dc.contributorCórdoba Gaona, Óscar de Jesús
dc.contributorBarrera Sánchez, Carlos Felipe
dc.contributorFitotecnia Tropical
dc.creatorMejia Londoño, Henry Andres
dc.date.accessioned2022-08-12T20:22:56Z
dc.date.accessioned2022-09-21T15:39:23Z
dc.date.available2022-08-12T20:22:56Z
dc.date.available2022-09-21T15:39:23Z
dc.date.created2022-08-12T20:22:56Z
dc.date.issued2021-11-23
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/81894
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3383387
dc.description.abstractEl Cannabis es una planta de tradición milenaria, actualmente de interés debido a la eficacia de los cannabinoides (CBD) en diferentes tratamientos terapéuticos. Este trabajo tuvo como objetivo evaluar la respuesta fisiológica y la viabilidad del polen en plantas de Cannabis sometidas a diferentes métodos de reversión sexual. El material de evaluación se propagó mediante el esquejado de plantas femeninas, esquejes propagados en turba en combinación con el regulador de crecimiento registraron el mayor porcentaje de sobrevivencia (100%) con respecto al medio hidropónico sin regulador (73,33%). El punto de saturación de luz se determinó en 1320 µmol fotones m-2 s-1 y se observó una disminución de la fotosíntesis (A) y la conductancia estomática (gs) después de la reversión sexual para los tratamientos control (LP1), 1-Metil ciclopropeno (1-MCP) y tiosulfato de plata (TSP), mientras que la tasa de traspiración (E), el rendimiento cuántico (Qy), la tasa de trasferencia de electrones (ETR) y la disipación no fotoquímica (NPQ) no mostraron diferencias significativas. Las plantas tratadas con ácido giberélico (AG3(s)) y animoetoxivilglicina (AVG(g)), diferenciaron flores masculinas con polen viable, mientras que STP no fue efectivo en la andro morfogénesis. (texto tomado de la fuente)
dc.description.abstractCannabis is a plant with an ancient tradition, currently of interest due to the efficacy of cannabinoids (CBD) in different therapeutic treatments. The objective of this work was to evaluate the physiological response and the viability of pollen in Cannabis plants subjected to various methods of sexual reversion. The evaluation material was propagated by cutting female plants, cuttings propagated in peat in combination with the growth regulator registered the highest percentage of survival (100%) concerning the hydroponic medium without regulator (73.33%). The light saturation point was determined at 1320 µmol photons m-2 s -1 . After sexual reversion, a decrease in photosynthesis (A) and stomatal conductance (gs) was observed for the control LP1, 1 - methyl cyclopropane (1-MCP), and silver thiosulphate (STS) treatments. The transpiration rate (E), quantum yield (Qy), electron transport rate (ETR), and non-photochemical quenching (NPQ) did not show significant differences. Plants treated with gibberellic acid (AG3s) and amino-ethoxy-vinyl glycine (AVGg) differentiated male flowers with viable pollen, while STP was ineffective in andro morphogenesis
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherMedellín - Ciencias Agrarias - Maestría en Ciencias Agrarias
dc.publisherDepartamento de Agronómicas
dc.publisherFacultad de Ciencias Agrarias
dc.publisherMedellín
dc.publisherUniversidad Nacional de Colombia - Sede Medellín
dc.relationCannabis, una opción terapéutica (ISSN 1657–9550). (2009). Biosalud.
dc.relationCaplan, D., Stemeroff, J., Dixon, M., & Zheng, Y. (2018). Vegetative propagation of cannabis by stem cuttings: effects of leaf number, cutting position, rooting hormone, and leaf tip removal. Canadian Journal of Plant Science, 98(5), 1126–1132. https://doi.org/10.1139/cjps-2018-0038
dc.relationClarke, R., & Merlin, M. (2016). Cannabis: Evolution and Ethnobotany. University of California Press.
dc.relationGrotenhermen. (2006). Los cannabinoides y el sistema endocannabinoide. Cannabinoids, 1, 10–14.
dc.relationMolina, M. (2008). EL CANNABIS EN LA HISTORIA: PASADO Y PRESENTE. Cultura y Droga, 13(15), 95–110. http://190.15.17.25/culturaydroga/downloads/culturaydroga13(15)_7.pdf
dc.relationRamírez, J. (2019). La industria del cannabis medicinal en Colombia. https://www.fedesarrollo.org.co/. https://www.repository.fedesarrollo.org.co/bitstream/handle/11445/3823/Repor_Diciembre_2019_Ram%c3%adrez.pdf?sequence=4&isAllowed=y
dc.relationSmall, E. (2015). Evolution and Classification of Cannabis sativa (Marijuana, Hemp) in Relation to Human Utilization. The Botanical Review, 81(3), 189–294. https://doi.org/10.1007/s12229-015-9157-3
dc.relationSpitzer-Rimon, B., Duchin, S., Bernstein, N., & Kamenetsky, R. (2019). Architecture and Florogenesis in Female Cannabis sativa Plants. Frontiers in Plant Science, 10. https://doi.org/10.3389/fpls.2019.00350
dc.relationWróbel, T., Dreger, M., Wielgus, K., & Słomski, R. (2020). Modified Nodal Cuttings and Shoot Tips Protocol for Rapid Regeneration of Cannabis sativa L. Journal of Natural Fibers, 19(2), 536–545. https://doi.org/10.1080/15440478.2020.1748160
dc.relationAbel, E. L. (2013). Marihuana: The First Twelve Thousand Years (Reprint ed.). Springer.
dc.relationAlonso Esteban, J. I., Mata, S., de Cortes, M., & Torija Isasa, M. (2021). Evolución histórica de la clasificación taxonómica del cáñamo Historical evolution of taxonomic classification of hemp - E-Prints Complutense. https://eprints.ucm.es/id/eprint/69876/. https://eprints.ucm.es/id/eprint/69876/
dc.relationAmaducci, S., Colauzzi, M., Bellocchi, G., & Venturi, G. (2008). Modelling post-emergent hemp phenology (Cannabis sativa L.): Theory and evaluation. European Journal of Agronomy, 28(2), 90–102. https://doi.org/10.1016/j.eja.2007.05.006
dc.relationBonini, S. A., Premoli, M., Tambaro, S., Kumar, A., Maccarinelli, G., Memo, M., & Mastinu, A. (2018). Cannabis sativa: A comprehensive ethnopharmacological review of a medicinal plant with a long history. Journal of Ethnopharmacology, 227, 300–315. https://doi.org/10.1016/j.jep.2018.09.004
dc.relationCaplan, D. M. (2018, 5 septiembre). Propagation and Root Zone Management for Controlled Environment Cannabis Production. Http://Hdl.Handle.Net/10214/14249. https://atrium.lib.uoguelph.ca/xmlui/handle/10214/14249
dc.relationCervantes, J. (2007). Marihuana: Horticultura del Cannabis la Biblia del Cultivador Medico de Interior y Exterior (Illustrated ed.). Van Patten Publishing.
dc.relationChandra, S., Lata, H., Khan, I. A., & Elsohly, M. A. (2008). Photosynthetic response of Cannabis sativa L. to variations in photosynthetic photon flux densities, temperature and CO2 conditions. Physiology and Molecular Biology of Plants, 14(4), 299–306. https://doi.org/10.1007/s12298-008-0027-x
dc.relationChandra, S., Lata, H., Khan, I. A., & ElSohly, M. A. (2011). Photosynthetic response of Cannabis sativa L., an important medicinal plant, to elevated levels of CO2. Physiology and Molecular Biology of Plants, 17(3), 291–295. https://doi.org/10.1007/s12298-011-0066-6
dc.relationChandra, S., Lata, H., Khan, I. A., & ElSohly, M. A. (2017). Cannabis sativa L.: Botany and Horticulture. Cannabis sativa L. - Botany and Biotechnology, 79–100. https://doi.org/10.1007/978-3-319-54564-6_3
dc.relationElSohly, M. A., Radwan, M. M., Gul, W., Chandra, S., & Galal, A. (2017). Phytochemistry of Cannabis sativa L. Progress in the Chemistry of Organic Natural Products, 1–36. https://doi.org/10.1007/978-3-319-45541-9_1
dc.relationGarcía, E. C. (2006). Una revisión histórica sobre los usos del Cannabis y su regulación. Redalyc.org. https://www.redalyc.org/articulo.oa?id=83960103
dc.relationGrotenhermen. (2006). Los cannabinoides y el sistema endocannabinoide. Cannabinoids, 1, 10–14.
dc.relationHao, D., Gu, X. J., & Xiao, P. G. (2015). Medicinal Plants: Chemistry, Biology and Omics. Woodhead Publishing.
dc.relationThe Health Effects of Cannabis and Cannabinoids. (2017). The National Academies Press. https://doi.org/10.17226/24625
dc.relationHobza, R., Hudzieczek, V., Kubat, Z., Cegan, R., Vyskot, B., Kejnovsky, E., & Janousek, B. (2018). Sex and the flower – developmental aspects of sex chromosome evolution. Annals of Botany, 122(7), 1085–1101. https://doi.org/10.1093/aob/mcy130
dc.relationInstituto Colombiano Agropecuario ICA. (2019). Certificación de semillas, expedición de registros para cannabis. https://www.ica.gov.co/getattachment/Areas/Agricola/Servicios/Certificacion-de-Semillas/requisitos-registros-para-cannabis.pdf.aspx?lang=es-CO. Recuperado 2019, de https://www.ica.gov.co/getattachment/Areas/Agricola/Servicios/Certificacion-de-Semillas/requisitos-registros-para-cannabis.pdf.aspx?lang=es-CO
dc.relationIwata, N., & Kitanaka, S. (2011). New Cannabinoid-Like Chromane and Chromene Derivatives from Rhododendron anthopogonoides. Chemical and Pharmaceutical Bulletin, 59(11), 1409–1412. https://doi.org/10.1248/cpb.59.1409
dc.relationKinet, J. M., Sachs, R. M., & Bernier, G. (2018). The Physiology of Flowering. The physiology of flowering. The development of flowers, III. https://doi.org/10.1201/9781351075664
dc.relationLata, H., Chandra, S., Khan, I. A., & ElSohly, M. A. (2017). Micropropagation of Cannabis sativa L.—An Update. Cannabis sativa L. - Botany and Biotechnology, 285–297. https://doi.org/10.1007/978-3-319-54564-6_13
dc.relationLata, H., Chandra, S., Khan, I., & ElSohly, M. (2010). High Frequency Plant Regeneration from Leaf Derived Callus of HighΔ9-Tetrahydrocannabinol YieldingCannabis sativaL. Planta Medica, 76(14), 1629–1633. https://doi.org/10.1055/s-0030-1249773
dc.relationLeal Galicia, P., Betancourt Ocampo, D., González González, A., & Romo Parra, H. (2018). Breve historia sobre la marihuana en Occidente. Revista de Neurología, 67(04), 133. https://doi.org/10.33588/rn.6704.2017522
dc.relationLisson, S. N., Mendham, N. J., & Carberry, P. S. (2000). Development of a hemp (Cannabis sativa L.) simulation model 1.General introduction and the effect of temperature on the pre-emergent development of hemp. Australian Journal of Experimental Agriculture, 40(3), 405. https://doi.org/10.1071/ea99058
dc.relationLubell, J. D., & Brand, M. H. (2018). Foliar Sprays of Silver Thiosulfate Produce Male Flowers on Female Hemp Plants. HortTechnology, 28(6), 743–747. https://doi.org/10.21273/horttech04188-18
dc.relationLydon, J., Teramura, A. H., & Coffman, C. B. (1987). UV-B RADIATION EFFECTS ON PHOTOSYNTHESIS, GROWTH and CANNABINOID PRODUCTION OF TWO Cannabis sativa CHEMOTYPES. Photochemistry and Photobiology, 46(2), 201–206. https://doi.org/10.1111/j.1751-1097.1987.tb04757.x
dc.relationMackie, K. (2008). Cannabinoid Receptors: Where They are and What They do. Journal of Neuroendocrinology, 20(s1), 10–14. https://doi.org/10.1111/j.1365-2826.2008.01671.x
dc.relationMansouri, H., Salari, F., & Asrar, Z. (2013). Ethephon application stimulats cannabinoids and plastidic terpenoids production in Cannabis sativa at flowering stage. Industrial Crops and Products, 46, 269–273. https://doi.org/10.1016/j.indcrop.2013.01.025
dc.relationMechoulam, R. (2016). Cannabis – the Israeli perspective. Journal of Basic and Clinical Physiology and Pharmacology, 27(3). https://doi.org/10.1515/jbcpp-2015-0091
dc.relationMeier, U., Bleiholder, H., Buhr, L., Feller, C., Hack, H., Heß, M., Lancashire, P., Schnock, U., Stauß, R., Boom, T., Weber, E., & Zwerger, P. (2009). The BBCH system to coding the phenological growth stages of plants – history and publications –. Journal für Kulturpflanzen, 61(2), 41–52. https://doi.org/10.5073/JfK.2009.02.01
dc.relationMinisterio de Justicia y del Derecho. (2020). Licencias de cannabis otorgadas, Subdirección de Control y Fiscalización de Sustancias Químicas y Estupefacientes. https://asocolcanna.org/wp-content/uploads/2020/09/Licencias-de-Cannabis-Otorgadas-MJD-30-04-2020.pdf
dc.relationMishchenko, S., Mokher, J., Laiko, I., Burbulis, N., Kyrychenko, H., & Dudukova, S. (2017). Phenological growth stages of hemp (Cannabis sativa L.): codification and description according to the BBCH scale. Žemės ūkio mokslai, 24(2). https://doi.org/10.6001/zemesukiomokslai.v24i2.3496
dc.relationMohan Ram, H., & Sett, R. (1982a). Induction of fertile male flowers in genetically female Cannabis sativa plants by silver nitrate and silver thiosulphate anionic complex. Theoretical and Applied Genetics, 62(4), 369–375. https://doi.org/10.1007/bf00275107
dc.relationMohan Ram, H., & Sett, R. (1982b). Modification of Growth and Sex Expression in Cannabis sativa by Aminoethoxyvinylglycine and Ethephon. Zeitschrift für Pflanzenphysiologie, 105(2), 165–172. https://doi.org/10.1016/s0044-328x(82)80008-1
dc.relationMohan Ram, H., & Sett, R. (1982c). Reversal of Ethephon-Induced Feminization in Male Plants of Cannabis sativa by Ethylene Antagonists. Zeitschrift für Pflanzenphysiologie, 107(1), 85–89. https://doi.org/10.1016/s0044-328x(11)80012-7
dc.relationMoliterni, V. M. C., Cattivelli, L., Ranalli, P., & Mandolino, G. (2004). The sexual differentiation of Cannabis sativa L.: A morphological and molecular study. Euphytica, 140(1–2), 95–106. https://doi.org/10.1007/s10681-004-4758-7
dc.relationSalentijn, E. M. J., Petit, J., & Trindade, L. M. (2019). The Complex Interactions Between Flowering Behavior and Fiber Quality in Hemp. Frontiers in Plant Science, 10. https://doi.org/10.3389/fpls.2019.00614
dc.relationSmall, E., & Cronquist, A. (1976). A PRACTICAL AND NATURAL TAXONOMY FOR CANNABIS. TAXON, 25(4), 405–435. https://doi.org/10.2307/1220524
dc.relationSoriano, F. (2017). Marihuana. La historia. De Manuel Belgrano a las copas cannábicas (Fuera de colección ed.). Planeta Argentina.
dc.relationTéllez, J., & Universidad Nacional De Colombia. (2014). Marihuana-Cannabis, Aspectos toxicologicos, clínicos, sociales y potenciales usos terapeuticos. Oficina De Las Naciones Unidas Contra La Droga Y El Delito Colombia Unodc. ISBN: 978-958-58480-5-4
dc.relationTeskey, R. O., Sheriff, D. W., Hollinger, D. Y., & Thomas, R. B. (1995). External and Internal Factors Regulating Photosynthesis. Resource Physiology of Conifers, 105– 140. https://doi.org/10.1016/b978-0-08-092591-2.50009-1
dc.relationChandra, S., Lata, H., & ElSohly, M. A. (2020). Propagation of Cannabis for Clinical Research: An Approach Towards a Modern Herbal Medicinal Products Development. Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.00958
dc.relationCockson, P., Barajas, G., & Whipker, B. (2019). Enhancing Rooting of Vegetatively Propagated Cannabis sativa ‘BaOx’ Cuttings. Murray State’s Digital Commons. https://digitalcommons.murraystate.edu/jahr/vol1/iss1/2/
dc.relationCoffman, C. B., & Gentner, W. A. (1979). Greenhouse propagation of Cannabis Sativa L. by vegetative cuttings. Economic Botany, 33(2), 124–127. https://doi.org/10.1007/bf02858280
dc.relationCox, S. (2020, 2 diciembre). Assessment of Cannabinoid levels in Successively Cloned Generations of industrial hemp (Cannabis sarivas). Https://Jewlscholar.Mtsu.Edu/Handle/Mtsu/6345. https://jewlscholar.mtsu.edu/handle/mtsu/6345
dc.relationde Backer, B., Maebe, K., Verstraete, A. G., & Charlier, C. (2012). Evolution of the Content of THC and Other Major Cannabinoids in Drug-Type Cannabis Cuttings and Seedlings During Growth of Plants*. Journal of Forensic Sciences, 57(4), 918–922. https://doi.org/10.1111/j.1556-4029.2012.02068.x
dc.relationHernández Murillo, J. R., Aramendiz Tatis, H., & Cardona Ayala, C. E. (2005). Influencia del ácido indolbutírico y ácido naftalenoacético sobre el enraizamiento de esquejes de caña flecha (Gynerium sagittatum Aubl.). Temas Agrarios, 10(1), 5–13. https://doi.org/10.21897/rta.v10i1.626
dc.relationKodym, A., & Leeb, C. J. (2019). Back to the roots: protocol for the photoautotrophic micropropagation of medicinal Cannabis. Plant Cell, Tissue and Organ Culture (PCTOC), 138(2), 399–402. https://doi.org/10.1007/s11240-019-01635-1
dc.relationÖpik, H., & Rolfe, S. A. (2005). The Physiology of Flowering Plants. Cambridge University Press, 4. https://doi.org/10.1017/cbo9781139164450
dc.relationSmall, E., Pocock, T., & Cavers, P. B. (2003). The biology of Canadian weeds. 119. Cannabis sativa L. Canadian Journal of Plant Science, 83(1), 217–237. https://doi.org/10.4141/p02-021
dc.relationToro, F. C., Garcia, M. G., Castañeda, E. C., & Cardona, S. C. (2016). Parámetros de crecimiento y desarrollo fisiológico del crisantemo (Dendranthema grandiflorum (Ramat.) Kitam.), variedad Atlantis white bajo sistema aeropónico. Revista Universidad Católica de Oriente, 29(41), 22–37. https://revistas.uco.edu.co/index.php/uco/article/view/176
dc.relationVassilevska-Ivanova, R. (2019). BIOLOGY AND ECOLOGY OF GENUS CANNABIS: GENETIC ORIGIN AND BIODIVERSITY. IN VITRO PRODUCTION OF CANNABINOIDS. Institute of Plant Physiology and Genetics, 9(1–2), 75–98. http://www.ifrg-bg.com
dc.relationWahby, I. (2007). Aproximaciones biotecnológicas tendentes a la mejora del cáñamo (Cannabis sativa L.): obtención y cultivo de raíces transformadas, transformación genética y regeneración in vitro (tesis doctoral ed.). Editorial de la Univesidad de Granada. https://digibug.ugr.es/bitstream/handle/10481/1622/16822201.pdf?sequence=1&isAllowed=y
dc.relationBauerle, W. L., McCullough, C., Iversen, M., & Hazlett, M. (2020). Leaf Age and Position Effects on Quantum Yield and Photosynthetic Capacity in Hemp Crowns. Plants, 9(2), 271. https://doi.org/10.3390/plants9020271
dc.relationChailakhyan, M. K., & Khryanin, V. N. (1978). The influence of growth regulators absorbed by the root on sex expression in hemp plants. Planta, 138(2), 181–184. https://doi.org/10.1007/bf00391176
dc.relationChandler, J. W. (2010). The Hormonal Regulation of Flower Development. Journal of Plant Growth Regulation, 30(2), 242–254. https://doi.org/10.1007/s00344-010-9180-x
dc.relationChandra, S., Lata, H., Mehmedic, Z., Khan, I. A., & ElSohly, M. A. (2015). Light dependence of photosynthesis and water vapor exchange characteristics in different high Δ9-THC yielding varieties of Cannabis sativa L. Journal of Applied Research on Medicinal and Aromatic Plants, 2(2), 39–47. https://doi.org/10.1016/j.jarmap.2015.03.002
dc.relationCho, L. H., Pasriga, R., Yoon, J., Jeon, J. S., & An, G. (2018). Roles of Sugars in Controlling Flowering Time. Journal of Plant Biology, 61(3), 121–130. https://doi.org/10.1007/s12374-018-0081-z
dc.relationDuca, M. (2015). Plant Physiology (Ilustrada ed.). Springer Publishing.
dc.relationEichhorn Bilodeau, S., Wu, B. S., Rufyikiri, A. S., MacPherson, S., & Lefsrud, M. (2019). An Update on Plant Photobiology and Implications for Cannabis Production. Frontiers in Plant Science, 10. https://doi.org/10.3389/fpls.2019.00296
dc.relationHall, J., Bhattarai, S. P., & Midmore, D. J. (2012). Review of Flowering Control in Industrial Hemp. Journal of Natural Fibers, 9(1), 23–36. https://doi.org/10.1080/15440478.2012.651848
dc.relationHussain, S., Zhong, C., Bai, Z., Cao, X., Zhu, L., Hussain, A., Zhu, C., Fahad, S., James, A. B., Zhang, J., & Jin, Q. (2018). Effects of 1-Methylcyclopropene on Rice Growth Characteristics and Superior and Inferior Spikelet Development Under Salt Stress. Journal of Plant Growth Regulation, 37(4), 1368–1384. https://doi.org/10.1007/s00344-018-9800-4
dc.relationIqbal, N., Umar, S., Per, T. S., & Khan, N. A. (2017). Ethephon increases photosynthetic-nitrogen use efficiency, proline and antioxidant metabolism to alleviate decrease in photosynthesis under salinity stress in mustard. Plant Signaling & Behavior, 12(5), e1297000. https://doi.org/10.1080/15592324.2017.1297000
dc.relationKhan, M. I. R., Trivellini, A., Chhillar, H., Chopra, P., Ferrante, A., Khan, N. A., & Ismail, A. M. (2020). The significance and functions of ethylene in flooding stress tolerance in plants. Environmental and Experimental Botany, 179, 104188. https://doi.org/10.1016/j.envexpbot.2020.104188
dc.relationKhan, N. (2004). An evaluation of the effects of exogenous ethephon, an ethylene releasing compound, on photosynthesis of mustard (Brassica juncea) cultivars that differ in photosynthetic capacity. BMC Plant Biology, 4(1), 21. https://doi.org/10.1186/1471-2229-4-21
dc.relationKhan, N. A. (2006). Ethylene Involvement in Photosynthesis and Growth. Ethylene Action in Plants, 185–201. https://doi.org/10.1007/978-3-540-32846-9_9
dc.relationKinet, J. M., Sachs, R. M., & Bernier, G. (2018). The Physiology of Flowering. The physiology of flowering. The development of flowers, III. https://doi.org/10.1201/9781351075664
dc.relationLi, G., Meng, X., Wang, R., Mao, G., Han, L., Liu, Y., & Zhang, S. (2012). Dual-Level Regulation of ACC Synthase Activity by MPK3/MPK6 Cascade and Its Downstream WRKY Transcription Factor during Ethylene Induction in Arabidopsis. PLoS Genetics, 8(6), e1002767. https://doi.org/10.1371/journal.pgen.1002767
dc.relationLichtenthaler, H. K., Buschmann, C., & Knapp, M. (2005). How to correctly determine the different chlorophyll fluorescence parameters and the chlorophyll fluorescence decrease ratio RFd of leaves with the PAM fluorometer. Photosynthetica, 43(3), 379–393. https://doi.org/10.1007/s11099-005-0062-6
dc.relationLiu, W., & Yang, Y. (2011). Parametric or nonparametric? A parametricness index for model selection. The Annals of Statistics, 39(4). https://doi.org/10.1214/11-aos899
dc.relationLoka, D. A., & Oosterhuis, D. M. (2013). Effect of 1-MCP on Gas Exchange and Carbohydrate Concentrations of the Cotton Flower and Subtending Leaf under Water-Deficit Stress. American Journal of Plant Sciences, 04(01), 142–152. https://doi.org/10.4236/ajps.2013.41019
dc.relationMagagnini, G., Grassi, G., & Kotiranta, S. (2018). The Effect of Light Spectrum on the Morphology and Cannabinoid Content of Cannabis sativa L. Medical Cannabis and Cannabinoids, 1(1), 19–27. https://doi.org/10.1159/000489030
dc.relationMoradi, F., & Ismail, A. M. (2007). Responses of Photosynthesis, Chlorophyll Fluorescence and ROS-Scavenging Systems to Salt Stress During Seedling and Reproductive Stages in Rice. Annals of Botany, 99(6), 1161–1173. https://doi.org/10.1093/aob/mcm052
dc.relationMoradi, F., & Ismail, A. M. (2007). Responses of Photosynthesis, Chlorophyll Fluorescence and ROS-Scavenging Systems to Salt Stress During Seedling and Reproductive Stages in Rice. Annals of Botany, 99(6), 1161–1173. https://doi.org/10.1093/aob/mcm052
dc.relationNajeeb, U., Atwell, B. J., Bange, M. P., & Tan, D. K. Y. (2015). Aminoethoxyvinylglycine (AVG) ameliorates waterlogging-induced damage in cotton by inhibiting ethylene synthesis and sustaining photosynthetic capacity. Plant Growth Regulation, 76(1), 83–98. https://doi.org/10.1007/s10725-015-0037-y
dc.relationPallas, J. E., & Kays, S. J. (1982). Inhibition of Photosynthesis by Ethylene—A Stomatal Effect. Plant Physiology, 70(2), 598–601. https://doi.org/10.1104/pp.70.2.598
dc.relationRazumova, O. V., Alexandrov, O. S., Divashuk, M. G., Sukhorada, T. I., & Karlov, G. I. (2015). Molecular cytogenetic analysis of monoecious hemp (Cannabis sativa L.) cultivars reveals its karyotype variations and sex chromosomes constitution. Protoplasma, 253(3), 895–901. https://doi.org/10.1007/s00709-015-0851-0
dc.relationRiyazuddin, R., Verma, R., Singh, K., Nisha, N., Keisham, M., Bhati, K. K., Kim, S. T., & Gupta, R. (2020). Ethylene: A Master Regulator of Salinity Stress Tolerance in Plants. Biomolecules, 10(6), 959. https://doi.org/10.3390/biom10060959
dc.relationSamuolienė, G., & Duchovskis, P. (2012). Applied Photosynthesis. En M. Najafpour (Ed.), Interaction between flowering initiation and photosynthesis (p. 122). Intechopen.
dc.relationShivashankara, K., & Mathai, C. (2000). Inhibition of photosynthesis by flowering in mango (mangifera indica L.). A study by gas exchange methods. Scientia Horticulturae, 83(3–4), 205–212. https://doi.org/10.1016/s0304-4238(99)00085-0
dc.relationSterck, F. J., Duursma, R. A., Pearcy, R. W., Valladares, F., Cieslak, M., & Weemstra, M. (2013). Plasticity influencing the light compensation point offsets the specialization for light niches across shrub species in a tropical forest understorey. Journal of Ecology, 101(4), 971–980. https://doi.org/10.1111/1365-2745.12076
dc.relationTang, K., Struik, P. C., Amaducci, S., Stomph, T. J., & Yin, X. (2017). Hemp (Cannabis sativa L.) leaf photosynthesis in relation to nitrogen content and temperature: implications for hemp as a bio-economically sustainable crop. GCB Bioenergy, 9(10), 1573–1587. https://doi.org/10.1111/gcbb.12451
dc.relationTeskey, R. O., Sheriff, D. W., Hollinger, D. Y., & Thomas, R. B. (1995). External and Internal Factors Regulating Photosynthesis. Resource Physiology of Conifers, 105–140. https://doi.org/10.1016/b978-0-08-092591-2.50009-1
dc.relationTrutä, E., Gille, E., TÓTH, E., & MANIU, M. (2002). Biochemical differences in Cannabis sativa L. depending on sexual phenotype. J. Appl. Genet., 43(4), 451–462. http://jag.igr.poznan.pl/2002-Volume-43/4/pdf/2002_Volume_43_4-451-462.pdf?iframe=true&width=100%&height=100%
dc.relationUrban, L., Lu, P., & Thibaud, R. (2004). Inhibitory effect of flowering and early fruit growth on leaf photosynthesis in mango. Tree Physiology, 24(4), 387–399. https://doi.org/10.1093/treephys/24.4.387
dc.relationWillmott, C., & Matsuura, K. (2005). Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Research, 30, 79–82. https://doi.org/10.3354/cr030079
dc.relationZhang, H., Tan, G., Wang, Z., Yang, J., & Zhang, J. (2008). Ethylene and ACC levels in developing grains are related to the poor appearance and milling quality of rice. Plant Growth Regulation, 58(1), 85–96. https://doi.org/10.1007/s10725-008-9354-8
dc.relationZhang, J., Zhu, L., Yu, S., & Jin, Q. (2013). Involvement of 1-Methylcyclopropene in Plant Growth, Ethylene Production, and Synthase Activity of Inferior Spikelets in Hybrid Rice Differing in Panicle Architectures. Journal of Plant Growth Regulation, 33(3), 551–561. https://doi.org/10.1007/s00344-013-9404-y
dc.relationBlankenship, S. M., & Dole, J. M. (2003). 1-Methylcyclopropene: a review. Postharvest Biology and Technology, 28(1), 1–25. https://doi.org/10.1016/s0925-5214(02)00246-6
dc.relationFeng, G., Sanderson, B. J., Keefover-Ring, K., Liu, J., Ma, T., Yin, T., Smart, L. B., DiFazio, S. P., & Olson, M. S. (2020). Pathways to sex determination in plants: how many roads lead to Rome? Current Opinion in Plant Biology, 54, 61–68. https://doi.org/10.1016/j.pbi.2020.01.004
dc.relationMartínez, C., & Jamilena, M. (2021). To be a male or a female flower, a question of ethylene in cucurbits. Current Opinion in Plant Biology, 59, 101981. https://doi.org/10.1016/j.pbi.2020.101981
dc.relationNegrutiu, I., Vyskot, B., Barbacar, N., Georgiev, S., & Moneger, F. (2001). Dioecious Plants. A Key to the Early Events of Sex Chromosome Evolution. Plant Physiology, 127(4), 1418–1424. https://doi.org/10.1104/pp.010711
dc.relationSarath, G., & Mohan Ram, H. Y. (1979). Comparative effect of silver ion and gibberellic acid on the induction of male flowers on femaleCannabis plants. Experientia, 35(3), 333–334. https://doi.org/10.1007/bf01964334
dc.relationSpitzer-Rimon, B., Duchin, S., Bernstein, N., & Kamenetsky, R. (2019). Architecture and Florogenesis in Female Cannabis sativa Plants. Frontiers in Plant Science, 10. https://doi.org/10.3389/fpls.2019.00350
dc.rightsAtribución-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleReversión sexual de plantas femeninas de Cannabis (Cannabis sativa L.) y su efecto sobre parámetros fisiológicos
dc.typeTesis


Este ítem pertenece a la siguiente institución