dc.contributorJaramillo Grajales, Marisol
dc.contributorVásquez Araque, Neil Aldrin
dc.contributorUniversidad Nacional de Colombia - Sede Medellín
dc.contributorGrupo de Investigación en Biotecnología Animal (GIBA)
dc.creatorBarrientos-Urdinola, Kaory
dc.date.accessioned2020-04-29T15:15:23Z
dc.date.available2020-04-29T15:15:23Z
dc.date.created2020-04-29T15:15:23Z
dc.date.issued2019-08-30
dc.identifierK. Barrientos, Desarrollo de un genosensor piezoeléctrico, Universidad Nacional de Colombia, Tesis de maestria, 2019.
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/77465
dc.description.abstractEscherichia coli O157:H7 es un patógeno importante en la contaminación de alimentos que causa brotes con una alta morbilidad. Dado que los métodos tradicionales para su detección, a menudo tardan 24 horas en emitir el resultado, existe la necesidad de desarrollar nuevas metodologías que permitan una detección rápida, simple, confiable y específica. Bajo este escenario, el desarrollo de biosensores puede ser una alternativa para dar un resultado rápido cuando exista sospecha de contaminación. Un genosensor piezoeléctrico es un dispositivo capaz de modificar la frecuencia de vibración del cristal de cuarzo, debido a los cambios de masa producidos en la superficie del electrodo de oro, estos son el resultado de la interacción entre el biomarcador de interés y el biorreceptor génico que se encuentra inmovilizado a la superficie del transductor por medio de la interfaz biológica. El adecuado diseño y selección de los elementos específicos de reconocimiento biológico, la apropiada inmovilización sobre el transductor y la selección y desarrollo del sistema de caracterización, se convierten en tareas fundamentales para el éxito en el desarrollo de estos dispositivos de detección. En esta investigación, se seleccionó como biomarcador del patógeno, una región del gen rfbE, que codifica para el antígeno O de la bacteria. Aplicando el método de fisiadsorción basado en la unión entre la proteína estreptavidina y la molécula biotina, se inmovilizó el biorreceptor génico sobre la superficie, para detectar la hibridación de este con su secuencia complementaria. Para la detección del evento biológico de interés, se utilizó un genosensor piezoeléctrico, configurado como microbalanza de cristal de cuarzo de alta frecuencia. Finalmente, se analizó el desempeño del dispositivo por medio de las características de especificidad, repetibilidad y reusabilidad.
dc.description.abstractEscherichia coli O157: H7 is a major pathogen in food contamination that causes outbreaks with high morbidity. The traditional methods for their detection often take a long time, therefore there is a need to develop new methodologies that allow rapid, simple, reliable and specific detection. Under this scenario, development in biosensors could offer an alternative for fast testing in suspected cases of bacterial contamination. A piezoelectric genosensor is a device that is able to shift its quartz crystal frequency give mass changed on the surface of its gold electrode, which occur due to the interaction between the biomarker and the gene bioreceptor, which is immobilized on the transducer surface through biological interface. The appropriate design and selection of the specific elements for biological recognition, adequate immobilization on the transducer and the selection and development of the characterization system, are essential tasks for successfully develop these devices. In this research, it was selected a sequence of the rfbE gene as a biomarker, which encodes O-antigen in Escherichia coli. Applying the physisorption method based on the union between the streptavidin protein and the biotin molecule, the bioreceptor was immobilized on the surface for the detection of the complementary strand. The piezoelectric genosensor was configured to be a high-frequency quartz crystal microbalance. Finally, the performance of the device was analyzed assessing specificity, repeatability, and reusability characteristics
dc.languagespa
dc.publisherMedellín - Ciencias - Maestría en Ciencias - Biotecnología
dc.publisherEscuela de biociencias
dc.publisherUniversidad Nacional de Colombia - Sede Medellín
dc.relationCenters for Disease Control and Prevention, Timeline for reporting cases of E.coli O157 Infection, 2019. https://www.cdc.gov/ecoli/reporting-timeline.html (accessed May 22, 2019).
dc.relationK.E. Heiman, R.K. Mody, S.D. Johnson, P.M. Griffin, L.H. Gould, Escherichia coli O157 Outbreaks in the United States, 2003-2012., Emerg. Infect. Dis. 21 (2015) 1293–1301. https://doi.org/10.3201/eid2108.141364.
dc.relationJ.Y. Lim, J.W. Yoon, C.J. Hovde, A brief overview of Escherichia coli O157:H7 and its plasmid O157, J. Microbiol. Biotechnol. 20 (2010) 1–10. https://doi.org/10.4014/jmb.0908.08007.
dc.relationF. Malvano, R. Pilloton, D. Albanese, Sensitive Detection of Escherichia coli O157:H7 in Food Products by Impedimetric Immunosensors., Sensors (Basel). 18 (2018). https://doi.org/10.3390/s18072168.
dc.relationMinisterio de Agricultura y Desarrollo Rural, Ministerio de Salud y Protección Social, Resolución 2690 de 2015. Directrices para la formulación del Programa de Verificación Microbiológica del Sistema Oficial de Inspección, Vigilancia y Control de la Carne y Productos Cárnicos Comestibles, Bogotá, D.C., Colombia, 2015. https://www.minsalud.gov.co/Normatividad_Nuevo/Resolución 2690 de 2015.pdf (accessed August 5, 2019).
dc.relationB. Nagel, H. Dellweg, L.M. Gierasch, Glossary for chemists of terms used in biotechnology (IUPAC Recommendations 1992), Pure Appl. Chem. 64 (1992) 143–168. https://doi.org/10.1351/pac199264010143.
dc.relationC. Jiménez, D. León, Biosensores: Aplicaciones y perspectivas en el control y calidad de procesos y productos alimenticios, Vitae. 16 (2009) 144–154. http://aprendeenlinea.udea.edu.co/revistas/index.php/vitae/article/view/1436.
dc.relationY. Montagut, J. V. García, Y. Jiménez, C. March, Á. Montoya, A. Arnau, Validation of a phase-mass characterization concept and interface for acoustic biosensors, Sensors. 11 (2011) 4702–4720. https://doi.org/10.3390/s110504702.
dc.relationP. Skládal, Piezoelectric biosensors, TrAC - Trends Anal. Chem. 79 (2016) 127–133. https://doi.org/10.1016/j.trac.2015.12.009.
dc.relationY.J. Montagut, Estudio y análisis del efecto rugoso sobre la respuesta del sensor de cuarzo AT en medios fluidos, Universidad Politécnica de Valencia, 2011. https://doi.org/10.4995/Thesis/10251/9688.
dc.relationA. Montoya, C. March, Y. Montagut, M. Moreno, J. Manclus, A. Arnau, Y. Jimenez, M. Jaramillo, P. Marin, R. Torres, A High Fundamental Frequency (HFF)-based QCM Immunosensor for Tuberculosis Detection, Curr. Top. Med. Chem. 17 (2017) 1623–1630. https://doi.org/10.2174/1568026617666161104105210.
dc.relationC. March, J. V. García, Á. Sánchez, A. Arnau, Y. Jiménez, P. García, J.J. Manclús, Á. Montoya, High-frequency phase shift measurement greatly enhances the sensitivity of QCM immunosensors, Biosens. Bioelectron. 65 (2015) 1–8. https://doi.org/10.1016/j.bios.2014.10.001.
dc.relationL. Cervera-Chiner, M. Juan-Borrás, C. March, A. Arnau, I. Escriche, Á. Montoya, Y. Jiménez, High Fundamental Frequency Quartz Crystal Microbalance (HFF-QCM) immunosensor for pesticide detection in honey, Food Control. 92 (2018) 1–6. https://doi.org/10.1016/j.foodcont.2018.04.026.
dc.relationS.L. Percival, D.W. Williams, Escherichia coli, Second Edi, Elsevier, 2013. https://doi.org/10.1016/B978-0-12-415846-7.00006-8.
dc.relationS.D. Manning, Escherichia coli infections, 2nd ed., Chelsea House, 2010.
dc.relationM.J. Hill, Intestinal flora and endogenous vitamin synthesis, Eur. J. Cancer Prev. 6 (1997) 43–45.
dc.relationJ.M. Van Hattem, A. Cabal, M.S. Arcilla, J. Alvarez, M.D. De Jong, D.C. Melles, J. Penders, M.C.J. Bootsma, P.J. Van Genderen, A. Goorhuis, M. Grobusch, N. Molhoek, A.M.L.O. Lashof, E.E. Stobberingh, H.A. Verbrugh, C.G. Schmidt, C. Schultsz, Risk of acquisition of human diarrhoeagenic Escherichia coli virulence genes in intercontinental travellers: A prospective, multi-centre study, Travel Med. Infect. Dis. (2018) 1–8. https://doi.org/10.1016/j.tmaid.2018.12.005.
dc.relationS. Morabito, Pathogenic escherichia coli: molecular and cellular microbiology, Caister Academic Press, Norfolk, 2014.
dc.relationN.K.D. Ragupathi, D.P.M. Sethuvel, F.Y. Inbanathan, B. Veeraraghavan, Accurate differentiation of Escherichia coli and Shigella serogroups: challenges and strategies, New Microbes New Infect. 21 (2018) 58. https://doi.org/10.1016/J.NMNI.2017.09.003.
dc.relationA. Caprioli, S. Morabito, H. Brugère, E. Oswald, Enterohaemorrhagic Escherichia coli: emerging issues on virulence and modes of transmission, Vet. Res. 36 (2005) 289–311. https://doi.org/10.1051/vetres:2005002.
dc.relationG. Kang, C.A. Hart, P. Shears, Bacterial Enteropathogens, Twenty Thi, 2013. https://doi.org/10.1016/B978-0-7020-5101-2.00025-X.
dc.relationD.M. Kagkli, T.P. Weber, M. Van den Bulcke, S. Folloni, R. Tozzoli, S. Morabito, M. Ermolli, L. Gribaldo, G. Van den Eede, Application of the modular approach to an in-house validation study of real-time PCR methods for the detection and serogroup determination of verocytotoxigenic Escherichia coli, Appl. Environ. Microbiol. 77 (2011) 6954–6963. https://doi.org/10.1128/AEM.05357-11.
dc.relationWHO, Diarrhoeal disease, Ginebra, 2017. https://www.who.int/news-room/fact-sheets/detail/diarrhoeal-disease (accessed May 21, 2019).
dc.relationL.W. Riley, R.S. Remis, S.D. Helgerson, H.B. McGee, J.G. Wells, B.R. Davis, R.J. Hebert, E.S. Olcott, L.M. Johnson, N.T. Hargrett, P.A. Blake, M.L. Cohen, Hemorrhagic Colitis Associated with a Rare Escherichia coli Serotype, N. Engl. J. Med. 308 (1983) 681–685. https://doi.org/10.1056/NEJM198303243081203.
dc.relationM.A. Karmali, M. Petric, C. Lim, P.C. Fleming, G.S. Arbus, H. Lior, The Association Between Idiopathic Hemolytic Uremic Syndrome and Infection by Verotoxin-Producing Escherichia coli, J. Infect. Dis. 151 (1985) 775–782. https://doi.org/10.1093/infdis/151.5.775.
dc.relationO.M. Bouvet, S. Pernoud, P.A. Grimont, Temperature-dependent fermentation of D-sorbitol in Escherichia coli O157:H7, Appl. Environ. Microbiol. 65 (1999) 4245–57. http://www.ncbi.nlm.nih.gov/pubmed/10473445 (accessed May 22, 2019).
dc.relationN.T. Perna, G. Plunkett, V. Burland, B. Mau, J.D. Glasner, D.J. Rose, G.F. Mayhew, P.S. Evans, J. Gregor, H.A. Kirkpatrick, G. Pósfai, J. Hackett, S. Klink, A. Boutin, Y. Shao, L. Miller, E.J. Grotbeck, N.W. Davis, A. Lim, E.T. Dimalanta, K.D. Potamousis, J. Apodaca, T.S. Anantharaman, J. Lin, G. Yen, D.C. Schwartz, R.A. Welch, F.R. Blattner, Genome sequence of enterohaemorrhagic Escherichia coli O157:H7, Nature. 409 (2001) 529–533. https://doi.org/10.1038/35054089.
dc.relationC. Putonti, Y. Luo, C. Katili, S. Chumakov, G.E. Fox, D. Graur, Y. Fofanov, A Computational Tool for the Genomic Identification of Regions of Unusual Compositional Properties and Its Utilization in the Detection of Horizontally Transferred Sequences, Mol. Biol. Evol. 23 (2006) 1863–1868. https://doi.org/10.1093/molbev/msl053.
dc.relationP.S. Mead, P.M. Griffin, Escherichia coli O157:H7, Lancet. 352 (1998) 1207–1212. https://doi.org/10.1016/S0140-6736(98)01267-7.
dc.relationM.A. Karmali, V. Gannon, J.M. Sargeant, Verocytotoxin-producing Escherichia coli (VTEC), Vet. Microbiol. 140 (2010) 360–370. https://doi.org/10.1016/J.VETMIC.2009.04.011.
dc.relationF.M. Franzin, M.P. Sircili, Locus of enterocyte effacement: a pathogenicity island involved in the virulence of enteropathogenic and enterohemorragic Escherichia coli subjected to a complex network of gene regulation., Biomed Res. Int. 2015 (2015) 534738. https://doi.org/10.1155/2015/534738.
dc.relationR. Bertrand, B. Roig, Evaluation of enrichment-free PCR-based detection on the rfbE gene of Escherichia coli O157-Application to municipal wastewater, Water Res. 41 (2007) 1280–1286. https://doi.org/10.1016/j.watres.2006.11.027.
dc.relationP. Reeves, Role of O-antigen variation in the immune response., Trends Microbiol. 3 (1995) 381–6. http://www.ncbi.nlm.nih.gov/pubmed/8564356 (accessed May 22, 2019).
dc.relationL. Wang, P.R. Reeves, Organization of Escherichia coli O157 O antigen gene cluster and identification of its specific genes., Infect. Immun. 66 (1998) 3545–3551.
dc.relationT. Zangari, A.R. Melton-Celsa, A. Panda, M.A. Smith, I. Tatarov, L. De Tolla, A.D. O’Brien, Enhanced virulence of the Escherichia coli O157:H7 spinach-associated outbreak strain in two animal models is associated with higher levels of Stx2 production after induction with ciprofloxacin., Infect. Immun. 82 (2014) 4968–77. https://doi.org/10.1128/IAI.02361-14.
dc.relationM. Ellin Doyle, J. Archer, C.W. Kaspar, R. Weiss, Human Illness Caused by E. coli O157:H7 from Food and Non-food Sources, Wisconsin, 2006. www.cdc.gov/foodnet/annual/2004/report.pdf (accessed May 22, 2019).
dc.relationT.H. Pennington, E. coli O157 outbreaks in the United Kingdom: past, present, and future., Infect. Drug Resist. 7 (2014) 211–22. https://doi.org/10.2147/IDR.S49081.
dc.relationEuropean Centre for Disease Prevention and Control, Risk related to the use of ‘do-it-yourself’ CRISPR-associated gene engineering kit contaminated with pathogenic bacteria, Estocolmo, 2017. https://ecdc.europa.eu/sites/portal/files/documents/2-May-2017-RRA_CRISPR-kit-w-pathogenic-bacteria_2.pdf (accessed May 22, 2019).
dc.relationInstituto Nacional de Salud, Evaluación de riesgos e inocuidad de alimentos, Bogotá, 2015. https://www.ins.gov.co/Direcciones/Vigilancia/Publicaciones ERIA y Plaguicidas/PERFIL E. COLI.pdf (accessed May 22, 2019).
dc.relationP.A.F. Anaya, L.M.R. Medina, M.E.O. Ugarriza, L.A.L. Gutiérrez, Determinación de Escherichia coli e identificación del serotipo O157: H7 en carne de cerdo comercializada en los principales supermercados de la ciudad de Cartagena, Rev. Lasallista Investig. 10 (2013) 91–100.
dc.relationS. Suresh, P. Kolhe, M. Gupta, O. Kumar, V.K. Rao, Comparison of Self Assembled Molecules for the Detection of Ricin by Using Label-Free Immunosensor Based on Quartz Crystal Microbalance, Sens. Lett. 16 (2018) 334–340. https://doi.org/10.1166/sl.2018.3963.
dc.relationJ.-Y. Kim, S.-H. Kim, N.-H. Kwon, W.-K. Bae, J.-Y. Lim, H.-C. Koo, J.-M. Kim, K.-M. Noh, W.-K. Jung, K.-T. Park, Y.-H. Park, Isolation and identification of Escherichia coli O157:H7 using different detection methods and molecular determination by multiplex PCR and RAPD., J. Vet. Sci. 6 (2005) 7–19. http://www.ncbi.nlm.nih.gov/pubmed/15785118 (accessed May 26, 2019).
dc.relationL. Anfossi, Immunoassays, Food applications, in: P. Worsfold, A. Townshend, C. Poole (Eds.), Encycl. Anal. Sci., 3rd editio, Elsevier Inc., Torino, 2017: pp. 324–329. https://doi.org/https://doi.org/10.1016/B978-0-12-409547-2.14312-4.
dc.relationZ. Fu, S. Rogelj, T.L. Kieft, Rapid detection of Escherichia coli O157:H7 by immunomagnetic separation and real-time PCR, Int. J. Food Microbiol. 99 (2005) 47–57. https://doi.org/10.1016/j.ijfoodmicro.2004.07.013.
dc.relationS. Shan, D. Liu, Q. Guo, S. Wu, R. Chen, K. Luo, L. Hu, Y. Xiong, W. Lai, Sensitive detection of Escherichia coli O157:H7 based on cascade signal amplification in ELISA, J. Dairy Sci. 99 (2016) 7025–7032. https://doi.org/10.3168/jds.2016-11320.
dc.relationJ. Wang, R. Katani, L. Li, N. Hegde, E.L. Roberts, V. Kapur, C. DebRoy, Rapid Detection of Escherichia coli O157 and Shiga Toxins by Lateral Flow Immunoassays., Toxins (Basel). 8 (2016) 92. https://doi.org/10.3390/toxins8040092.
dc.relationS. Sommerfeld, J. Strube, Challenges in biotechnology production—generic processes and process optimization for monoclonal antibodies, Chem. Eng. Process. Process Intensif. 44 (2005) 1123–1137. https://doi.org/10.1016/J.CEP.2005.03.006.
dc.relationJ. Meng, S. Zhao, M.P. Doyle, S.E. Mitchell, S. Kresovich, Polymerase chain reaction for detecting Escherichia coli O157:H7, Int. J. Food Microbiol. 32 (1996) 103–113. https://doi.org/10.1016/0168-1605(96)01110-5.
dc.relationB. Li, H. Liu, W. Wang, Multiplex real-time PCR assay for detection of Escherichia coli O157:H7 and screening for non-O157 Shiga toxin-producing E. coli, BMC Microbiol. 17 (2017) 215. https://doi.org/10.1186/s12866-017-1123-2.
dc.relationR. Oliveira, Development and optimization of a biological protocol for DNA detection of Escherichia coli O157:H7 by Quartz Crystal Microbalance with Dissipation ( QCM-D), Instituto Politécnico de Bragança, 2012.
dc.relationD.J. Bopp, B.D. Sauders, A.L. Waring, J. Ackelsberg, N. Dumas, E. Braun-Howland, D. Dziewulski, B.J. Wallace, M. Kelly, T. Halse, K.A. Musser, P.F. Smith, D.L. Morse, R.J. Limberger, Detection, isolation, and molecular subtyping of Escherichia coli O157:H7 and Campylobacter jejuni associated with a large waterborne outbreak., J. Clin. Microbiol. 41 (2003) 174–80. https://doi.org/10.1128/jcm.41.1.174-180.2003.
dc.relationN.T. Vo, H.D. Ngo, D.L. Vu, A.P. Duong, Q. V. Lam, Conjugation of E. coli O157:H7 Antibody to CdSe/ZnS Quantum Dots, J. Nanomater. 2015 (2015) 1–7. https://doi.org/10.1155/2015/265315.
dc.relationH. Xu, F. Tang, J. Dai, C. Wang, X. Zhou, Ultrasensitive and rapid count of Escherichia coli using magnetic nanoparticle probe under dark-field microscope, BMC Microbiol. 18 (2018) 100. https://doi.org/10.1186/s12866-018-1241-5.
dc.relationH. Zhu, U. Sikora, A. Ozcan, Quantum dot enabled detection of Escherichia coli using a cell-phone., Analyst. 137 (2012) 2541–4. https://doi.org/10.1039/c2an35071h.
dc.relationLijiang Wang, Qingshan Wei, Chunsheng Wu, Jian Ji, Qingjun Liu, Mo Yang, Ping Wang, Detection of E. coli O157:H7 DNA by a novel QCM biosensor coupled with gold nanoparticles amplification, in: 2007 7th IEEE Conf. Nanotechnol. (IEEE NANO), IEEE, 2007: pp. 330–333. https://doi.org/10.1109/NANO.2007.4601201.
dc.relationM. Xu, R. Wang, Y. Li, Electrochemical biosensors for rapid detection of Escherichia coli O157:H7, Talanta. 162 (2017) 511–522. https://doi.org/10.1016/j.talanta.2016.10.050.
dc.relationC. Zhou, H. Zou, M. Li, C. Sun, D. Ren, Y. Li, Fiber optic surface plasmon resonance sensor for detection of E. coli O157:H7 based on antimicrobial peptides and AgNPs-rGO, Biosens. Bioelectron. 117 (2018) 347–353. https://doi.org/10.1016/j.bios.2018.06.005.
dc.relationB. Smith, ed., Synthetic Receptors for Biomolecules, Royal Society of Chemistry, Cambridge, 2015. https://doi.org/10.1039/9781782622062.
dc.relationL.C. Clark, C. Lyons, Electrode systems for Continuous monitoring in cardiovascular surgery, Ann. N. Y. Acad. Sci. 102 (1962) 29–45. https://doi.org/10.1111/j.1749-6632.1962.tb13623.x.
dc.relationA.H. Kadish, D.A. Hall, A new method for the continuous monitoring of blood glucose by measurement of dissolved oxygen., Clin. Chem. 11 (1965) 869–75. http://www.ncbi.nlm.nih.gov/pubmed/5835655 (accessed June 5, 2019).
dc.relationS.J. Updike, G.P. Hicks, The Enzyme Electrode, Nature. 214 (1967) 986–988. https://doi.org/10.1038/214986a0.
dc.relationN. Bhalla, P. Jolly, N. Formisano, P. Estrela, Introduction to biosensors., Essays Biochem. 60 (2016) 1–8. https://doi.org/10.1042/EBC20150001.
dc.relationD. Rodríguez-Lázaro, M. Hernández, Future directions for molecular microbial diagnostic methods for the food industry, in: N. Cook, M. D’Agostino, K.C. Thompson (Eds.), Mol. Microb. Diagnostic Methods, Academic Press, Inc., 2016: pp. 19–37. https://doi.org/10.1016/B978-0-12-416999-9.00002-2.
dc.relationS. Patel, R. Nanda, S. Sahoo, E. Mohapatra, Biosensors in Health Care: The Milestones Achieved in Their Development towards Lab-on-Chip-Analysis, Biochem. Res. Int. 2016 (2016) 1–12. https://doi.org/10.1155/2016/3130469.
dc.relationP. Mehrotra, Biosensors and their applications - A review, J. Oral Biol. Craniofacial Res. 6 (2016) 153–159. https://doi.org/10.1016/j.jobcr.2015.12.002.
dc.relationR. Thompson, Fluorescence sensors and biosensors, in: Fluoresc. Sensors Biosens., Taylor & F, Florida, 2005: p. 377. https://books.google.com/books?hl=es&lr=&id=2-_KBQAAQBAJ&pgis=1 (accessed February 21, 2015).
dc.relationM. Jaramillo, K. Barrientos, M.E. Londoño, Y. Montoya, C.E. Echeverri, Y.J. Montagut, J.E. Betancur, P.G. Molina, Desarrollo de Biosensores para detección de biomarcadores, Universidad EIA, Medellín, 2018.
dc.relationE. Feduchi, Bioquímica: Conceptos esenciales, Ed. Médica Panamericana, 2014. https://books.google.com/books?id=DhDxOpmcIfIC&pgis=1 (accessed March 10, 2016).
dc.relationM. Zourob, Chapter 2: Surface Sensitization Techniques and Recognition Receptors Immobalization, in: Recognit. Recept. Biosens., 2010: pp. 47–134.
dc.relationUniversity of Tokyo, Life Science, (n.d.). http://csls-text.c.u-tokyo.ac.jp/index.html (accessed July 11, 2019).
dc.relationUniversity of Newfoundland, DNA, Chromosomes & the Nucleus, (n.d.). https://www.mun.ca/biology/desmid/brian/BIOL2060/BIOL2060-18/CB18.html (accessed July 11, 2019).
dc.relationJ.M. Tejión, M.D. Blanco, C. Agrasal, R. Olmo, Bioquímica Estructural, Casa Editorial Mares, S.L., 2009.
dc.relationL. García, Desarrollo de un multibiosensor de ADN para el diagnóstico temprano de cáncer de mama, Universidad Autónoma de Madrid, 2008.
dc.relationJ. Curie, P. Curie, Développement par compression de l’électricité polaire dans les cristaux hémièdres à faces inclinées, Bull. La Société Minéralogique Fr. 3 (1880) 90–93. https://doi.org/10.3406/bulmi.1880.1564.
dc.relationA. Arnau, Piezoelectric Transducers and Applications, Springer Science & Business Media, 2008. https://books.google.com/books?id=az1RYaJr5HsC&pgis=1 (accessed May 29, 2015).
dc.relationW.G. Cady, The Piezo-Electric Resonator, Proc. IRE. 10 (1922) 83–114. https://doi.org/10.1109/JRPROC.1922.219800.
dc.relationJ. Fernández, Desarrollo y optimización de técnicas de inmovilización basadas en monocapas autoensambladas mixtas (MSAMs) para su uso en inmunosensores piezoeléctricos, Valencia, 2011.
dc.relationR. Vaughan, G. Guilbault, Piezoelectric Immunosensors, Springer Verlag. 5 (2007) 237–280.
dc.relationJ.C. Love, L.A. Estroff, J.J. Kriebel, R.G. Nuzzo, G.M. Whitesides, Self-Assembled Monolayers of Thiolates on Methals as a Form of Nanotechnology, Chem. Rev. 4 (2005) 1103–1169.
dc.relationG. Sauerbrey, Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung, Zeitschrift Für Phys. 155 (1959) 206–222. https://doi.org/10.1007/BF01337937.
dc.relationC.D. Stockbridge, A.W. Warner, A Vacuum System for Mass and Thermal Measurement with Resonating Crystalline Quartz, in: Vac. Microbalance Tech., Springer US, Boston, MA, 1962: pp. 93–114. https://doi.org/10.1007/978-1-4899-6285-0_8.
dc.relationV. Mecea, J. Carlsson, R. Bucur, Extensions of the quartz-crystal-microbalance technique, Sensors Actuators A Phys. 53 (1996) 371–378. https://doi.org/10.1016/0924-4247(96)80161-0.
dc.relationK. Kanazawa, J.G. Gordon, The oscillation frequency of a quartz resonator in contact with liquid, Anal. Chim. Acta. 175 (1985) 99–105. https://doi.org/10.1016/S0003-2670(00)82721-X.
dc.relationS. Tombelli, M. Minunni, M. Mascini, Piezoelectric biosensors: strategies for coupling nucleic acids to piezoelectric devices., Methods. 37 (2005) 48–56. https://doi.org/10.1016/j.ymeth.2005.05.005.
dc.relationL. Cervera-Chiner, M. Juan-Borrás, C. March, A. Arnau, I. Escriche, Á. Montoya, Y. Jiménez, High Fundamental Frequency Quartz Crystal Microbalance (HFF-QCM) immunosensor for pesticide detection in honey, Food Control. 92 (2018) 1–6. https://doi.org/10.1016/J.FOODCONT.2018.04.026.
dc.relationA. Tsortos, G. Papadakis, E. Gizeli, Shear acoustic wave biosensor for detecting DNA intrinsic viscosity and conformation: A study with QCM-D, Biosens. Bioelectron. 24 (2008) 836–841. https://doi.org/10.1016/j.bios.2008.07.006.
dc.relationM.C. Dixon, Quartz crystal microbalance with dissipation monitoring: enabling real-time characterization of biological materials and their interactions., J. Biomol. Tech. 19 (2008) 151–8. http://www.ncbi.nlm.nih.gov/pubmed/19137101 (accessed July 9, 2019).
dc.relationY.J. Montagut, J.V. García Narbon, Y. Jiménez Jiménez, C. March Iborra, A. Montoya Baides, R.A. Torres Villa, A. Arnau Vives, Oscilador para biosensores basado en microbalanza de cristal de cuarzo (QCM), Rev. Fac. Ing. (2011) 114–122. http://aprendeenlinea.udea.edu.co/revistas/index.php/ingenieria/article/view/13543 (accessed April 5, 2015).
dc.relationE. Uttenthaler, M. Schräml, J. Mandel, S. Drost, Ultrasensitive quartz crystal microbalance sensors for detection of M13-Phages in liquids, Biosens. Bioelectron. 16 (2001) 735–743. https://doi.org/10.1016/S0956-5663(01)00220-2.
dc.relationC. March, J. V García, A. Sánchez, A. Arnau, Y. Jiménez, P. García, J.J. Manclús, A. Montoya, High-frequency phase shift measurement greatly enhances the sensitivity of QCM immunosensors., Biosens. Bioelectron. 65C (2014) 1–8. https://doi.org/10.1016/j.bios.2014.10.001.
dc.relationP. Abdul Rasheed, N. Sandhyarani, Quartz crystal microbalance genosensor for sequence specific detection of attomolar DNA targets, Anal. Chim. Acta. 905 (2016) 134–139. https://doi.org/10.1016/j.aca.2015.11.033.
dc.relationS. Gupta, A. Venkatesh, S. Ray, S. Srivastava, Challenges and prospects for biomarker research: a current perspective from the developing world., Biochim. Biophys. Acta. 1844 (2014) 899–908. https://doi.org/10.1016/j.bbapap.2013.12.020.
dc.relationA. Ziegler, A. Koch, K. Krockenberger, A. Großhennig, Personalized medicine using DNA biomarkers: A review, Hum. Genet. 131 (2012) 1627–1638. https://doi.org/10.1007/s00439-012-1188-9.
dc.relationW. Göpel, P. Heiduschka, Interface analysis in biosensor design, Biosens. Bioelectron. 10 (1995) 853–883. https://doi.org/10.1016/0956-5663(95)99225-A.
dc.relationA. Dupont-Filliard, M. Billon, G. Bidan, S. Guillerez, Investigation by QCM of the Specific and Nonspecific Avidin Interaction onto a Biotinylated Polypyrrole Film, Electroanalysis. 16 (2004) 667–673. https://doi.org/10.1002/elan.200302867.
dc.relationR. Singh, G. Sumana, R. Verma, S. Sood, M.K. Pandey, R.K. Gupta, B.D. Malhotra, DNA biosensor for detection of Neisseria gonorrhoeae causing sexually transmitted disease, J. Biotechnol. 150 (2010) 357–365. https://doi.org/10.1016/J.JBIOTEC.2010.09.935.
dc.relationA. Benvidi, A. Dehghani Firouzabadi, M. Dehghan Tezerjani, S.M. Moshtaghiun, M. Mazloum-Ardakani, A. Ansarin, A highly sensitive and selective electrochemical DNA biosensor to diagnose breast cancer, J. Electroanal. Chem. 750 (2015) 57–64. https://doi.org/10.1016/J.JELECHEM.2015.05.002.
dc.relationM.. Pividori, A. Merkoçi, S. Alegret, Electrochemical genosensor design: immobilisation of oligonucleotides onto transducer surfaces and detection methods, Biosens. Bioelectron. 15 (2000) 291–303. https://doi.org/10.1016/S0956-5663(00)00071-3.
dc.relationX. Ding, Y. Yan, S. Li, Y. Zhang, W. Cheng, Q. Cheng, S. Ding, Surface plasmon resonance biosensor for highly sensitive detection of microRNA based on DNA super-sandwich assemblies and streptavidin signal amplification, Anal. Chim. Acta. 874 (2015) 59–65. https://doi.org/10.1016/J.ACA.2015.03.021.
dc.relationY.Q. Fu, J.K. Luo, N.T. Nguyen, A.J. Walton, A.J. Flewitt, X.. Zu, Y. Li, G. McHale, A. Matthews, E. Iborra, H. Du, W.I. Milne, Advances in piezoelectric thin films for acoustic biosensors, acoustofluidics and lab-on-chip applications, Prog. Mater. Sci. 89 (2017) 31–91. https://doi.org/10.1016/J.PMATSCI.2017.04.006.
dc.relationA. Correia, Development of a piezoelectric biosensor based on PVDF films, Universidade Nova de Lisboa, 2011. https://pdfs.semanticscholar.org/c625/9711997c335d4b863990c21dfbbff93fade9.pdf (accessed June 9, 2019).
dc.relationJ.I.A. Rashid, N.A. Yusof, The strategies of DNA immobilization and hybridization detection mechanism in the construction of electrochemical DNA sensor: A review, Sens. Bio-Sensing Res. 16 (2017) 19–31. https://doi.org/10.1016/j.sbsr.2017.09.001.
dc.relationM. Pohanka, Overview of Piezoelectric Biosensors, Immunosensors and DNA Sensors and Their Applications., Mater. (Basel, Switzerland). 11 (2018). https://doi.org/10.3390/ma11030448.
dc.relationM. Datta, D. Desai, A. Kumar, Gene Specific DNA Sensors for Diagnosis of Pathogenic Infections., Indian J. Microbiol. 57 (2017) 139–147. https://doi.org/10.1007/s12088-017-0650-8.
dc.relationB. Ratner, A. Hoffman, Physicochemical Surface Modification of Materials Used in Medicine, in: Biomater. Sci., Academic Press, 2013: pp. 259–276. https://doi.org/10.1016/B978-0-08-087780-8.00027-9.
dc.relationS. Casalini, C.A. Bortolotti, F. Leonardi, F. Biscarini, Self-assembled monolayers in organic electronics, Chem. Soc. Rev. 46 (2017) 40–71. https://doi.org/10.1039/C6CS00509H.
dc.relationT. Wink, S.J. van Zuilen, a Bult, W.P. van Bennkom, Self-assembled monolayers for biosensors., Analyst. 122 (1997) 43R-50R. https://doi.org/10.1039/a606964i.
dc.relationM.A. Daza, Monocapas auto-organizadas sobre metales : adsorción no específica de moléculas bioactivas y su aplicación en el desarrollo de biosensores, Universidad Nacional de la Plata, 2006.
dc.relationL.A. Godínez, Substratos modificados con monocapas autoensambladas: dispositivos parafabricar sensores y estudiar procesos químicos y fisicoquímicos interfaciales, J. Mex. Chem. Soc. 43 (1999) 219–229. http://www.redalyc.org/resumen.oa?id=47543608 (accessed May 11, 2015).
dc.relationC. Moldovan, C. Mihailescu, D. Stan, L. Ruta, R. Iosub, R. Gavrila, M. Purica, S. Vasilica, Characterization of self-assembled monolayers (SAMs) on silicon substrate comparative with polymer substrate for Escherichia coli O157:H7 detection, Appl. Surf. Sci. 255 (2009) 8953–8959. https://doi.org/10.1016/j.apsusc.2009.06.113.
dc.relationL. Zhang, Z. Li, X. Xu, G. Yang, X. Zhou, Effect of mixed thiols on the adsorption , capacitive and hybridization performance of DNA self-assembled monolayers on gold, J. Solid State Electrochem. (2016). https://doi.org/10.1007/s10008-016-3220-9.
dc.relationE. Briand, M. Salmain, J.-M. Herry, H. Perrot, C. Compère, C.-M. Pradier, Building of an immunosensor: how can the composition and structure of the thiol attachment layer affect the immunosensor efficiency?, Biosens. Bioelectron. 22 (2006) 440–8. https://doi.org/10.1016/j.bios.2006.05.018.
dc.relationD.G. Castner, B.D. Ratner, Proteins Controlled With Precision at Organic, Polymeric, and Biopolymer Interfaces for Tissue Engineering and Regenerative Medicine, Princ. Regen. Med. (2019) 523–534. https://doi.org/10.1016/B978-0-12-809880-6.00031-X.
dc.relationR.C. Ebersole, J.A. Miller, J.R. Moran, M.D. Ward, Spontaneously Formed Functionally Active Avidin Monolayers on Metal Surfaces: A Strategy for Immobilizing Biological Reagents and Design of Piezoelectric Biosensors, J. Am. Chem. Soc. (1990). https://doi.org/10.1021/ja00164a070.
dc.relationL. Chaiet, F.J. Wolf, The properties of streptavidin, a biotin-binding protein produced by Streptomycetes, Arch. Biochem. Biophys. 106 (1964) 1–5. https://doi.org/10.1016/0003-9861(64)90150-X.
dc.relationC.M. Dundas, D. Demonte, S. Park, Streptavidin-biotin technology: improvements and innovations in chemical and biological applications, Appl Microbiol Biotechnol. (2013) 9343–9353. https://doi.org/10.1007/s00253-013-5232-z.
dc.relationK.H. Lim, H. Huang, A. Pralle, S. Park, Engineered Streptavidin Monomer and Dimer with Improved Stability and Function, Biochemistry. 50 (2011) 8682–8691. https://doi.org/10.1021/bi2010366.
dc.relationJ. Luong, K. Male, J. Glennon, Biotin interference in immunoassays based on biotin-strept(avidin) chemistry: An emerging threat, Biotechnol. Adv. (2019). https://doi.org/10.1016/J.BIOTECHADV.2019.03.007.
dc.relationM. Obermayer, F. Lynen, Structure of biotin enzymes, Trends Biochem. Sci. 1 (1976) 169–171. https://doi.org/10.1016/0968-0004(76)90198-5.
dc.relationJ. Gómez Oliver, Resonadores Piezoeléctricos Como Plataforma para el Desarrollo de Inmunosensores, Universidad de Castilla La Mancha, 2013.
dc.relationA. Garrido, M.-J. Chapela, B. Román, P. Fajardo, J.M. Vieites, A.G. Cabado, In-house validation of a multiplex real-time PCR method for simultaneous detection of Salmonella spp., Escherichia coli O157 and Listeria monocytogenes, Int. J. Food Microbiol. 164 (2013) 92–98. https://doi.org/10.1016/j.ijfoodmicro.2013.03.024.
dc.relationN. Paniel, J. Baudart, A. Hayat, L. Barthelmebs, Aptasensor and genosensor methods for detection of microbes in real world samples., Methods. 64 (2013) 229–40. https://doi.org/10.1016/j.ymeth.2013.07.001.
dc.relationM. Aquino de Muro, Probe design, production and applications, in: J.. Walker, R. Rapley (Eds.), Med. Biomethods Handb., 1st ed., Humana Press, 2005: pp. 41–53. https://doi.org/https://doi.org/10.1385/1-59259-870-6:013.
dc.relationK.T. Ulrich, S.D. Epinger, R.V. Madrigal Alvarez, Diseño y desarrollo de productos : enfoque multidisciplinario, McGraw-Hill, 2004. https://books.google.com.co/books?id=z_5MOgAACAAJ&dq=Diseño+y+desarrollo+de+productos.+Enfoque+multidisciplinario&hl=es-419&sa=X&ved=0ahUKEwi2m72v4rziAhUqneAKHe78DDcQ6AEIKTAA (accessed May 27, 2019).
dc.relationA. Yuryev, PCR primer design, 1st ed., Humana Press, Totowa, NJ, United States, 2007.
dc.relationA.B. Steel, R.L. Levicky, T.M. Herne, M.J. Tarlov, Immobilization of nucleic acids at solid surfaces: effect of oligonucleotide length on layer assembly., Biophys. J. 79 (2000) 975–81. https://doi.org/10.1016/S0006-3495(00)76351-X.
dc.relationF. Teles, L. Fonseca, Trends in DNA biosensors, Talanta. 77 (2008) 606–623. https://doi.org/10.1016/j.talanta.2008.07.024.
dc.relationN. Fortin, A. Mulchandani, W. Chen, Use of real-time polymerase chain reaction and molecular beacons for the detection of Escherichia coli O157:H7., Anal. Biochem. 289 (2001) 281–288. https://doi.org/10.1006/abio.2000.4935.
dc.relationW. Yanko, Development of practical methods to assess the presence of bacterial pathogens in water, 1st ed., Water Environment Research Foundation, 2004.
dc.relationV.K. Sharma, Real-time reverse transcription-multiplex PCR for simultaneous and specific detection of rfbE and eae genes of Escherichia coli O157:H7, Mol. Cell. Probes. 20 (2006) 298–306. https://doi.org/10.1016/j.mcp.2006.03.001.
dc.relationB. Mull, V.R. Hill, Recovery and Detection of Escherichia coli O157:H7 in Surface Water, Using Ultrafiltration and Real-Time PCR, Appl. Environ. Microbiol. 75 (2009) 3593–3597. https://doi.org/10.1128/AEM.02750-08.
dc.relationE. Omiccioli, G. Amagliani, G. Brandi, M. Magnani, A new platform for Real-Time PCR detection of Salmonella spp., Listeria monocytogenes and Escherichia coli O157 in milk, Food Microbiol. 26 (2009) 615–622. https://doi.org/10.1016/j.fm.2009.04.008.
dc.relationB. Suo, Y. Wang, Evaluation of a multiplex selective enrichment broth SEL for simultaneous detection of injured Salmonella, Escherichia coli O157:H7 and Listeria monocytogenes., Braz. J. Microbiol. 44 (2013) 737–42. https://doi.org/10.1590/s1517-83822013000300011.
dc.relationR. Gordillo, A. Rodríguez, M.L. Werning, E. Bermúdez, M. Rodríguez, Quantification of viable Escherichia coli O157:H7 in meat products by duplex real-time PCR assays, Meat Sci. 96 (2014) 964–970. https://doi.org/10.1016/j.meatsci.2013.10.018.
dc.relationJ.A. Ordóñez, F. Jiménez, J. Arnau, Avances en la producción de elaborados cárnicos seguros y saludables, Consolider, Barcelona, 2013.
dc.relationS. Perelle, F. Dilasser, J. Grout, P. Fach, Detection by 5′-nuclease PCR of Shiga-toxin producing Escherichia coli O26, O55, O91, O103, O111, O113, O145 and O157:H7, associated with the world’s most frequent clinical cases, Mol. Cell. Probes. 18 (2004) 185–192. https://doi.org/10.1016/j.mcp.2003.12.004.
dc.relationJ. Ye, G. Coulouris, I. Zaretskaya, I. Cutcutache, S. Rozen, T.L. Madden, Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction., BMC Bioinformatics. 13 (2012) 134. https://doi.org/10.1186/1471-2105-13-134.
dc.relationV. Chan, D.J. Graves, S.E. Mckenzie, The Biophysics of DNA Hybridization with Immobilized Oligonucleotide Probes, Biophys. J. 69 (1995) 2243–2255.
dc.relationS. Stamm, C.W.J. Smith, R. Lührmann, Alternative Pre-mRNA Splicing : Theory and Protocols, Wiley-Blackwell, 2012.
dc.relationE. van Pelt-Verkuil, A. van Belkum, J.P. Hays, Principles and Technical Aspects of PCR Amplification, Springer Science & Business Media, 2008.
dc.relationM. Sam, E.M. Boon, J.K. Barton, M.G. Hill, E.M. Spain, Morphology of 15-mer duplexes tethered to Au(111) probed using scanning probe microscopy, Langmuir. 17 (2001) 5727–5730. https://doi.org/10.1021/la010496d.
dc.relationM. Piliarik, H. Vaisocherová, J. Homola, Towards parallelized surface plasmon resonance sensor platform for sensitive detection of oligonucleotides, Sensors Actuators, B Chem. 121 (2007) 187–193. https://doi.org/10.1016/j.snb.2006.09.009.
dc.relationL. Dyadyusha, H. Yin, S. Jaiswal, T. Brown, J.J. Baumberg, F.P. Booy, T. Melvin, Quenching of CdSe quantum dot emission, a new approach for biosensing, Chem. Commun. (2005) 3201–3203. https://doi.org/10.1039/b500664c.
dc.relationD.-J. Chung, K.-C. Kim, S.-H. Choi, Electrochemical DNA biosensor based on avidin–biotin conjugation for influenza virus (type A) detection, Appl. Surf. Sci. 257 (2011) 9390–9396. https://doi.org/10.1016/J.APSUSC.2011.06.015.
dc.relationR.-Z. Hao, H.-B. Song, G.-M. Zuo, R.-F. Yang, H.-P. Wei, D.-B. Wang, Z.-Q. Cui, Z. Zhang, Z.-X. Cheng, X.-E. Zhang, DNA probe functionalized QCM biosensor based on gold nanoparticle amplification for Bacillus anthracis detection., Biosens. Bioelectron. 26 (2011) 3398–404. https://doi.org/10.1016/j.bios.2011.01.010.
dc.relationT. Ito, N. Aoki, A. Tsuchiya, S. Kaneko, K. Akiyama, K. Uetake, K. Suzuki, Detection of Stress Hormone in the Milk for Animal Welfare Using QCM Method, J. Sensors. 2017 (2017) 1–7. https://doi.org/10.1155/2017/6486891.
dc.relationF.N. Dultsev, E.A. Kolosovsky, M.A. Cooper, A.A. Lomzov, D.V. Pyshnyi, QCM-based rapid analysis of DNA, Sens. Bio-Sensing Res. 4 (2015). https://doi.org/10.1016/j.sbsr.2014.10.004.
dc.relationA.A. Moosavi-Movahedi, Thermodynamics of protein denaturation by sodium dodecyl sulfate, J. Iran. Chem. Soc. 2 (2005) 189–196. https://doi.org/10.1007/BF03245921.
dc.relationX. Wang, H.J. Lim, A. Son, Characterization of denaturation and renaturation of DNA for DNA hybridization., Environ. Health Toxicol. 29 (2014) e2014007. https://doi.org/10.5620/eht.2014.29.e2014007.
dc.relationD. García, Monocapas autoensambladas (SAMs) y nanopartículas metálicas (MPCs) como elementos en la arquitectura de interfases funcionales, Universidad de Córdoba, 2009.
dc.relationL.M. Fischer, M. Tenje, A.R. Heiskanen, N. Masuda, J. Castillo, A. Bentien, J. Émneus, M.H. Jakobsen, A. Boisen, Gold cleaning methods for electrochemical detection applications, Microelectron. Eng. 86 (2009) 1282–1285. https://doi.org/10.1016/j.mee.2008.11.045.
dc.relationThree Bond Technical News, Ultraviolet-Ozone Surface Treatment, 1987. https://www.threebond.co.jp/en/technical/technicalnews/pdf/tech17.pdf (accessed June 14, 2019).
dc.relationC. Bamdad, A DNA Self-Assembled Monolayer for the Specific Attachment of Unmodified Double- or Single-Stranded DNA, Biophys. J. 75 (1998) 1997–2003. https://doi.org/10.1016/S0006-3495(98)77641-6.
dc.relationA. Germishuizen, C. Wälti, R. Wirtz, DNA self-assembly-driven positioning of molecular components on nanopatterned surfaces Related content Selective dielectrophoretic manipulation of surface-immobilized DNAmolecules, Nanotechnology. 27 (2016) 395301. https://doi.org/10.1088/0957-4484/27/39/395301.
dc.relationC. March, J. V García, Á. Sánchez, A. Arnau, Y. Jiménez, P. García, J.J. Manclús, Á. Montoya, Biosensors and Bioelectronics High-frequency phase shift measurement greatly enhances the sensitivity of QCM immunosensors, Biosens. Bioelectron. 65 (2015) 1–8. https://doi.org/10.1016/j.bios.2014.10.001.
dc.relationJ.J. Gooding, D.B. Hibbert, The application of alkanethiol self-assembled monolayers to enzyme electrodes, TrAC Trends Anal. Chem. 18 (1999) 525–533. https://doi.org/10.1016/S0165-9936(99)00133-8.
dc.relationK.B. Urdinola, P.A.M. Munoz, P.A. Marin, M.J. Grajales, In-Silico Prediction on the MSAMs-Assisted Immobilization of Bovine Serum Albumin on 10 MHz Piezoelectric Immunosensors, J. Mol. Eng. Mater. 7 (2019). https://doi.org/10.1142/s2251237319500011.
dc.relationN. Nakajima, Y. Ikada, Mechanism of Amide Formation by Carbodiimide for Bioconjugation in Aqueous Media, Bioconjug. Chem. 6 (1995) 123–130. https://doi.org/10.1021/bc00031a015.
dc.relationT. Kaewphinit, S. Santiwatanakul, C. Promptmas, K. Chansiri, Detection of non-amplified Mycobacterium tuberculosis genomic DNA using piezoelectric DNA-based biosensors., Sensors (Basel). 10 (2010) 1846–58. https://doi.org/10.3390/s100301846.
dc.relationM. Ozsoz, Electrochemical DNA biosensors, 1st ed., Pan Stanford Publishing, Singapur, 2012.
dc.relationS.C.B. Gopinath, T. Lakshmipriya, Nanobiosensors for biomolecular targeting, 1st ed., Elsevier Inc., India, 2019.
dc.relationP. Wang, X. Wang, L. Wang, X. Hou, W. Liu, C. Chen, Interaction of gold nanoparticles with proteins and cells., Sci. Technol. Adv. Mater. 16 (2015) 034610. https://doi.org/10.1088/1468-6996/16/3/034610.
dc.relationR. D’agata, P. Palladino, G. Spoto, Streptavidin-coated gold nanoparticles: critical role of oligonucleotides on stability and fractal aggregation, Beilstein J. Nanotechnol. 8 (2017) 1–11. https://doi.org/10.3762/bjnano.8.1.
dc.relationY.M. Tseytlin, DNA molecule elastic nonlinearity: A functional helicoidal model, ZAMM Zeitschrift Fur Angew. Math. Und Mech. 94 (2014) 505–508. https://doi.org/10.1002/zamm.201300008.
dc.relationS.B. Smith, Y. Cui, C. Bustamante, Overstretching B-DNA: The elastic response of individual double-stranded and single-stranded DNA molecules, Science (80-. ). 271 (1996) 795–799.
dc.relationK.P.C. Vollhardt, N.E. Schore, Organic chemistry: structure and function., 7th ed., W. H Freeman and Company, New York, 2014.
dc.relationP.M. Kosaka, S. González, C.M. Domínguez, A. Cebollada, A. San Paulo, M. Calleja, J. Tamayo, Atomic force microscopy reveals two phases in single stranded DNA self-assembled monolayers, Nanoscale. 5 (2013) 7425–32. https://doi.org/10.1039/c3nr01186k.
dc.relationT.M. Uehara, H.B. De Aguiar, K. Bergamaski, P.B. Miranda, Adsorption of alkylthiol self-assembled monolayers on gold and the effect of substrate roughness: A comparative study using scanning tunneling microscopy, cyclic voltammetry, second-harmonic generation, and sum-frequency generation, J. Phys. Chem. C. 118 (2014) 20374–20382. https://doi.org/10.1021/jp5054919.
dc.relationL.K. Wolf, D.E. Fullenkamp, R.M. Georgiadis, Quantitative angle-resolved SPR imaging of DNA-DNA and DNA-drug kinetics, J. Am. Chem. Soc. 127 (2005) 17453–17459. https://doi.org/10.1021/ja056422w.
dc.relationC.-L. Ren, D. Carvajal, K.R. Shull, I. Szleifer, Streptavidin-biotin binding in the presence of a polymer spacer. A theoretical description., Langmuir ACS J. Surfaces Colloids. 25 (2009) 12283–92. https://doi.org/10.1021/la901735d.
dc.relationC.J. Van Oss, R.F. Giese, P.M. Bronson, A. Docoslis, P. Edwards, W.T. Ruyechan, Macroscopic-scale surface properties of streptavidin and their influence on aspecific interactions between streptavidin and dissolved biopolymers, Colloids Surfaces B Biointerfaces. 30 (2003) 25–36. https://doi.org/10.1016/S0927-7765(03)00025-0.
dc.relationB.A. Katz, Binding of biotin to streptavidin stabilizes intersubunit salt bridges between Asp61 and His87 at low pH, J. Mol. Biol. 274 (1997) 776–800. https://doi.org/10.1006/jmbi.1997.1444.
dc.relationP.C. Weber, M.J. Cox, F.R. Salemme, D.H. Ohlendorf, Crystallographic data for Streptomyces avidinii streptavidin., J. Biol. Chem. 262 (1987) 12728–9. http://www.ncbi.nlm.nih.gov/pubmed/3624275 (accessed July 11, 2019).
dc.relationA. Rodes, M. Rueda, F. Prieto, C. Prado, J.M. Feliu, A. Aldaz, Adenine Adsorption at Single Crystal and Thin-Film Gold Electrodes: An In Situ Infrared Spectroscopy Study, J. Phys. Chem. C. 111 (2009) 18784–18794.
dc.relationE. De La Llave, R. Clarenc, D.J. Schiffrin, F.J. Williams, Organization of alkane amines on a gold surface: Structure, surface dipole, and electron transfer, J. Phys. Chem. C. 118 (2014) 468–475. https://doi.org/10.1021/jp410086b.
dc.relationC.E. Argaraña, I.D. Kuntz, S. Birken, R. Axel, C.R. Cantor, Molecular cloning and nucleotide sequence of the streptavidin gene., Nucleic Acids Res. 14 (1986) 1871–82. https://doi.org/10.1093/nar/14.4.1871.
dc.relationR. Karlsson, R. Ståhlberg, Surface plasmon resonance detection and multispot sensing for direct monitoring of interactions involving low-molecular-weight analytes and for determination of low affinities, Anal. Biochem. (1995). https://doi.org/10.1006/abio.1995.1350.
dc.relationE. Williams, M.I. Pividori, A. Merkoçi, R.J. Forster, S. Alegret, Rapid electrochemical genosensor assay using a streptavidin carbon-polymer biocomposite electrode., Biosens. Bioelectron. 19 (2003) 165–75. http://www.ncbi.nlm.nih.gov/pubmed/14611751 (accessed June 11, 2019).
dc.relationR.C. Hoft, M.J. Ford, A.M. McDonagh, M.B. Cortie, Adsorption of amine compounds on the Au(111) surface: A density functional study, J. Phys. Chem. C. (2007). https://doi.org/10.1021/jp072494t.
dc.relationDolatshahi-Pirouz, K. Rechendorff, M.B. Hovgaard, M. Foss, J. Chevallier, F. Besenbacher, Bovine serum albumin adsorption on nano-rough platinum surfaces studied by QCM-D, Colloids Surfaces B Biointerfaces. 66 (2008) 53–59. https://doi.org/10.1016/j.colsurfb.2008.05.010.
dc.relationK. Rechendorff, The influence of surface roughness on protein adsorption, Universidad de Aarhus, 2006.
dc.relationP.M. Wolny, J.P. Spatz, R.P. Richter, On the Adsorption Behavior of Biotin-Binding Proteins on Gold and Silica, Langmuir. 26 (2009) 1029–1034. https://doi.org/10.1021/la902226b.
dc.relationF. Rusmini, Z. Zhong, J. Feijen, Protein immobilization strategies for protein biochips, Biomacromolecules. 8 (2007) 1775–1789. https://doi.org/10.1021/bm061197b.
dc.relationC.M. Pandey, R. Singh, G. Sumana, M.K. Pandey, B.D. Malhotra, Electrochemical genosensor based on modified octadecanethiol self-assembled monolayer for Escherichia coli detection, Sensors Actuators, B Chem. 151 (2011) 333–340. https://doi.org/10.1016/j.snb.2010.07.046.
dc.relationÓ. a. Loaiza, S. Campuzano, M. Pedrero, J.M. Pingarrón, DNA sensor based on an Escherichia coli lac Z gene probe immobilization at self-assembled monolayers-modified gold electrodes, Talanta. 73 (2007) 838–844. https://doi.org/10.1016/j.talanta.2007.04.059.
dc.relationT.M. Herne, M.J. Tarlov, Characterization of DNA Probes Immobilized on Gold Surfaces, J. Am. Chem. Soc. 119 (1997) 8916–8920. https://doi.org/10.1021/ja9719586.
dc.relationR. Levicky, T.M. Herne, M.J. Tarlov, S.K. Satija, Using Self-Assembly To Control the Structure of DNA Monolayers on Gold: A Neutron Reflectivity Study, J. Am. Chem. Soc. 120 (1998) 9787–9792. https://doi.org/10.1021/ja981897r.
dc.relationD.Y. Petrovykh, H. Kimura-Suda, L.J. Whitman, M.J. Tarlov, Quantitative Analysis and Characterization of DNA Immobilized on Gold, J. Am. Chem. Soc. 125 (2003) 5219–5226. https://doi.org/10.1021/ja029450c.
dc.relationJ.W. Park, H.Y. Lee, J.M. Kim, R. Yamasaki, T. Kanno, H. Tanaka, H. Tanaka, T. Kawai, Electrochemical Detection of Nonlabeled Oligonucleotide DNA Using Biotin-Modified DNA(ss) on a Streptavidin-Modified Gold Electrode, J. Biosci. Bioeng. (2004). https://doi.org/10.1016/S1389-1723(04)70161-9.
dc.relationY. Portuondo, J. Portuondo, La repetibilidad y reproducibilidad en el aseguramiento de la calidad de los procesos de medición, Tecnol. Química. XXX (2010) 117–121. http://www.redalyc.org/articulo.oa?id=445543770014.
dc.relationJ. Treviño, Desarrollo de un biosensor de resonancia de plasmón superficial para la determinación de hormonas pituitarias en muestra biológicas, Universidad Autonóma de Madrid, 2009.
dc.relationB. Martín, Determinación indirecta de gluten mediante métodos basados en la detección de ADN: PCR y genosensores electroquímicos, Universidad Complutense de Madrid, 2015. https://doi.org/ISBN: 978-84-693-1123-3.
dc.relationN. Wrobel, Optimization of Interfaces for Genosensors Based on Thiol Layers on Gold Films, Universität Regensburg, 2001.
dc.relationD. Johannsmann, Piezoelectric Stiffening, in: 1st (Ed.), Quartz Cryst. Microbalance Soft Matter Res., Springer, Cham, 2015: p. 387. https://doi.org/10.1007/978-3-319-07836-6_5.
dc.relationS. Trajkovic, X. Zhang, S. Daunert, Y. Cai, Atomic force microscopy study of the conformational change in immobilized calmodulin., Langmuir. 27 (2011) 10793–9. https://doi.org/10.1021/la2016885.
dc.relationT. Matsumoto, DNA Molecular Electronics, in: 2017: pp. 95–109. https://doi.org/10.1007/978-3-319-57096-9_5.
dc.relationJ. Escorihuela, M.Á. González-Martínez, J.L. López-Paz, R. Puchades, Á. Maquieira, D. Gimenez-Romero, Dual-polarization interferometry: a novel technique to light up the nanomolecular world., Chem. Rev. 115 (2015) 265–94. https://doi.org/10.1021/cr5002063.
dc.relationD. Milioni, A. Tsortos, M. Velez, E. Gizeli, Extracting the Shape and Size of Biomolecules Attached to a Surface as Suspended Discrete Nanoparticles, Anal. Chem. 89 (2017) 4198–4203. https://doi.org/10.1021/acs.analchem.7b00206.
dc.relationS.K. Vashist, P. Vashist, Recent Advances in Quartz Crystal Microbalance-Based Sensors, J. Sensors. 2011 (2011) 1–13. https://doi.org/10.1155/2011/571405.
dc.relationBiolin Scientific Q-Sense, Q-Sense E4 Operator Manual, 2009. https://doi.org/10.1016/j.jacr.2004.05.021.
dc.relationS.T. Ten, U. Hashim, S.C.B. Gopinath, W.W. Liu, K.. Foo, S.. Sam, C.. Rahman, A.. Nordin, Highly sensitive Escherichia coli shear horizontal surface acoustic wave biosensor with silicon dioxide nanostructures, Biosens. Bioelectron. 93 (2017) 146–154. https://doi.org/10.1016/J.BIOS.2016.09.035.
dc.relationS. Brosel-Oliu, R. Ferreira, N. Uria, N. Abramova, R. Gargallo, F. Muñoz, A. Bratoc, Novel impedimetric aptasensor for label-free detection of Escherichia coli O157:H7, Sensors Actuators B Chem. 255 (2018) 2988–2995. https://doi.org/10.1016/J.SNB.2017.09.121.
dc.relationS. Xu, Y. Zhang, K. Dong, J. Wen, C. Zheng, S. Zhao, Electrochemical DNA Biosensor Based on Graphene Oxide-Chitosan Hybrid Nanocomposites for Detection of Escherichia Coli O157:H7, Int. J. Electrochem. Sci. 12 (2017) 3443–3458. https://doi.org/10.20964/2017.04.16.
dc.rightsAtribución-SinDerivadas 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleDesarrollo de un genosensor piezoeléctrico
dc.typeOtro


Este ítem pertenece a la siguiente institución