dc.contributorSarmiento Perez, Gustavo
dc.contributorTECNICAS APLICADAS A TECTONICA Y ANALISIS DE CUENCAS
dc.creatorPastor Chacón, Andrés Felipe
dc.date.accessioned2020-09-07T14:54:06Z
dc.date.available2020-09-07T14:54:06Z
dc.date.created2020-09-07T14:54:06Z
dc.date.issued2020-06-16
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/78403
dc.description.abstractCerca del 8.3% del petróleo generado a nivel global proviene de rocas del Devónico. Estas rocas han sido bien estudiadas como intervalos generadores en cuencas productoras de los Estados Unidos, Perú, Bolivia y la Península Arábica y estas tienen conexión paleogeográfica con las cuencas de Colombia. Rocas generadoras del Devónico afloran en el Macizo de Floresta y fueron caracterizadas mediante el análisis de facies, litogeoquímica y geoquímica orgánica. Esto nos permitió proponer 11 facies con 7 asociaciones de facies, que se resumen en ambientes de plataforma transgresiva mixta con predominio siliciclástico y acción de tormentas, que gradualmente evolucionan a ambientes costeros de mares epicontinentales. Se identifica que esta plataforma tiene alta productividad, es anóxica y que varios intervalos tienen valores originales de TOC restaurados matemáticamente entre el 1,27% y el 4,35%, valores buenos a excelentes en la generación de hidrocarburos. La alta madurez termal de la sucesión en la actualidad permite concluir que la sucesión se encuentra agotada para producir hidrocarburos líquidos, pero sus valores originales de IH restaurado y el análisis visual del kerógeno indican la presencia de materia orgánica con kerógenos de tipo II. Los resultados de esta investigación aportan ideas al conocimiento del Devónico y a la exploración de hidrocarburos en el subsuelo de las cuencas Llanos y Putumayo.
dc.description.abstractAlmost 8.3% of generated world oil belongs to Devonian rocks. These rocks are well studied as source intervals in oil producing basins of United States, Peru and Bolivia, and these basins are connected to Colombia. Devonian source rocks crop out in the Floresta Massif and were characterized by facies analysis, lithogeochemistry and organic geochemistry. This allows us to propose 11 facies with 7 facies associations, which are summarized in mixed transgressive platform environments with siliciclastic predominance and storm influence, which gradually evolve into coastal environments of epicontinental seas. This platform has high productivity, is anoxic and several intervals have mathematically restored TOC values between 1,27% and 4.35%, good to excellent values in hydrocarbon generation. The high thermal maturity of the succession nowadays, allows us to conclude that the succession is depleted to produce liquid hydrocarbons, but mathematically restored HI values and visual kerogen assessment shows organic matter from type II kerogens. The results of this research contribute ideas to the knowledge of the Devonian and the exploration of hydrocarbons in the subsurface of the Llanos and Putumayo basins
dc.languagespa
dc.publisherBogotá - Ciencias - Maestría en Ciencias - Geología
dc.publisherDepartamento de Geociencias
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationBanerjee, A., Sinha, A. K., Jain, A. K., Thomas, N. J., Misra, K. N., & Chandra, K. (1998). A mathematical representation of Rock-Eval hydrogen index vs Tmax profiles. Organic Geochemistry, 28(1–2), 43–55.
dc.relationBanerjee, I., & Kidwell, S. M. (1991). Significance of molluscan shell beds in sequence stratigraphy: an example from the Lower Cretaceous Mannville Group of Canada. Sedimentology, 38(5), 913–934. https://doi.org/10.1111/j.1365-3091.1991.tb01879.x
dc.relationBarrett, S. F. (1986). Paleoecology and stratigraphy of Devonian sediments in the Northern Andes, Colombia: paleogeographic implications (PhD Thesis). University of Chicago, Chicago.
dc.relationBarrett, S. F. (1988). The Devonian System in Colombia. Devonian of the World: Proceedings of the 2nd International Symposium on the Devonian System, 1(14), 705–717
dc.relationBarrett, S. F., & Isaacson, P. (1988). Devonian Paleogeography of South America. Devonian of the World: Proceedings of the 2nd International Symposium on the Devonian System, 1(14), 655–667.
dc.relationBasu, A., Young, S. W., Suttner, L. J., James, W. C., & Mack, G. H. (1975). Re-evaluation of the use of ondulatory extinction and polycrystallinity in detrital quartz for provenance interpretation. Journal of Sedimentary Research, 45(4), 873–882.
dc.relationBehar, F., Beaumont, V., & Penteado, H. D. B. (2001). Rock-Eval 6 technology: performances and developments. Oil & Gas Science and Technology, 56(2), 111–134
dc.relationBenedetto, J. L. (1983). La presencia de rocas de edad Siegeniana en la Sierra de Perijá (Venezuela) y sus implicaciones paleogeográficas. Revista Técnica de Yacimientos Petrolíferos Fiscales de Bolivia, 9(14), 59–69
dc.relationBenedetto, J. L. (1984). Les Brachiopodes Devoniens de la Sierra de Perijá (Venezuela). Systematique et implications paleogeographiques (PhD Thesis). Université de Bretagne Occidentale, Cédex - France
dc.relationBhatia, M. R. (1983). Plate tectonics and geochemical composition of sandstones. The Journal of Geology, 91(6), 611–627.
dc.relationBonilla, G. E., Sarmiento, G. A., & Gaviria, S. (2011). Proveniencia y transformacion diagenética de minerales arcillosos Del Maastrichtiano - Paleoceno al norte de Bogotá, Cordillera Oriental de Colombia. Geología Colombiana, 36(0), 179–196.
dc.relationBordenave, M. L. (Ed.). (1993). Applied petroleum geochemistry (Vol. 524). Technip Paris.
dc.relationBotero-Restrepo, G. (1950). Reconocimiento geológico del área comprendida por los municipios de Belen, Cerinza, Corrales, Floresta, Nobsa, y Santa Rosa de Viterbo, Departamento de Boyaca. Compilación de Estudios Geológicos Oficiales de Colombia, 8(1), 245–311.
dc.relationBoucot, A., & Johnson, J. (1967). Appalachian Province Early Devonian palaeogeography and brachiopod zonation. In Memoirs of the International Symposium of the Devonian System (Vol. 1, pp. 1255–1266). Canada: Canadian Society of Petroleum Geologists.
dc.relationBuatois, L. A., & Mángano, M. G. (2011). Ichnology: Organism-substrate interactions in space and time. Cambridge University Press.
dc.relationCampbell, C. V. (1967). Lamina, laminaset, bed and bedset. Sedimentology, 8(1), 7–26
dc.relationCaster, K. (1939). A Devonian fauna from Colombia. Bulletins of American Paleontology, 24, 3-218 pp
dc.relationCediel, F. (1976). Geología del Macizo de Floresta (Vol. 1, pp. 18–29). Presented at the Memorias del I Congreso Colombiano de Geología
dc.relationChen, Z., & Jiang, C. (2015). A data driven model for studying kerogen kinetics with application examples from Canadian sedimentary basins. Marine and Petroleum Geology, 67, 795–803.
dc.relationCompton, R. R. (1985). Geology in the Field. Wiley
dc.relationCraigie, N. W., Rees, A., MacPherson, K., & Berman, S. (2016). Chemostratigraphy of the Ordovician Sarah Formation, North West Saudi Arabia: an integrated approach to reservoir correlation. Marine and Petroleum Geology, 77, 1056–1080.
dc.relationDahl, B., Bojesen-Koefoed, J., Holm, A., Justwan, H., Rasmussen, E., & Thomsen, E. (2004). A new approach to interpreting Rock-Eval S2 and TOC data for kerogen quality assessment. Organic Geochemistry, 35(11–12), 1461–1477.
dc.relationDartora, F., & Moretti, I. (2014). The paleozoic source rock of NW gondwana. In 4th EAGE Shale Workshop 2014 - Shales: What Do They Have in Common? (pp. 58–62). European Association of Geoscientists and Engineers, EAGE.
dc.relationDavies, S. J., & Elliott, T. (1996). Spectral gamma ray characterization of high resolution sequence stratigraphy: examples from Upper Carboniferous fluvio-deltaic systems, County Clare, Ireland. In J. Howell & J. Aitken (Eds.), High Resolution Sequence Stratigraphy: Innovations and Applications (Vol. 104, pp. 25–35).
dc.relationDelvaux, D., Martin, H., Leplat, P., & Paulet, J. (1990). Geochemical characterization of sedimentary organic matter by means of pyrolysis kinetic parameters. Organic Geochemistry, 16(1–3), 175–187
dc.relationDiaz, M., Baby, P., Marco, R., & Frederic, C. (2006). El Pre-Aptense en la Cuenca Oriente Ecuatoriana. In Memorias del VIII Simposio Bolivariano de Cuencas Subandinas y Exploración (Vol. 1, p. 15 p.).
dc.relationDiaz, M. R., & Eberli, G. P. (2019). Decoding the mechanism of formation in marine ooids: A review. Earth-Science Reviews, 190, 536–556. https://doi.org/10.1016/j.earscirev.2018.12.016
dc.relationDickey, P. (1941). Pre-Cretaceous sediments in Cordillera Oriental of Colombia. Bulletin of the American Association of Petroleum Geologists, 25(9), 1789–1795.
dc.relationDickinson, W. (1985). Interpreting provenance relations form detrital modes of sandstone. In G. Zuffa (Ed.), Provenance of arenites (pp. 332–362). D. Reidel Publishing Company.
dc.relationDowding, E. M., & Ebach, M. C. (2018). An interim global bioregionalisation of Devonian areas. Palaeobiodiversity and Palaeoenvironments, 98(4), 527–547.
dc.relationDueñas, H. (2001). Paleozoic palynological assemblages from the Llanos Orientales Basin, Colombia. In AASP 2001 Palynological Meeting San Antonio, Texas (p. 8).
dc.relationDueñas, H., & Cesari, S. (2005). Systematic study of Early Carboniferous palynological assemblages from the Llanos Orientales Basin, Colombia. Revista Del Museo Argentino de Ciencias Naturales, 7(2), 139–152.
dc.relationEspitalie, J., Madec, M., Tissot, B., Mennig, J. J., & Leplat, P. (1977). Source rock characterization method for petroleum exploration. In Offshore Technology Conference (pp. 439–444). Houston, Texas: Offshore Technology Conference
dc.relationFertl, W. H., & Chilingar, G. V. (1988). Total organic carbon content determined from well logs. SPE Formation Evaluation, 3(02), 407–419.
dc.relationFolk, R. L. (1980). Petrology of sedimentary rocks. Hemphill Publishing Company
dc.relationFöllmi, K. B. (2016). Sedimentary condensation. Earth-Science Reviews, 152, 143–180. https://doi.org/10.1016/j.earscirev.2015.11.016
dc.relationForero, A. (1991a). Distribución de las rocas del Devónico en los Andes Colombianos. Revista Técnica de Yacimientos Petrolíferos Fiscales de Bolivia, 12(1), Pp. 101-111.
dc.relationForero, A. (1991b). The basement of the Eastern Cordillera, Colombia: An allochtonous terrane in northwestern South America. Journal of South American Earth Sciences, 3(2–3), 141–151.
dc.relationFürsich, F. T., & Pandey, D. K. (2003). Sequence stratigraphic significance of sedimentary cycles and shell concentrations in the Upper Jurassic–Lower Cretaceous of Kachchh, western India. Palaeogeography, Palaeoclimatology, Palaeoecology, 193(2), 285–309. https://doi.org/10.1016/S0031-0182(03)00233-5
dc.relationGansser, A. (1954). The Guiana Shield (S. America). Eclogae Geologicae Helvetiae, 47(1), 77–112.
dc.relationGarcía‐Ramos, D. A., & Zuschin, M. (2019). High-frequency cycles of brachiopod shell beds on subaqueous delta-scale clinoforms (early Pliocene, south-east Spain). Sedimentology, 66(5), 1486–1530. https://doi.org/10.1111/sed.12541
dc.relationGardner, W., & Bray, E. (1984). Oils and source rocks of Niagaran reefs (Silurian) in the Michigan basin. In E. Palacas (Ed.), Petroleum geochemistry and source rock potential of carbonate rocks (Vol. 4, pp. 33–44). Texas: AAPG.
dc.relationGomez, A., Moreno-Sanchez, M., Lemus-Restrepo, A., Vivas, D., Benjumea, S., Martinez, L., & Alzate, M. (2019). Favosites sp., corales biohermales de la Formación Floresta (p. 1). Presented at the XVII Congreso Colombiano de Geología, Santa Marta, Colombia.
dc.relationGrahn, Y., Loboziak, S., & de Melo, J. (2003). Integrated correlation of Late Silurian (Pridoli s.l.) - Devonian chitinozoans and miospores in the Solimoes Basin, northern Brazil. Acta Geologica Polonica, 53(4), 282–300.
dc.relationGrosser, J., & Prossl, K. (1994). Palynologische Untersuchungen der Devonbasis in Floresta Massiv, Ostkordillere, Kolumbien. Geissener Geologische Schriften, 51, 105–121
dc.relationHallberg, R. (1976). A Geochemical Method for Investigation of Paleoredox Conditions in Sediments. Ambio Special Report, 4, 139–147.
dc.relationHamilton, N. E., & Ferry, M. (2018). ggtern: Ternary diagrams using ggplot2. Journal of Statistical Software, 87(1), 1–17.
dc.relationHerron, M. M. (1988). Geochemical classification of terrigenous sands and shales from core or log data. Journal of Sedimentary Research, 58(5), 820–829.
dc.relationHorodyski, R. S., Holz, M., Grahn, Y., & Bosetti, E. P. (2014). Remarks on sequence stratigraphy and taphonomy of the Malvinokaffric shelly fauna during the KAČÁK Event in the Apucarana Sub-basin (Paraná Basin), Brazil. International Journal of Earth Sciences, 103(1), 367–380
dc.relationHorton, B., Saylor, J., Nie, J., Mora, A., Parra, M., Reyes-Harker, A., & Stockli, D. (2010). Linking sedimentation in the northern Andes to the basement configuration, Mesozoic extension, and Cenozoic shortening: Evidence from detrital zircon U-Pb ages, Eastern Cordillera, Colombia. Geological Society of America Bulletin, 122, 1423–1442
dc.relationHouse, M. R. (2002). Strength, timing, setting and cause of mid-Palaeozoic extinctions. Palaeogeography, Palaeoclimatology, Palaeoecology, 181(1–3), 5–25
dc.relationIbánez-Mejia, M., Ruiz, J., de Freitas, M., Mora, A., & Mora, A. (2013). Paleozoic tectonics and basin evolution along northwestern South American Margin. Insights from detrital-zircon U-Pb geochronology. Presented at the AAPG International Conference & Exhibition, Cartagena, Colombia.
dc.relationIngram, R. L. (1954). Terminology for the thickness of stratification and parting units in sedimentary rocks. Geological Society of America Bulletin, 65(9), 937–938.
dc.relationJanvier, P., & Villaroel, C. (1998). Los peces Devónicos del Macizo de Floresta (Boyacá, Colombia). Consideraciones taxonómicas, bioestratigráficas, biogeográficas y ambientales. Geología Colombiana, 1998(1), 3–19.
dc.relationJarvie, D. M. (2012). Shale resource systems for oil and gas: Part 2—Shale-oil resource systems. In A. Breyer (Ed.), Shale reservoirs - Giant resources for the 21st century (Vol. 97, pp. 89–119). AAPG.
dc.relationJones, T., & Smith, H. (1965). Relationships of oil composition and stratigraphy in the Permian basin of west Texas and New Mexico. In A. Young & J. Galley (Eds.), Fluids in subsurface environments (Vol. 4, pp. 101–224). Texas, USA: AAPG.
dc.relationJustwan, H., & Dahl, B. (2005). Quantitative hydrocarbon potential mapping and organofacies study in the Greater Balder Area, Norwegian North Sea. In Geological Society, London, Petroleum Geology Conference series (Vol. 6, pp. 1317–1329). Geological Society of London.
dc.relationKammer, A., & Sánchez, J. (2006). Early Jurassic rift structures associated with the Soapaga and Boyacá faults of the Eastern Cordillera, Colombia: Sedimentological inferences and regional implications. Journal of South American Earth Sciences, 21(1), 412–422
dc.relationKehrer, G. (1933). El Carboniano del borde llanero de la Cordillera Oriental. Publicación Del Colegio Alemán, 4(1), 21.
dc.relationKidwell, S., Fürsich, F., & Aigner, T. (1986). Conceptual Framework for the Analysis and Classification of Fossil Concentrations. Palaios, 1, 228–238.
dc.relationKidwell, S. M. (1991). The stratigraphy of shell concentrations. In P. Allison & D. Briggs (Eds.), Taphonomy: Releasing the Data Locked in the Fossil Record (Vol. 9, pp. 211–290). New York: Plenum Press.
dc.relationKlemme, H., & Ulmishek, G. (1991). Effective petroleum source rocks of the world: Stratigraphic distribution and controlling depositional factors. In AAPG Bulletin (Vol. 75, pp. 1809–1851).
dc.relationKönigshof, P., Da Silva, A. C., Suttner, T. J., Kido, E., Waters, J., Carmichael, S. K., et al. (2016). Shallow-water facies setting around the Kačák Event: a multidisciplinary approach. Geological Society, London, Special Publications, 423(1), 171–199.
dc.relationLangford, F. F., & Blanc-Valleron, M.-M. (1990). Interpreting Rock-Eval pyrolysis data using graphs of pyrolizable hydrocarbons vs. total organic carbon (1). AAPG Bulletin, 74(6), 799–804.
dc.relationLeal-Mejía, H., Shaw, R. P., & Melgarejo, J. C. (2019). Spatial-temporal migration of granitoid magmatism and the Phanerozoic tectono-magmatic evolution of the Colombian Andes. In Geology and Tectonics of Northwestern South America (pp. 253–410). Springer.
dc.relationMartínez, M., Márquez, R., Gutiérrez, G., Maya, L., Mora, C., Guzmán, W., & Moldowan, J. M. (2014). Is there a pre-Cretaceous source rock in the Colombia Putumayo Basin?: clues from a study of crude oils by conventional and high resolution geochemical methods. Geologica Acta, 12(4), 0345–350.
dc.relationMathalone, J., & Montoya, M. (1995). Petroleum geology of the sub-Andean basins of Peru. In A. Tankard, R. Suarez-Soruco, & H. Welsink (Eds.), Petroleum basins of South America (Vol. 62, pp. 423–444).
dc.relationMcNair, A. (1940). Devonian Bryozoa from Colombia. Bulletins of American Paleontology, 25(93), Pp 1-34.
dc.relationMiall, A. D. (1977). Lithofacies types and vertical profile models in braided river deposits: a summary. In Fluvial Sedimentology (Vol. 5, pp. 597–604)
dc.relationMojica, J., & Villaroel, C. (1984). Contribución al conocimiento de las unidades paleozoicas del área de Floresta (Cordillera Oriental Colombiana, Departamento de Boyacá) y en especial al de la Formación Cuche. Geología Colombiana, 13, Pp. 55-81.
dc.relationMora, C., Parra, P., & Otero, M. (2006). Caño Limón: Una anomalía geoquímica que podría representar un sistema petrolífero no convencional en Colombia: Evidencias e implicaciones exploratorias. Memorias Del IX Simposio Bolivariano de Cuencas Subandinas y Exploración, 1(1), 1–10
dc.relationMorales, P. A. (1965). A Contribution to the knowledge of the Devonian faunas of Colombia. Boletín Geológico Universidad Industrial de Santander, 19, 51-111 pp.
dc.relationMoreno-López, M. C., & Escalona, A. (2015). Precambrian–Pleistocene tectono-stratigraphic evolution of the southern Llanos basin, Colombia. AAPG Bulletin, 99(8), 1473–1501.
dc.relationMoreno-Sanchez, M. (2004). Devonian Plants from Colombia: Geologic framework and paleogeographic implications (PhD Thesis). University of Lieje, Lieje.
dc.relationMoreno-Sanchez, M., Gomez-Cruz, A., & Buitrago-Hincapie, J. (2020). Paleozoic of Colombian Andes: New Paleontological Data and Regional Stratigraphic Review. In J. Gomez & D. Mateus-Zabala (Eds.) (Vol. 1, p. 37). Bogota, Colombia: Servicio Geológico Colombiano. Retrieved from https://doi.org/10.32685/pub.esp.35.2019.09
dc.relationMorzadec, P., Mergl, M., Villaroel, C., Janvier, P., & Racheboeuf, P. ; (2015). Trilobites and inarticulate brachiopods from the Devonian Floresta Formation of Colombia: a review. Bulletin of Geosciences, 90(2), 331–358
dc.relationMount, J. (1985). Mixed siliciclastic and carbonate sediments: a proposed first-order textural and compositional classification. Sedimentology, 32(3), 435–442.
dc.relationMount, J. F. (1984). Mixing of siliciclastic and carbonate sediments in shallow shelf environments. Geology, 12(7), 432–435.
dc.relationOlive, S., Pradel, A., Martinez-Pérez, C., Janvier, P., Lamsdell, J. C., Gueriau, P., Rabet, N., Duranleau-Gagnon, P., Cardenas-Rozo, A., Zapata, P. & Botella, H. (2019). New insights into Late Devonian vertebrates and associated fauna from the Cuche Formation (Floresta Massif, Colombia). Journal of Vertebrate Paleontology, 39(1), 18
dc.relationOrdoñez-Carmona, O., Restrepo J, & Pimentel, M. (2006). Geochronological and isotopical review of pre-Devonian crustal basement of the Colombian Andes. Journal of South American Earth Sciences, 21, 372–382.
dc.relationPatarroyo, P., Rojas, A., & Salamanca, F. (2014). Stratigraphy of the Lower Calcareous Member (Valanginian - Hauterivian),Tibasosa Formation, Tibasosa – Boyacá (Colombia, S. A.). In C. Ifrim, P. Bengston, F. Cueto-Berciano, & W. Stinnesbeck (Eds.), 23rd International Colloquium on Latin American Earth Sciences, Abstracts and Programme (Vol. 19, p. 123). Heidelberg: GAEA heidelbergensis
dc.relationPatarroyo, P., Obregón, L., & Pastor-Chacón, A. (2019). Cefalópodos del Paleozoico de Colombia (Vol. 1, p. 2). Presented at the XVII Congreso Colombiano de Geologia, Santa Marta, Colombia.
dc.relationPDVSA. Código Geológico de Venezuela (1997)
dc.relationPeters, K., & Cassa, M. (1994). Applied Source Rock Geochemistry. In L. Magoon & W. Dow (Eds.), The petroleum system-from source to trap (Vol. 60, pp. 93–120). AAPG.
dc.relationPettijohn, F. J., Potter, P. E., & Siever, R. (1987). Sand and sandstone. Springer Science & Business Media
dc.relationPons, D. (1983). Etudes paléobotaniques et palynologiques de la Formation Girón (Jurassique moyen–Crétacé inférieur) dans la région de Lebrija, département de Santander, Colombie. Comptes Rendus, Congrès Sociétés Savantes, 1(107), 53–78.
dc.relationRamos, V. A. (2018). The Famatinian Orogen Along the Protomargin of Western Gondwana: Evidence for a Nearly Continuous Ordovician Magmatic Arc Between Venezuela and Argentina. In A. Folguera, E. Contreras-Reyes, N. Heredia, A. Encinas, S. B. Iannelli, V. Oliveros, et al. (Eds.), The Evolution of the Chilean-Argentinean Andes (pp. 133–161). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-67774-3_6
dc.relationRestrepo - Pace, P., & Cediel, F. (2010). Northern South America basement tectonics and implications for paleocontinental reconstructions of the Americas. Journal of South American Earth Sciences, 29(1), 764–771.
dc.relationRimmer, S. M. (2004). Geochemical paleoredox indicators in Devonian–Mississippian black shales, central Appalachian Basin (USA). Chemical Geology, 206(3–4), 373–391.
dc.relationSarmiento, L. (2011). Llanos Basin. In F. Cediel (Ed.), Petroleum geology of Colombia: Geology and Hydrocarbon Potential (Vol. 9, pp. 1–186). Bogota, Colombia: ANH (Agencia Nacional de Hidrocarburos).
dc.relationSchwarz, E., Veiga, G. D., Trentini, G. Á., Isla, M. F., & Spalletti, L. A. (2018). Expanding the spectrum of shallow-marine, mixed carbonate–siliciclastic systems: Processes, facies distribution and depositional controls of a siliciclastic-dominated example. Sedimentology, 65(5), 1558–1589. https://doi.org/10.1111/sed.12438
dc.relationServicio Geológico Colombiano. (2015). Geología de la Plancha 326 Vista Hermosa. Escala 1:100.000. Memoria Explicativa (Memoria explicativa) (p. 120). Bogota: Servicio Geológico Colombiano. Retrieved from http://recordcenter.sgc.gov.co/B15/23008010024814/documento/pdf/2105248141101000.pdf
dc.relationSlatt, R. M., Borer, J. M., Horn, B. W., Al-Sitabi, H. A., & Pietraszek, S. R. (1995). Outcrop gammaray logging applied to subsurface petroleum geology. The Mountain Geologist, 32(4), 81–94
dc.relationSotelo, C. (1997). Informe de comisión de campo Macizo de la Floresta (Marzo 11 a 19 de 1997) (Informe de comisión) (p. 20). INGEOMINAS
dc.relationStibane, F. (1967). Devonian of the Cordillera of Colombia. International Symposium of the Devonian System, II, 209–213.
dc.relationSturesson, U. (1986). Lower Ordovician ooids from northern Öland, Sweden. Geologiska Föreningen i Stockholm Förhandlingar, 108(4), 331–348.
dc.relationSuarez, G., & Solano, Y. (2011). El Paleozoico en los Llanos Orientales de Colombia: una nueva ventana en la búsqueda de fuentes de hidrocarburos. Revista GEO Petróleo, 14, 8–11
dc.relationSuarez, J., & Ordoñez, M. (2007). Nuevas evidencias bioestratigráficas del Pre-Cretácico de la Cuenca Oriente del Ecuador. In E. Diaz-Martinez & E. Rábano (Eds.), 4th European Meeting on the Palaeontology and Stratigraphy of Latin America (Vol. 1, pp. 383–391). Madrid: Cuadernos del Museo Geominero.
dc.relationTaylor, A. M., & Goldring, R. (1993). Description and analysis of bioturbation and ichnofabric. Journal of the Geological Society, 150(1), 141–148.
dc.relationTellez, G., & Sotelo, C. I. (1997). La Formación El Tibet: Producto de la acumulación de un rio trenzado arenoso durante el Paleozoico Inferior. Macizo de Floresta, Boyacá. In Memorias del VII Congreso Colombiano de Geología (Vol. 1, pp. 488–495)
dc.relationTissot, B. P., & Welte, D. H. (1984). Petroleum formation and occurrence (2nd ed.). Springer Science & Business Media
dc.relationTortosa, A., Palomares, M., & Arribas, J. (1991). Quartz grain types in Holocene deposits from the Spanish Central System: some problems in provenance analysis. Geological Society, London, Special Publications, 57(1), 47–54.
dc.relationTrumpy, D. (1943). Pre-Cretaceous of Colombia. Geological Society of America Bulletin, 54, 1281–1304.
dc.relationTyson, R. (1995). Sedimentary Organic Matter. Organic facies and palynofacies (1st ed.). Springer Netherlands. Retrieved from 10.1007/978-94-011-0739-6
dc.relationUlloa, C., Rodriguez, E., & Rodriguez, G. (2003). Geología de la Plancha 172 Paz del Río, Memoría explicativa. INGEOMINAS, 111.
dc.relationUPTC, & INGEOMINAS. (2010). Cartografía geológica y prospección geoquímica del Macizo de Floresta. Informe final (Informe final No. 023 de 2008) (p. 143). INGEOMINAS.
dc.relationVan der Lelij, R., Spikings, R., Ulianov, A., Chiaradia, M., & Mora, A. (2015). Palaeozoic to Early Jurassic history of the northwestern corner of Gondwana, and implications for the evolution of the Iapetus, Rheic and Pacific Oceans. Gondwana Research. http://dx.doi.org/10.1016/j.gr.2015.01.011
dc.relationVan Wagoner, J., Posamentier, H., Mitchum, R., Vail, P., Sarg, J., Louitt, T., & Hardenbol, J. (1988). An overview of the fundamentals of sequence stratigraphy and key definitions. In B. Wilgus, B. Hastings, H. Kendall, H. Posamentier, J. Ross, & J. Van Wagoner (Eds.), Sea-Level Changes-An Integrated Approach (Vol. 42, pp. 39–45). The Society of Economic Paleontologists and Mineralogists.
dc.relationVelásquez, D. (2019). Estratigrafía de la Formación Cuche en el Macizo de Floresta, sección vereda Potreritos (Tesis de pregrado). Universidad Nacional de Colombia, Bogotá.
dc.relationVermeesch, P., Resentini, A., & Garzanti, E. (2016). An R package for statistical provenance analysis. Sedimentary Geology, 336, 14–25.
dc.relationVillaroel, C., & Mojica, J. (1987). El Paleozoico Superior (Carbonífero-Pérmico) Sedimentario de Colombia. Afloramientos conocidos y características generales. Geología Colombiana, 16(1), 81–87.
dc.relationWalker, R., & Plint, A. (1992). Wave-and storm-dominated shallow marine systems. In R. Walker & N. James (Eds.), Facies Models: Response to Sea Level Change (Geological Association of Canadian Geologists, pp. 219–238).
dc.relationWard, D., Goldsmith, R., Cruz, J., & Restrepo, H. (1973). Geología de los cuadrángulos H-12 Bucaramanga y H-13 Pamplona, Departamento de Santander. Boletín Geológico INGEOMINAS, 21(1–3), 132.
dc.relationWeltje, G. (2002). Quantitative analysis of detrital modes: statistically rigorous confidence regions in ternary diagrams and their use in sedimentary petrology. Earth-Science Reviews, 57(1), 211–253
dc.relationWentworth, C. K. (1922). A scale of grade and class terms for clastic sediments. The Journal of Geology, 30(5), 377–392.
dc.relationYoung, G., & Moody, J. (2003). A Middle - Late Devonian fish fauna from the Sierra de Perijá, Western Venezuela, South America: Mitteilungen aus dem Museum fur Naturkunde in Berlin. Geowissenschaftliche Reihe, 5, 155–206
dc.relationZecchin, M., & Catuneanu, O. (2013). High-resolution sequence stratigraphy of clastic shelves I: Units and bounding surfaces. Marine and Petroleum Geology, 39(1), 1–25. https://doi.org/10.1016/j.marpetgeo.2012.08.015
dc.relationZecchin, M., Catuneanu, O., & Caffau, M. (2019). Wave-ravinement surfaces: Classification and key characteristics. Earth-Science Reviews, 188, 210–239. https://doi.org/10.1016/j.earscirev.2018.11.011
dc.relationZuluaga, C. A., & Lopez, J. A. (2019). Ordovician Orogeny and Jurassic Low-Lying Orogen in the Santander Massif, Northern Andes (Colombia). In Fabio Cediel & R. P. Shaw (Eds.), Geology and Tectonics of Northwestern South America: The Pacific-Caribbean-Andean Junction (pp. 195–250). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-76132-9_4
dc.rightsAtribución-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nd/4.0/
dc.rightsAcceso abierto
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleSedimentología y caracterización como roca generadora de hidrocarburos de la formación floresta, Macizo de Floresta, Colombia
dc.typeOtro


Este ítem pertenece a la siguiente institución