resources (Vol. 30). https://doi.org/10.1146/annurev.energy.30.050504.144511
dc.relationFondevilla, C., Àngels Colomer, M., Fillat, F., & Tappeiner, U. (2016). Using a new PDP modelling approach for land-use and land-cover change predictions: A case study in the Stubai Valley (Central Alps). Ecological Modelling, 322(February), 101–114. https://doi.org/10.1016/j.ecolmodel.2015.11.016
dc.relationForrester, J. W. (1971). Counterintuitive behavior of social systems. Technological Forecasting and Social Change, 3(C), 1–22. https://doi.org/10.1016/S0040-1625(71)80001-X
dc.relationFrancis, C. (2010). Book review. International Journal of Agricultural Sustainability, 8(4), 331–332. https://doi.org/10.3763/ijas.2010.R9013
dc.relationFranko, U., & Wilfried, M. (2001). Integration of a Crop Growth Model with a Model of Soil Dynamics. 93(June), 666–670.
dc.relationGalarza, F. B. (2009). Choices under Risk in Rural Peru. 17708.
dc.relationGallopin Gilverto. (2013). Sostenibilidad y desarrollo Sostenible: un enfoque sistémico. In nsabilidad del autor y pueden no coincidir con las de la Organización. PPublicación de las Naciones Unidas : Vol. S.02.II.G. https://doi.org/10.1017/CBO9781107415324.004
dc.relationGarcía-Leoz, V., Villegas, J. C., Suescún, D., Flórez, C. P., Merino-Martín, L., Betancur, T., et al. (2018). Land cover effects on water balance partitioning in the Colombian Andes: improved water availability in early stages of natural vegetation recovery. Regional Environmental Change, 18(4), 1117–1129. https://doi.org/10.1007/s10113-017-1249-7
dc.relationGasson, R. (1973). And farmers. Jornal of Agricultural Economics, 24(3), 521–542.
dc.relationGaviria, B. C. (2007). Calidad higiénica y sanitaria de la leche cruda. In Fondo Editorial Biogénesis (pp. 115–122).
dc.relationGeilfus, F. (2005). 80 herramientas para el desarrollo participativo: Diagnóstico, Planificación Monitoreo y Evaluación.
dc.relationGerber, P., Chilonda, P., Franceschini, G., & Menzi, H. (2005). Geographical determinants and environmental implications of livestock production intensification in Asia. Bioresource Technology, 96(2), 263–276. https://doi.org/10.1016/j.biortech.2004.05.016
dc.relationGerzabek, M. H., Antil, R. S., Kögel-Knabner, I., Knicker, H., Kirchmann, H., & Haberhauer, G. (2006). How are soil use and management reflected by soil organic matter characteristics: A spectroscopic approach. European Journal of Soil Science, 57(4), 485–494. https://doi.org/10.1111/j.1365-2389.2006.00794.x
dc.relationGiorgio Castellaro, G., Klee, G., & Chavarria R., J. (2007). Un modelo de simulación de sistemas de engorda de bovinos a pastoreo. Agricultura Técnica, 67(2), 34. https://doi.org/10.4067/S0365-28072007000200006
dc.relationGormley, L. H. L., & Sinclair, F. L. (2003). Modelaje participativo del impacto de los árboles en la productividad de las fincas y la biodiversidad regional en paisajes fragmentados en América Central. Agroforestería En Las Américas, 10, 103–108.
dc.relationGreiner, R. (2015). Motivations and attitudes influence farmers’ willingness to participate in biodiversity conservation contracts. Agricultural Systems, 137, 154–165. https://doi.org/10.1016/j.agsy.2015.04.005
dc.relationGunderson, L., & Holling, C. S. (2002). Panarchy: Understanding Transformations in Human and Natural Systems.
dc.relationHardner, J., & Rice, R. (2002). Rethinking Green Consumerism. Scientific American, 89–95.
dc.relationHazell, P. et al. (2010). El potencial para la ampliación y sostenibilidad de los seguros basados en índices climáticos para la agricultura y subsistencia rural. 151.
dc.relationHirji, R., & Davis, R. (2009). Environmental Flows in Water Resources Policies, Plans, and Projects. Water Resources, 117, 181. https://doi.org/10.1596/978-0-8213-7940-0
dc.relationHolmann, F., & Rica, C. (2002). El uso de modelos de simulación como herramienta para la toma de decisiones en la promoción de nuevas alternativas forrajeras: el caso de Costa Rica y Perú* Using simulation models as a tool for promoting improved forages alternatives in. Latinoam. Prod. Anim, 10(1), 35–45.
dc.relationHördur V. Haraldsson. (2004). Introduction to System Thinking and Causal Loop Diagrams. In Reports in Ecology and Environmental Engineering (Issue January 2004).
dc.relationHynes, S., & Garvey, E. (2009). Modelling farmers’ participation in an agri-environmental scheme using panel data: An application to the rural environment protection scheme in Ireland. Journal of Agricultural Economics, 60(3), 546–562. https://doi.org/10.1111/j.1477-9552.2009.00210.x
dc.relationIfejika Speranza, C., Wiesmann, U., & Rist, S. (2014). An indicator framework for assessing livelihood resilience in the context of social – ecological dynamics. Global Environmental Change, 28, 109–119. https://doi.org/10.1016/j.gloenvcha.2014.06.005
dc.relationIngram, J., Gaskell, P., Mills, J., & Short, C. (2013). Incorporating agri-environment schemes into farm development pathways: A temporal analysis of farmer motivations. Land Use Policy, 31, 267–279. https://doi.org/10.1016/j.landusepol.2012.07.007
dc.relationJairo, Á. P. J. (2013). EVALUACIÓN DEL IMPACTO DEL MICROCRÉDITO EN LA COOPERATIVA DE AHORRO Y CRÉDITO COLANTA.
dc.relationJanssen, M. A., Bodin, Ö., Anderies, J. M., Elmqvist, T., Ernstson, H., McAllister, R. R., et al. (2006). Toward a Network Perspective of the Study of Resilience in Social-Ecological Systems. Ecology and Society, 11(1). https://doi.org/15
dc.relationJanssen, M. A., & Ostrom, E. (2006). Chapter 30 Governing Social-Ecological Systems. Handbook of Computational Economics, 2(05), 1465–1509. https://doi.org/10.1016/S1574-0021(05)02030-7
dc.relationJaramillo Londoño, A. R., & Areiza Segura, A. M. (2012). Análisis del Mercado de la Leche y Derivados Lácteos en Colombia (2008 – 2012).
dc.relationKandeler, E., Stemmer, M., & Klimanek, E. M. (1999). Response of soil microbial biomass, urease and xylanase within particle size fractions to long-term soil management. Soil Biology and Biochemistry, 31(2), 261–273. https://doi.org/10.1016/S0038-0717(98)00115-1
dc.relationKarlen, D.L., Mausbach, M.J., Doran, J.W., Cline, R.G., Harris, R.F., Schuman, G.E., et al. (1997). Soil quality: a concept, definition, and framework for evaluation. Soil Science Society of America Journal, 61. http://naldc.nal.usda.gov/catalog/16713
dc.relationKinoshita, R., Schindelbeck, R. R., & van Es, H. M. (2017). Quantitative soil profile-scale assessment of the sustainability of long-term maize residue and tillage management. Soil and Tillage Research, 174(May), 34–44. https://doi.org/10.1016/j.still.2017.05.010
dc.relationKronberg, S. L., & Ryschawy, J. (2018). Integration of crop and livestock production in temperate regions to improve agroecosystem functioning, ecosystem services, and human nutrition and health. In Agroecosystem Diversity: Reconciling Contemporary Agriculture and Environmental Quality. Elsevier Inc. https://doi.org/10.1016/B978-0-12-811050-8.00015-7
dc.relationucharik, C. J. (2003). Evaluation of a process-based agro-ecosystem model (Agro-IBIS) across the U.S. Corn Belt: Simulations of the interannual variability in maize yield. Earth Interactions, 7(14), 1–33. https://doi.org/10.1175/1087-3562(2003)007<0001:EOAPAM>2.0.CO;2
dc.relationKumar, A., Dorodnikov, M., Splettstößer, T., Kuzyakov, Y., & Pausch, J. (2017). Effects of maize roots on aggregate stability and enzyme activities in soil. Geoderma, 306(October 2016), 50–57. https://doi.org/10.1016/j.geoderma.2017.07.007
dc.relationKurukulasuriya, P., & Rosenthal, S. (2003). Climate change and agriculture. Trends in Ecology and Evolution, 6(3), 101. https://doi.org/10.1016/0169-5347(91)90186-2
dc.relationLacitignola, D., Petrosillo, I., Cataldi, M., & Zurlini, G. (2007). Modelling socio-ecological tourism-based systems for sustainability. Ecological Modelling, 206(1–2), 191–204. https://doi.org/10.1016/j.ecolmodel.2007.03.034
dc.relationLal, R. (2015). Restoring soil quality to mitigate soil degradation. Sustainability (Switzerland), 7(5), 5875–5895. https://doi.org/10.3390/su7055875
dc.relationLastra-Bravo, X. B., Hubbard, C., Garrod, G., & Tolón-Becerra, A. (2015). What drives farmers’ participation in EU agri-environmental schemes?: Results from a qualitative meta-analysis. Environmental Science and Policy, 54, 1–9. https://doi.org/10.1016/j.envsci.2015.06.002
dc.relationLobell, D. B., & Gourdji, S. M. (2012). The influence of climate change on global crop productivity. Plant Physiology, 160(4), 1686–1697. https://doi.org/10.1104/pp.112.208298
dc.relationLu, M., Zhou, X., Luo, Y., Yang, Y., Fang, C., Chen, J., et al. (2011). Minor stimulation of soil carbon storage by nitrogen addition: A meta-analysis. Agriculture, Ecosystems and Environment, 140(1–2), 234–244. https://doi.org/10.1016/j.agee.2010.12.010
dc.relationMachado, J., Villegas-Palacio, C., Loaiza, J. C., & Castañeda, D. A. (2019). Soil natural capital vulnerability to environmental change. A regional scale approach for tropical soils in the Colombian Andes. Ecological Indicators, 96(65), 116–126. https://doi.org/10.1016/j.ecolind.2018.08.060
dc.relationMachado Vargas, M. M., Nicholls, C. I., Márquez, S. M., & Turbay, S. (2015). Caracterización de nueve agroecosistemas de café de la cuenca del río Porce, Colombia, con un enfoque agroecológico. Idesia (Arica), 33(1), 69–83. https://doi.org/10.4067/s0718-34292015000100008
dc.relationMADS. (2018). Decreto 1007 de 2018. 1–10.
dc.relationMarinari, S., Masciandaro, G., Ceccanti, B., & Grego, S. (2000). Influence of organic and mineral fertilisers on soil biological and physical properties. Bioresource Technology, 72(1), 9–17. https://doi.org/10.1016/S0960-8524(99)00094-2
dc.relationMarinari, Sara, Mancinelli, R., Campiglia, E., & Grego, S. (2006). Chemical and biological indicators of soil quality in organic and conventional farming systems in Central Italy. Ecological Indicators, 6(4), 701–711. https://doi.org/10.1016/j.ecolind.2005.08.029
dc.relationMarsiglia Rivera, S. M. (2017). Capacidad adaptativa de los sistemas sociales ante la pérdida o deterioro de los servicios ecosistémicos.
dc.relationMartín-López, B., Gómez-Baggethun, E., & Montes, C. (2009). Un marco conceptual para la gestión de las interacciones naturaleza-sociedad en un mundo cambiante. Cuides. Cuaderno Interdisciplinar de Desarrollo Sostenible, 3, 229–258.
dc.relationMartin, G., Martin-Clouaire, R., Rellier, J. P., & Duru, M. (2011). A simulation framework for the design of grassland-based beef-cattle farms. Environmental Modelling and Software, 26(4), 371–385. https://doi.org/10.1016/j.envsoft.2010.10.002
dc.relationMartínez, I., Chervet, A., Weisskopf, P., Sturny, W. G., Rek, J., & Keller, T. (2016). Two decades of no-till in the Oberacker long-term field experiment: Part II. Soil porosity and gas transport parameters. Soil and Tillage Research, 163, 130–140. https://doi.org/10.1016/j.still.2016.05.020
dc.relationMartínez, J., & Esteve, M. (2007). Gestión integrada de cuencas costeras : dinámica de los nutrientes en la cuenca del Mar Menor (sudeste de España). Revista de Dinámica de Sistemas, 3(Marzo), 2–23.
dc.relationMauricio, R. M., Ribeiro, R. S., Paciullo, D. S. C., Cangussú, M. A., Murgueitio, E., Chará, J., et al. (2018). Silvopastoral systems in latin america for biodiversity, environmental, and socioeconomic improvements. Agroecosystem Diversity: Reconciling Contemporary Agriculture and Environmental Quality, 287–297. https://doi.org/10.1016/B978-0-12-811050-8.00018-2
dc.relationMbizvo, C., Duraiappah, A., Koetz, T., Brondizio, E., Bartus, G., Roué, M., et al. (2014). The IPBES Conceptual Framework — connecting nature and people. Current Opinion in Environmental Sustainability, 14, 1–16. https://doi.org/10.1016/j.cosust.2014.11.002
dc.relationMelland, A. R., Antille, D. L., & Dang, Y. P. (2017). Effects of strategic tillage on short-Term erosion, nutrient loss in runoff and greenhouse gas emissions. Soil Research, 55(3), 201–214. https://doi.org/10.1071/SR16136
dc.relationMerritt, W. S., Letcher, R. A., & Jakeman, A. J. (2003). A review of erosion and sediment transport models. Environmental Modelling and Software, 18(8–9), 761–799. https://doi.org/10.1016/S1364-8152(03)00078-1
dc.relationMinisterio de Agricultura y Desarrollo Rural. (2010). Balance de Gobierno Logros y Retos del Sector Agropecuario.
dc.relationMinisterio de agricultura y desarrollo rural MADR. (2012). Resolución 000017 de 2012 (p. 18).
dc.relationMinisterio de la Protección Social. (2006). Decreto Número 616 De 2006. Ministerio de La Protección Social, 2–32. https://doi.org/10.1111/j.0954-6820.1937.tb03385.x
dc.relationMontealegre Bocanegra, J. (2014). Actualización del componente Meteorológico del modelo institucional del IDEAM sobre el efecto climático de los fenómenos El Niño y La Niña en Colombia, como insumo para el Atlas Climatológico. IDEAM (Instituto de Hidrologia, Meteorologia y Estudios Ambientales), 1–134. http://www.ideam.gov.co/documents/21021/440517/Actualizacion+Modelo+Institucional+El+Niño+-+La+Niña.pdf/02f5e53b-0349-41f1-87e0-5513286d1d1d
dc.relationMurgueitio, E. R., Chará, J. O., Barahona, R. R., Cuartas, C. C., & Naranjo, J. R. (2014). Intensive Silvopastoral Systems (ISPS), mitigation and adaptation tool to climate change. Tropical and Subtropical Agroecosystems, 17(3), 501–507.
dc.relationMurphy, G., Hynes, S., Murphy, E., & O’Donoghue, C. (2014). An investigation into the type of farmer who chose to participate in Rural Environment Protection Scheme (REPS) and the role of institutional change in influencing scheme effectiveness. Land Use Policy, 39, 199–210. https://doi.org/10.1016/j.landusepol.2014.02.015
dc.relationNunes, M. R., van Es, H. M., Schindelbeck, R., Ristow, A. J., & Ryan, M. (2018). No-till and cropping system diversification improve soil health and crop yield. Geoderma, 328(April), 30–43. https://doi.org/10.1016/j.geoderma.2018.04.031
dc.relationOrduño Torres, M. A., Kallas, Z., & Ornelas Herrera, S. I. (2018). Analysis of Farmers ’ Stated Risk Using Lotteries and Their Perceptions of Climate Change in the Northwest of Mexico. https://doi.org/10.3390/agronomy9010004
dc.relationOsorio Múnera, J. D., García-tavera, L. M., Bustamante Ochoa, E. A., & Uribe Rivera, N. (2019). Optimización de uso del suelo acorde con restricciones ambientales y sociales: caso cuenca de Riogrande II. Semestre Económico, 22(52), 19–48. https://doi.org/10.22395/seec.v22n52a2
dc.relationOstrom, E. (2009). A general framework for analyzing sustainability of social-ecological systems. Science, 325(5939), 419–422. https://doi.org/10.1126/science.1172133
dc.relationPagiola, S., Agostini, P., Cees, G., Muhammad, H., Enrique, I., El, M., et al. (2004). Paying for Biodiversity Conservation Services in Agricultural Landscapes. ENVIRONMENT DEPARTMENT PAPER, 96.
dc.relationPahl-wostl, C. (2002). Towards sustainability in the water sector – The importance of human actors and processes of social learning. 64, 394–411.
dc.relationPannell, D. J. (1995). Economic aspects of legume management and legume research in dryland farming systems of southern Australia. Agricultural Systems, 49(3), 217–236. https://doi.org/10.1016/0308-521X(94)00049-W
dc.relationPanpakdee, C., & Limnirankul, B. (2017). Kasetsart Journal of Social Sciences Indicators for assessing social-ecological resilience : A case study of organic rice production in northern Thailand. Kasetsart Journal of Social Sciences. https://doi.org/10.1016/j.kjss.2017.07.003
dc.relationPérez-Maqueo, O., Delfín, C., Fregoso, A., Cotler, H., & Equihua, M. (2005). Modelos de simulación para la elaboración y evaluación de los programas de servicios ambientales hídricos. Gaceta Ecológica, 76, 47–66.
dc.relationPérez Gallardo, S. J. (2001). MODELO PARA EVALUAR LA EROSION HIDRICA EN COLOMBIA UTILIZANDO SISTEMAS DE INFORMACION GEOGRAFICA.
dc.relationPimentel, D., & Burgess, M. (2005). An environmental, energetic and economic comparison of organic and conventional farming systems. Integrated Pest Management: Pesticide Problems, Vol.3, 55(7), 141–166. https://doi.org/10.1007/978-94-007-7796-5_6
dc.relationPomar, C., Harris, D. L., Savoie, P., & Minvielle, F. (1991). Computer simulation model of swine production systems: III. A dynamic herd simulation model including reproduction. Journal of Animal Science, 69(7), 2822–2836. https://doi.org/10.2527/1991.6972822x
dc.relationQuesnel, G., Akplogan, M., Bonneau, M., Martin-Clouaire, R., Peyrard, N., Rellier, J. P., et al. (2015). Decision in agroecosystems advanced modelling techniques studying global changes in environmental sciences. Developments in Environmental Modelling, 27, 217–245. https://doi.org/10.1016/B978-0-444-63536-5.00010-7
dc.relationRam, C. D., & Orrego, S. A. (2015). Trayectorias de cambios en coberturas terrestres en una cuenca de los Andes colombianos: Río Grande, 1986-2012. 4.
dc.relationRamirez Guerra, S. (2018). Retrospectiva del sector lácteo colombiano.
dc.relationRamírez León, J. M. (2009). Producción de sedimentos en cuencas: revisión de criterios y aplicabilidad a la cuenca del río Apulco. June 2009, 205.
dc.relationRapidel, B., Ripoche, A., Allinne, C., Metay, A., Deheuvels, O., Lamanda, N., et al. (2015). Analysis of ecosystem services trade-offs to design agroecosystems with perennial crops. Agronomy for Sustainable Development, 35(4), 1373–1390. https://doi.org/10.1007/s13593-015-0317-y
dc.relationRaskin, P. D. (2006). World Lines : Pathways , Pivots , and the Global Future.
dc.relationReicosky, D. C., Sauer, T. J., & Hatfi, J. L. (2011). Productivity and Environmental Quality : Tillage Impacts. 56267, 13–38. https://doi.org/10.2136/2011soilmanagement.c2
dc.relationReyers, B., Biggs, R., Cumming, G. S., Elmqvist, T., Hejnowicz, A. P., & Polasky, S. (2013). Getting the measure of ecosystem services: A social-ecological approach. Frontiers in Ecology and the Environment, 11(5), 268–273. https://doi.org/10.1890/120144
dc.relationRíos, M. (2010). Control biológico de la Antracnosis (Colletotrichum gloesporioides Penz) en tomate de árbol (Solanum betaceum) en el ecotipo: amarillo puntón, mediante hongos endofitos antagonistas.
dc.relationRodriguez-Iturb, I. (2000). Ecohydrology : A hydrologic perspective of climate-soil-vegetation dynamics. Water Resources Research, 36(1), 3–9.
dc.relationRotz, C. A., Buckmaster, D. R., & Comerford, J. W. (2005). A beef herd model for simulating feed intake , animal performance , and manure excretion in farm systems The online version of this article , along with updated information and services , is located on the World Wide Web at : A beef herd model for simulat. Journal of Animal Science, 83(June 2014), 231–242. https://doi.org/10.3168/jds.S0022-0302(03)74032-6
dc.relationRuiz-Cortés, T., Orozco, S., Rodríguez, L., Idárraga, J., & Olivera, M. (2012). Factores Que Afectan El Recuento De Ufc En La Leche En Tanque En Hatos Lecheros Del Norte De Antioquia-Colombia. Revista U.D.C.A Actualidad & Divulgación Científica, m, 147–155.
dc.relationScanlon, B. R., Gates, J. B., Reedy, R. C., Jackson, W. A., & Bordovsky, J. P. (2010). Effects of irrigated agroecosystems: 2. Quality of soil water and groundwater in the southern High Plains, Texas. Water Resources Research, 46(9). https://doi.org/10.1029/2009WR008428
dc.relationSchulte, R. P. O., Creamer, R. E., Donnellan, T., Farrelly, N., Fealy, R., O’Donoghue, C., et al. (2014). Functional land management: A framework for managing soil-based ecosystem services for the sustainable intensification of agriculture. Environmental Science and Policy, 38, 45–58. https://doi.org/10.1016/j.envsci.2013.10.002
dc.relationSecretaría Jurídica de Bogotá. (2002). Decerto 1729 de 2002.
dc.relationSepúlveda López, L. P. (2013). Modelo para la definición de áreas estratégicas para la conservación de suelos a partir de la determinación de la susceptibilidad a la erosión hídirica.
dc.relationSerrato, B., Díaz, R., & Bermúdez, L. (1999). ÓPTIMO DE COBERTURA VEGETAL EN RELACIÓN A LAS PÉRDIDAS DE SUELO POR EROSIÓN HÍDRICA Y LAS PÉRDIDAS DE LLUVIA POR INTERCEPTACIÓN. January.
dc.relationShi, T., & Gill, R. (2005). Developing effective policies for the sustainable development of ecological agriculture in China: The case study of Jinshan County with a systems dynamics model. Ecological Economics, 53(2), 223–246. https://doi.org/10.1016/j.ecolecon.2004.08.006
dc.relationSiebert, R., Toogood, M., & Knierim, A. (2006). Factors affecting european farmers’ participation in biodiversity policies. Sociologia Ruralis, 46(4), 318–340. https://doi.org/10.1111/j.1467-9523.2006.00420.x
dc.relationSoussana, J. F., & Lemaire, G. (2014). Coupling carbon and nitrogen cycles for environmentally sustainable intensification of grasslands and crop-livestock systems. Agriculture, Ecosystems and Environment, 190, 9–17. https://doi.org/10.1016/j.agee.2013.10.012
dc.relationSpicer, J. (2015). Representation and Dynamic Implications of Mental Models of Food Systems. 33rd International Conference of the System Dynamics Society.
dc.relationSrinivasa, C., Kareemulla, K., Krishnan, P., Murthy, G. R. K., Ramesh, P., Ananthan, P. S., et al. (2020). Agro-ecosystem based sustainability indicators for climate resilient agriculture in India : A conceptual framework. Ecological Indicators, June 2018, 0–1. https://doi.org/10.1016/j.ecolind.2018.06.038
dc.relationSterman, J. D. (2000). Business Dynamics; Systems thinking and modeling for a complex world (p. 1008). https://doi.org/10.1057/palgrave.jors.2601336
dc.relationSulemana, I., & James, H. S. (2014). Farmer identity, ethical attitudes and environmental practices. Ecological Economics, 98, 49–61. https://doi.org/10.1016/j.ecolecon.2013.12.011
dc.relationTamayo M., P. J., Zapata P., J. L., & Salazar, L. F. (1999). El mosaico y la virosis del tomate de árbol en el Altiplano Norte de Antioquia. Revista Facultad Nacional de Agronomía, 52(2), 781–785.
dc.relationTapasco, J. (2009). Formalización de un modelo de pago por servicios ambientales a nivel de cuenca y algunas de sus incidencias sobre la pobreza rural. Cuadernos de Desarrollo Rural, 6(63), 87–105.
dc.relationThompson, J., & Scoones, I. (2009). Addressing the dynamics of agri-food systems: an emerging agenda for social science research. Environmental Science and Policy, 12(4), 386–397. https://doi.org/10.1016/j.envsci.2009.03.001
dc.relationTran Thanh, A. (2018). Dynamics of the Socio-Ecosystems of Riogrande basin, Antioquia, Colombia.
dc.relationUgarte, C. M., Kwon, H., Andrews, S. S., & Wander, M. M. (2014). A meta-analysis of soil organic matter response to soil management practices: An approach to evaluate conservation indicators. Journal of Soil and Water Conservation, 69(5), 422–430. https://doi.org/10.2489/jswc.69.5.422
dc.relationUnger, P. W. (1992). Infiltration of simulated rainfall: tillage system and crop residue effects. Soil Science Society of America Journal, 56(1), 283–289. https://doi.org/10.2136/sssaj1992.03615995005600010045x
dc.relationUniversidad Nacional de Colombia. (2012). VALORACIÓN ECONÓMICA, ECOLÓGICA Y CULTURAL DE BIENES Y SERVICIOS AMBIENTALES EN LA CUENCA DEL RÍO GRANDE. APROXIMACION CONCEPTUAL Y METODOLÓGICA INFORME FINAL Contrato 8811 CORANTIOQUIA ESCUELA DE GEOCIENCIAS Y MEDIO AMBIENTE VALORACION ECONÓMICA , ECOLÓG. 547.
dc.relationUthes, S., & Matzdorf, B. (2013). Studies on agri-environmental measures: A survey of the literature. Environmental Management, 51(1), 251–266. https://doi.org/10.1007/s00267-012-9959-6
dc.relationValencia-Pinzón, A. (2019). Insumos agropecuarios. Ministerio de Agricultura, 1, 1–23. https://sioc.minagricultura.gov.co/Documentos/5. LINEAMIENTOS DE LA POLÍTICA DE INSUMOS AGROPECURIOS.pdf
dc.relationVargas Rodríguez, D. Y. (2018). EVALUACIÓN DE ESQUEMAS DE PAGOS POR SERVICIOS AMBIENTALES ASOCIADOS A ÁREAS ESTRATÉGICAS DEL RÍO MAGDALENA, MERCANTILISMO DE EMOCIONES. https://doi.org/10.1017/CBO9781107415324.004
dc.relationVelázquez-torres, D. (2015). Sistemas complejos adaptativos , sistemas socio- ecológicos y resiliencia. 11–32.
dc.relationVelez, J. I. (2001). Desarrollo de un modelo hidrológico conceptual y distribuido orientado a la simulación de las crecidas. Universidad Politécnica de Valencia.
dc.relationVélez, L. D., & Gastó, J. (1999). Metodología y determinación de los estilos de agricultura en escala predial.
dc.relationVerburg, P. H., van Berkel, D. B., van Doorn, A. M., van Eupen, M., & van den Heiligenberg, H. A. R. M. (2010). Trajectories of land use change in Europe: A model-based exploration of rural futures. Landscape Ecology, 25(2), 217–232. https://doi.org/10.1007/s10980-009-9347-7
dc.relationVillegas-palacio, C., Berrouet, L., López, C., Ruiz, A., & Upegui, A. (2016). Lessons from the integrated valuation of ecosystem services in a developing country : Three case studies on ecological , socio-cultural and economic valuation. Ecosystem Services, 22(October), 297–308. https://doi.org/10.1016/j.ecoser.2016.10.017
dc.relationWalters, C. J. ., & Holling, C. . S. . (1990). Large-Scale Management Experiments and Learning. 71(6), 2060–2068.
dc.relationWillock, J., Deary, I. J., Edwards-Jones, G., Gibson, G. J., McGregor, M. J., Sutherland, A., et al. (1999). The role of attitudes and objectives in farmer decision making: Business and environmentally-oriented behaviour in Scotland. Journal of Agricultural Economics, 50(2), 286–303. https://doi.org/10.1111/j.1477-9552.1999.tb00814.x
dc.relationWunder, S. (2005). Payments for environmental services: some nuts and bolts. CIFOR, 9. https://doi.org/10.17528/cifor/001765
dc.relationZeng, J., Liu, X., Song, L., Lin, X., Zhang, H., Shen, C., et al. (2016). Nitrogen fertilization directly affects soil bacterial diversity and indirectly affects bacterial community composition. Soil Biology and Biochemistry, 92(October), 41–49. https://doi.org/10.1016/j.soilbio.2015.09.018
dc.relationZhang, Y., Li, C., Zhou, X., & Moore III, B. (2002). A simulation model linking crop growth and soil biogeochemistry for sustainable agriculture. Ecological Modelling 151 (2002) 75-108, 151, 75–108. https://doi.org/10.1016/s0304-3800(01)00527-0
dc.rightsAtribución-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleDinámicas de los agroecosistemas bajo el enfoque de sistemas socioecológicos. Caso de estudio : Cuenca Hidrográfica del Río Grande y Río Chico.
dc.typeTesis


Este ítem pertenece a la siguiente institución