dc.contributorTroncoso, Julieta
dc.contributorMúnera Galarza, Alejandro
dc.contributorNeurofisiología Comportamental
dc.creatorTorrado Arévalo, Rolando Andrés
dc.date.accessioned2020-02-25T14:44:39Z
dc.date.available2020-02-25T14:44:39Z
dc.date.created2020-02-25T14:44:39Z
dc.date.issued2019-12-11
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/75720
dc.description.abstractThe experiments described here were conducted at the Behavioral Neurophysiology Laboratory of Medicine School, Universidad Nacional de Colombia. The goal of this research was to describe the evolution of changes in synaptic plasticity of hippocampal CA3- CA1 commisural circuit, after facial nerve injury in rats. For such end, irreversible injury on the mandibular and buccal branches of the right facial nerve (FNI, facial nerve injury) were made. This injury provoked an irreversible paralysis of the facial’s lower third of experimental animals. It means, the facial nerve injury produced paralysis that lead to the impossibility of active movement of the vibrissae of the injured side. The amplitudes of field excitatory potentials (fEPSP) were recorded in vivo in hippocampal CA1 region (contralateral to injury) after electrical stimulation of crescent amplitude in the CA3 region (ipsilateral to injury), at 1 (1D, n = 3), 3 (3D, n = 3), 7 (7D, n = 4) or 21 (21D, n = 2) days post-lesion. The values obtained were compared with a sham-surgery group (control, n = 4). After the FNI we reported that all the experimental groups were able to potentiate the CA3- CA1 synapsis, at least by one hour after high-frequency stimulation protocol (HFS); however, we found a significant decrease in this potentiation in 3D, 7D and 21D groups, compared with the control group. Short-term plasticity was analyzed with a pair-pulse stimulation through the comparison of the responses to two sequential identical stimuli, separated by an inter-stimuli interval of 100 ms. The ratio between the response of the second stimulus/response to the first stimulus (R2/R1, registered in CA1 after stimulation in contralateral CA3) was evaluated in all experimental groups. It was found that the control and all the experimental groups were able to facilitate their response to a second stimulus in regard to the first one. Nonetheless, the facilitation was significantly diminished in 3D and 7D groups when compared to the control group. Furthermore, after a HFS, both control and 3D groups diminished significantly their facilitation ratio.
dc.description.abstractEste proyecto de investigación se realizó en el laboratorio de Neurofisiología Comportamental de la Facultad de Medicina de la Universidad Nacional, con el propósito de observar la evolución en el tiempo de los cambios en la plasticidad sináptica del circuito comisural CA3-CA1 del hipocampo tras una lesión del nervio facial en ratas. Para tal fin se realizaron lesiones irreversibles de las ramas mandibular y bucal del nervio facial (LNF) derecho, lo que provocó una parálisis del tercio inferior de la cara en los animales experimentales. Esta parálisis imposibilitó el movimiento activo de las vibrisas del lado lesionado. Se registraron in vivo las amplitudes del potencial excitador post-sináptico poblacional (fEPSP) de la región CA1 contralateral a la lesión tras una estimulación en la región CA3 ipsilateral, esto una vez hubieran transcurrido 1 (1D, n = 3), 3 (3D, n = 3), 7 (7D, n = 4) o 21 (21D, n = 2) días post-lesión y se compararon los valores obtenidos con respecto al grupo control (Sham, n = 4). Se observó que, aunque todos los animales presentaron una facilitación de la respuesta mediante un protocolo de pulsos emparejados, la LNF disminuyó dicha facilitación en los animales de los grupos 3D y 7D. Se observó además que tras la LNF todos los grupos experimentales lograron potenciar la respuesta post-sináptica tras un protocolo de estimulación por alta frecuencia (HFS), pero evidenciando una disminución significativa de la expresión de la potenciación a largo plazo (LTP) en los grupos 3D, 7D y 21D con respecto al grupo control Sham. Con el protocolo de inducción empleado en esta investigación (6 trenes de 100 Hz) se logró evidenciar un componente pre-sináptico en la LTP. Se observó que la LNF deterioró este componente en los animales de los grupos 1D, 3D, 7D y 21D con respecto al grupo control. Los animales del grupo control y en menor medida los animales del grupo 3D presentaron una disminución en su facilitación de la respuesta tras la estimulación tetánica, lo cual no se evidenció en los demás grupos experimentales.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relation1. Ahl, A. 1986. The role of vibrissae in behavior: A status review. Vet Res Commun 10 245. 2. Ahmed, M., Siegelbaum, S. 2009. Recruitment of n-type Ca+2 channels during LTP enhances low release efficacy of hippocampal CA1 perforant path synapses. Neuron. 63, 372-385. 3. Aldskogius, H., Kozlova, N. 1997. Central neuron-glial and glial-glial interactions following axon injury. Progress in Neurobiology. 55, 1-26. 4. Aldskogius, H., Thomander, L. 1986. Selective reinnervation of somatotopically appropriate muscles after facial nerve transection and regeneration in the neonatal rat. Brain. Res. 375, 126-134. 5. Amaral, D., Witter, M. 1989. The three-dimensional organization of the hippocampal formation: A review of anatomical data. Neuroscience. 31(3), 571-591. 6. Anderson, M., Burda, J., Ren, Y., Ao, Y., O’shea, T., Kawaguchi, R., Copola, G., Khakh, B., Deming, T., Sofroniew, M. 2016. Astrocyte scar formation aids central nervous system axon regeneration. Nature. 532, 195-200. 7. Artola, A., von Frijtag, J., Fermont, P., Gispen, W., Schrama, L., Kamal, A., Spruijt, B. 2006. Long-lasting modulation of the induction of LTP and LTD in rat hippocampal CA1 by behavioral stress and environmental enrichment. Eur J Neurosci. 23, 261-272. 8. Barria, A., Muller, D., Derkach, V., Griffith, L., Soderling, T. 1997. Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation. Science. 276, 2042-2045. 9. Belford, G., Killackey, H. 1979. Vibrissae representation in subcortical trigeminal centers of the neonatal rat. J Comp Neurol. 183: 305-321. 10. Blinzinger, K., Kreutzberg, G. 1968. Displacement of synaptic terminals from regenerating motoneurons by microglial cells. Z. Zellforsch. 85(2), 145-157. 11. Bliss, T., Lomo, T. 1973. Long-Lasting Potentiation of Synaptic Transmission in the Dentate Area of the Anesthetized Rabbit following Stimulation of the Perforant Path. J. Physiol. 232, 331-356. 12. Bosman, L., Houweling, A., Owens, C., Tanke, N., Shevchouk, O., Rahmati, N., Teunissen, W., Ju, C., Gong, W., Koekkoek, S., Zeeuw, C. 2011. Anatomical pathways involved in generating and sensing rhythmic whisker movements. Frontiers in Integrative Neuroscience. 5(53). 13. Brecht, M., Preilowski, B., Merzenich, M. 1997. Functional architecture of the mystacial vibrissae. Behavioral Brain Research. 84: 81-97. 14. Bureau, I., Von Saint Paul, F., Svoboda, K. 2006. Interdigitated paralemniscal and lemniscal pathways in the mouse barrel cortex. PLoS Biol. 4(12) e382. 15. Carter, A., Vogt, K., Foster, K., Regehr, W. 2002. Assesing the role of calciuminduced calcium release in short-term presynaptic plasticity at excitatory central synapses. J Neurosci. 22(1), 21-28. 16. Chameau, P., Spijker, S., Smit, A., Joëls, M. 2007. Glucocorticoids specifically enhance L-type calcium current amplitude and effect calcium channel subunit expression in the mouse hippocampus. 97, 5-14. 17. Citri, A., Malenka, R. 2008. Synaptic Plasticity: Multiple Forms, Functions and Mechanisms. Neuropsycopharmacology. 33, 18-41. 18. Cramer, N., Li, Y., Keller, A. 2007. The whisking rhythm generator: a novel mammalian network for the generation of movement. J Neurophysiol. 97, 2148-2158. 19. Debanne, D., Guérineau, N., Gähwiler, B., Thompson, S. 1996. Paired-pulse facilitation and depression at unitary synapses in rat hippocampus: quantal fluctuations affects subsequent release. Journal of Physiology. 491(1), 163-176. 20. Del Rio-Hortega, P. 1932. “Microglia” En: Cytology and cellular pathology of the nervous system. (New York: Hoeber) 482-534. 21. Derkach, V., Barria A., Soderling T. 1999. Ca+2/calmodulin-kinase II enhances channel conductance of α-amino-3-hydroxy-5-methyl-isoxazolepropionate type glutamate receptors. Proc. Natl. Acad. Sci. 96, 3269-3274. 22. Derkach, V. 2003. Silence analysis of AMPA receptor mutated at the CaM-Kinase II phosphorylation site. Biophysical Journal. 84, 1701-1708. 23. Deschênes, M., Veinante, P., Zhang, W. 1998. The organization of corticothalamic projections: reciprocity versus parity. Brain res rev. 28, 286-308. 24. Deschênes, M., Takatoh, J., Kurnikova, A., Moore, J., Demers, M., Elbaz, M., Furuta, T., Wang, F., Kleinfeld, D. 2016. Inhibition, not excitation, drives rhythmic whisking. Neuron. 90, 374-387. 25. Dolan, S., Cahusac, P. 2007. Enhanced short-latency responses in the ventral posterior medial (VPM) thalamic nucleus following whisker trimming in adult rat. Physiology and Behavior. 92, 500-506. 26. Donoghue, J., Suner, S., Sanes, J. 1990. Dynamic organization of primary motor cortex output to target muscles in adult rats II. Rapid reorganization following motor nerve lesions. Exp. Brain. Res. 79, 492-503. 27. Doyére, V., Laroche, S. 1992. Linear relationship between the maintenance of hippocampal long-term potentiation and retention of an associative memory. Hippocampus. 2, 39-48. 28. Dörfl, J. 1982. The musculature of the mystacial vibrissae of the white mouse. J. Anat. 135: 147-154. 29. Ebbesen, C., Doron, G., Lenschow, C., Brecht, M. 2016. Vibrissa motor cortex activity suppresses contralateral whisking behavior. Nature Neuroscience. 30. Ebara, S., Kumamoto, K., Matsuura, T., Mazurkiewicz, J., Rice, F. 2002. Similarities and differences in the innervation of mystacial vibrissal follicle-sinus complexes in the rat and cat: a confocal microscopy study. J. Comp. Neurol. 449, 103-119. 31. Eichenbaum, H., Kuperstein, M., Fagan, A., Nagode, J. 1987. Cue-sampling and goal-approach correlates of hippocampal unit activity in rats performing and odordiscrimination task. The Journal of Neuroscience. 7(3), 716-732. 32. Eichenbaum, H., Dudchencko, P., Wood, E., Shapiro, M., Tanila, H. 1999. The hippocampus, memory and place cells: Is it spatial memory or a memory space? Neuron. 23, 209-226. 33. Emptage, N., Reid, C., Fine, A. 2001. Calcium store in hippocampal synaptic boutons mediate short-term plasticity, store-operated Ca+2 entry, and spontaneous transmitter release. Neuron. 29(1), 197-208. 34. Enoki, R., Hu, Y., Hamilton, D., Fine, A. 2009. Expression of long-term plasticity at individual synapses in hippocampus is graded, bidirectional, and mainly presynaptic: Optical quantal analysis. Neuron. 62, 242-253. 35. Eroglu, C., Barres, B. 2010. Regulation of synaptic connectivity by glia. Nature. 468, 223-231. 36. Farkas, T., Perge, J., Kis, Z., Wolff, J., Toldi, J. 2000. Facial nerve injury-induced disinhibition in the primary motor cortices of both hemispheres. Eur J Neurosci. 12, 2190-2194. 37. Fawcett, J., Keynes, R. 1990. Peripheral Nerve Regeneration. Annu Rev Neurosci. 13, 43-60. 38. Fioravante, D., Chu, Y., Myoga, M., Leitges, M., Regehr, W. 2011. Calciumdependent isoforms of protein kinase C mediate posttetanic potentiation at the calix of held. Neuron. 70, 1005-1019. 39. Foy, M., Stanton, M., Levine, S., Thompson, R. 1987. Behavioral stress impairs longterm potentiation in rodent hippocampus. Behavioral and Neural Biology. 48, 138- 149. 40. Franchi, G., Maggiolini, E., Muzzioli, V., Guandalini, P. 2006. The vibrissal motor output following severing and repair of the facial nerve in the newborn rat reorganises less than in the adult. Euro. J. Neurosci. 26, 1547-1558. 41. Friedberg, M., Lee, S., Ebner, F. 2004. The contribution of the principal and spinal trigeminal nuclei in the receptive field properties of thalamic VPM neurons in the rat. J. Neurocytol. 33: 75-85. 42. Fujii, S., Mikoshiba, K., Kuroda, Y., Ahmed, T., Kata, H. 2003. Cooperativity between activation of metabotropic glutamate receptor and NMDA receptors in the induction of LTP in hippocampal CA1 neurons. Neuroscience Research. 46, 509-521. 43. Fukunaga, K., Stoppini, L., Miyamoto, E., Muller, D. 1993. Long-term potentiation is associated with an increased activity of Ca+2/Calmodulin-dependent protein kinase II. The Journal of Biological Chemistry. 268(11), 7863-7867. 44. Galiano, M., Liu, Z., Kalla, R., Bohatschek, M., Koppius, A., Gschwendthner, A., Xu, S., Werner, A., Kloss, C., Jones, L., Bluethmann, H., Raivich, G. 2001. Interleukin-6 (IL6) and cellular response to facial nerve injury: effects on lymphocyte recruitment, early microglial activation and axonal outgrowth in IL6-deficient mice. Eur. J. Neurosci. 14, 327-341. 45. Gao, P., Hattox, A., Jone, L., keller, A., Zeigler, H. 2003. Whisker motor cortex ablation and whisker movement patterns. Somatosens. Mot. Res. 20: 191-198. 46. Geppert, M., Hammer, R., Li, C., Rosahl, T., Südhof, T. 1994. Synaptotagmin I: a major Ca+2 sensor transmitter release at central synapse. Cell. 79(4), 717-727. 47. Graeber, M., Kreutzberg, G. 1988. Delayed astrocyte reaction following facial nerve axotomy. Journal of Neurocytology. 17, 209-220. 48. Graeber, M., Raivich, G., Kreutzberg, G. 1989. Increase of transferrin receptors and iron uptake in regenerating motor neurons. J. Neurosci. Res. 23, 342-345. 49. Grinevich, V., Brecht, M., Osten, P. 2005. Monosynaptic pathway from rat vibrissa motor cortex to facial motor neurons revealed by lentivirus-based axonal tracing. The Journal of neuroscience. 25(36), 8250-8258. 50. Griffin, R., Nally, R., Nolan, Y., McCartney, Y., Linden, J., Lynch, M. 2006. The age-related attenuation in long-term potentiation is associated with microglial activation. Journal of Neurochemestry. 99, 1263-1272. 51. Grion, N., Akrami, A., Zuo, Y., Stella, F., Diamond, M. 2016. Coherence between rat sensorimotor system and hippocampus is enhanced during tactile discrimination. PLoS Biol. 14(2). 52. Groenewegen, H., Witter, M. 2004 “Thalamus”, en Rat Nervous System, ed. G. Paxinos, 3era Edn (Sydney: Academic Press), 408-441. 53. Haidarliu, S., Simony, E., Golomb, D., Ahissar, E. 2010. Muscle architecture in the mystacial pad of the rat. Anat. Rec. 293: 1192-1206. 54. Hass, C., Donath, C., Kreutzberg, G. 1993. Differential expression of immediate early genes after transection of the facial nerve. Neuroscience. 91-99 55. Hass, C., Dumoulin F., Lazar, P., Raivich, G., Reddington, M., Streit, W., Kreutzberg, G. 1994. The role of calcitonin gene-related peptide in the regenerating facial nucleus. Eur. Arch. Otorhinolaryngol. 71-72. 56. Hebb, D. 1949. The organization of behavior. Wiley 57. Henstrom, D., Hadlock, T., Lindsay, R., Knox, C., Malo, J., Vakharia, K., Heaton, J. 2011. The convergence of facial nerve branches providing whisker pad motor supply in rats: Implication for facil reanimation study. Muscle Nerve. 45, 692-697. 58. Hinrichsen, C., Watson, C. 1984. The facial nucleus of the rat: Representation of facial muscles revealed by retrograde transport of horseradish peroxidase. 209(3), 407-415. 59. Herfst, L., Brecht, M. 2008. Whisker movements evoked by stimulation of single motor neurons in the facial nucleus of the rat. J. Neurophysiol. 99: 2821-2832. 60. Isaac, J., Nicoll, R., Malenka, R. 1995. Evidence of silent synapses: Implications for the expression of LTP. Nature. 15, 427-434. 61. Ishisuka, N., Weber, J., Amaral, D. 1990. Organization of intrahippocampal projections originating from CA3 pyramidal cells in the rat. JCN. 295, 580-623. 62. Izraeli, R., Porter, LL. 1995. Vibrissal motor cortex in the rat: Connections with the barrel field. Exp. Brain. Res. 104, 41-54. 63. Jacob, V., Mitani, A., Toyoizumi, T., Fox, K. 2016. Whisker row deprivation affects the flow of sensory information through rat barrel cortex. J Neurophysiol. 117, 4-17. 64. Jacquin, M., Rhoades, R., Klein, B. 1995. Structure-function relationship in rat brainstem subnucleus interpolaris. XI. Effects of chronic whisker trimming from birth. J Comp Neurol. 356, 200-224. 65. Ji, K., Akgul, G., Wollmuth, L., Tsirka, S. 2013. Microglia actively regulate the number of functional synapses. PLOS ONE. 8(2), 1-12. 66. Johnson, I., Duberley, R. 1998. Motoneuron survival and expression of neuropeptides and neurotrophic factor receptors following axotomía in adult and ageing rats. Neuroscience. 84, 141-150. 67. Jurado, S., Goswami, D., Zhang, Y., Molina, A., Südhof, T., Malenka, R. 2013. LTP requires a unique postsynaptic SNARE function machinery. Neuron. 77, 542- 68. Karst, H., Berger, S., Turiault, M., Tronche, F., Schütz, G., Joëls, M. 2005. Mineralocorticoid receptors are indispensable for nongenomic modulation of hippocampal glutamate transmission by corticosterone. PNAS. 102(52), 19204- 19207. 69. Katz, B., Miledi, R. 1968. The role of calcium in neuromuscular facilitation. J. Physiol. 195, 481-492. 70. Kauer, J., Malenka, R., Nicoll, R. 1988. A persistent postsynaptic modification mediates long-term potentiation in the hippocampus. Neuron. 1, 911-917. 71. Kerr, F., Lysak, W. 1964. Somatotopic organization of trigeminal-ganglion neurons. Arch. Neurol. 11: 593-602. 72. Kessels, H., Malinow, R. 2009. Synaptic AMPA Receptor Plasticity and Behavior. Neuron. 61, 340-350. 73. Kettenmann, H., Kirchhoff, F., Verkhratsky, A. 2012. Microglia: New Roles for the Synpatic Stripper. Neuron 77. 74. Kiefer, R., Lindholm, D., Kreutzberg, G. 1993. Interleukin-6 and transforming growth factor-ß1 mRNAs are induced in rat facial nucleus following motoneuron axotomy. European Journal of Neuroscience 5: 775-781. 75. Killackey, H., Sherman, S. 2003. Corticothalamic projections from the rat primary somatosensory cortex. J Neurosci. 23: 7381-7384. 76. Kim, J., Diamond, D. 2002. The stressed hippocampus, synaptic plasticity and lost memories. Neuroscience. 3, 453-462. 77. Klein, B., Rhoades, R. 1985. Representation of whisker follicle intrinsic musculature in the facial motor nucleus of the rat. J Comp Neurol. 232, 55-69. 78. Knierim, J. 2015. The hippocampus. Current Biology. 25, 1116-1121. 79. Kreutzberg, G. 1986. Neurobiology of regeneration and degeneration. The Facial Nerve. Thieme. 75-83. 80. Kreutzberg, G. 1996. Microglia: a sensor for pathological events in the CNS. Trends Neurosci. 19, 312-318. 81. Krout, K., Belzer, R., Loewy, A. 2002. Brainstem projections to midline and intralaminar thalamic nuclei of the rat. Journal of Comparative Neurology. 448(1), 53-101. 82. Land, P., Buffer, S., Yaskosky, J. 1995. Barreloids in adult rat thalamus: threedimensional architechture and relationship to somatosensory cortical barrels. The Journal of Comparative Neurology. 355: 573-588 83. Larson, J., Wong, D., Lynch, G. 1986. Patterned stimulation at the theta frequency is optimal for the induction of hippocampal long-term potentiation. Brain Res. 368, 347- 350. 84. Leiser, S., Moxon, K. 2007. Responses of trigeminal ganglion neurons during natural whisking behaviors in the awaken rat. Neuron. 53: 117-133. 85. Magariños, A., Li, C., Gal Toth, G., Bath, K., Jing, D., Lee, F., McEwen, B. 2011. Effect of brain-derived neurotrophic factor haploinsufficiency on stress-induced remodeling of hippocampal neurons. Hippocampus. 21(3), 253-264. 86. Makino, H., Malinow, R. 2009. AMPA receptor incorporation into synapses during LTP: The role of lateral movement and exocytosis. Neuron. 64, 381-390. 87. Malinow, R., Tsien, R. 1990. Presynaptic enhancement shown by whole-cell recordings of long-term potentiation in hippocampal slices. Nature. 346, 177-180. 88. Malenka, R., Kauer, J., Zucker, R., Nicoll, R. 1988. Postsynaptic calcium is sufficient for potentiation of hippocampal synaptic transmission. Science. 242, 81-84. 89. Mattsson, P., Meijer, B., Svensson, M. 1998. Extensive neuronal cell death following intracranial transection of the facial nerve in adult rat. Brain Res Bulletin. 49(5), 333- 341. 90. Matyas, F., Sreenivasan, V., Marbach, F., Wacongne, R., Barsy, B., Mateo, C., Aronoff, R., Petersen, C. 2010. Motor control by sensory cortex. Science. 330, 1240- 1243. 91. Matzusaki, M., Honkura, N., Ellis-Davies, G., Kasai, H. 2004. Structural basis of long-term potentiation in single dendritic spines. Nature. 429, 761-766. 92. McNamara, R., Jiang, Y., Streit, W., Lenox, R. 2000. Facial motor neuron regeneration induces a unique spatial and temporal pattern of myristoylated alaninerich C kinase susbtrate expression. Neuroscience. 97, 581-589. 93. Mulkey, R., Malenka, R. 1992. Mechanisms underlaying induction of homosynaptic long-term depression in area CA1 of the hippocampus. Neuron. 9, 967-975. 94. Müller, W., Connor, J. 1991. Dendritic spines as individual neuronal compartment for synaptic Ca2+ responses. Nature. 354, 73-76. 95. Múnera, A., Cuestas, D., Troncoso, J. 2012. Peripheral nerve lesions induce changes in the firing properties of primary motor cortex layer 5 pyramidal cells. Neuroscience. 223, 140-151. 96. Muñoz, J., M. 2015. Efecto del bexaroteno sobre la plasticidad en la sinapsis comisural CA3-CA1 en un modelo murino de enfermedad de Alzheimer (Tesis de maestría). Universidad Nacional de Colombia, sede Bogotá. 97. Moran, L., Graeber, M. 2004. The facial nerve axotomy model. Brain Res Reviews. 44, 154-178. 98. Moore, J., Deschênes, M., Furuta, T., Huber, D., Smear, M., Demers, M., Kleinfeld, D. 2013. Hierarchy of orofacial rhythms revealed through whisking and breathing. Nature. 497, 205-210. 99. Moreno, C., vivas, O., Laprea, N., Lamprea, M., Múnera, A., Troncos, J. 2010. Vibrissal paralysis unveils a preference for textural rather than positional novelty in the oone-trial object recognition task in rats. Behav Brain Res. 211, 229-235. 100. Morris, R., Garrud, P., Rawlins, J., O’Keefe, J. 1982. Place navigation impaired in rats with hippocampal lesions. Nature. 297, 681-683. 101. Moser, M., Moser, E., Forrest, E., Andersen, P., Morris, R. 1995. Spatial learning with a minislab in the dorsal hippocampus. PNAS. 92, 9697-9701. 102. Moser, M., Rowland, D., Moser, E. 2015. Place cells, grid cells and memory. Cold Spring Harb Perspect Biol. 7:a021808. 103. Nagai, J., Rajbhandari, A., Gangwani, M., Masmanidis, S., Fanselow, M., Khakh, B. 2019. Hyperactivity with disrupted attention by activation of an astrocyte synaptogenic cue. Cell. 177(5), 1280-1292. 104. Nakajima, K., Tohyama, Y., Maeda, S., Kohsaka, S., Kurihara, T. 2007. Neuronal regulation by which microglia enhance the production of neurotrophic factors for GABAergic, catecholaminergic and cholinergic neurons. Neurochemistry International. 50, 807-820. 105. Navarro, X., Vivó, M., Valero-Cabré, A. 2007. Neuronal plasticity after peripheral nerve Injury and regeneration. Progress in Neurobiology. 82, 163-201. 106. Neniskyte, U., Vilalta, A., Brown, G. 2014. Tumor necrosis alpha-induced neuronal loss is mediated by microglial phagocytosis. FEBS lett. 588(17), 2952-2956. 107. Nguyen, P., Abel, T., Kandel, E. 1994. Requirement of a critical period of transcription for induction of a late phase of LTP. Science. 265,1104-1107. 108. Nguyen, Q., Kleinfeld, D. 2005. Positive feedback in a brainstem tactile sensoriomotor loop. Neuron. 45, 447-457. 109. Nicoll, R., Malenka, R. 1999. Expression mechanisms underlying NMDA receptor-dependent long-term potentiation. Ann. N. Y. Acad. Sci. 868, 515-525. 110. Nicoll, R., Tomita, S., Bredt, D. 2006. Auxiliary subunits assist AMPA-type glutamate receptors. Science. 311, 1253-1256. 111. Nishiyama, M., Hong, K., Mikoshiba, K., Poo, M., Kato, K. 2000. Calcium stores regulate the polarity and input specificity of synaptic modification. Nature. 408, 584-588. 112. Noble, J., Munro, C., Prasad, V., Midha, R. 1998. Analysis of the upper and lower extremity peripheral nerve Injuries in a population of patients with multiple injuries. J Trauma. 45, 116-122. 113. Norton, S., Culver, B., Mullenix, P. 1975. Development of nocturnal behavior in albino rats. Behavioral Biology. 15, 317-331. 114. Ocampo, M., Henao, L., Vásquez, L. 2010. Amputación de miembro inferior: Cambios funcionales, inmovilización y actividad física. Editorial Universidad del Rosario. Documento de investigación 42. 115. O’Keefe, J. 1976. Place units in the hippocampus of the freely moving rat. Experimental neurology. 51, 78-109. 116. O’Keefe, J., Speakman, A. 1987. Single unit activity in the rat hippocampus during a spatial memory task. Exp Brain Res. 68(1), 1-27. 117. Oliveira, A., Thams, S., Lidman, O., Piehl, F., Hokfelt, T., Karre, K., Linda, H., Cullheim, S. 2004. A role for MHC class I molecules in synaptic plasticity and regeneration of neurons after axotomy. PNAS. 101(51), 17843-17848. 118. Otmakhov, N., Tao-Cheng, J., Carpenter, S., Asrican, B., Dosemeci, A., Reese, T., Lisman, J. 2004. Persistent accumulation of calcium/calmodulinadependent protein kinase II in dendritic spines after induction of NMDA receptordependent chemical long-term potentiation. J Neurosci. 24(42), 9324-9331. 119. Olton, D., Walker, J., Gage, F. 1978. Hippocampal connections and spatial discrimination. Brain Res. 139, 295-308. 120. Opazo, P., Labrecque, S., Tigaret, C., Frouin, A., Wiseman, P., De Koninck, P., Choquet, D. 2010. CaMKII triggers the diffusional trapping of surface AMPARs through phosphorylation of stargazing. Neuron. 67, 239-252. 121. Pascual, O., Achour, S., Rostaing, P., Triller, A., Bessis, A. 2012. Microglia activation triggers astrocyte-mediated modulation of excitatory neurotransmission. PNAS. 109(4), E197-E205. 122. Patarroyo, W., García-Perez, M., Lamprea, M., Múnera, A., Troncoso, J. 2017. Vibrissal paralysis produces increased corticosterona levels and impairment of spatial memory retrieval. Behav Brain Res. 320, 58-66. 123. Paxinos, G., Watson, C. 2007. The rat brain in stereotaxic coordinates. 3rd Edition. 124. Peña-Ortega, F. 2017. Pharmacological tools to activate microglia and their possible use to study neuronal network patho-physiology. Current Neuropharmacology. 15, 595-619. 125. Perea, G., Araque, A. 2007. Astrocytes potentiate transmitter release at single hippocampal synapses. Science. 317, 1083-1086. 126. Pereira, A., Ribeiro, S., Wiest, M., Moore, L., Pantoja, J., Lin, S., Nicolelis, M. 2007. Processing of tactile information by the hippocampus. PNAS. 104(46), 18286-18291. 127. Perry, H., O’Connor, V. 2010. The Role of Microglia in Synaptic Stripping and Synaptic Degeneration: A revised perspective. ASN Neuro. 2(5), 281-291. 128. Pinganaud, G., Bernat, T., Buisseret, P., Buisseret-Delmas, C. 1999. Trigeminal projections to hypoglosal and facial motor nuclei in the rat. J Comp Neurol. 415: 91-104. 129. Qian, J., Noebels, J. 2000. Presynaptic Ca+2 influx at a mouse central synapse with Ca+2 channel subunit mutations. J. Neurosci. 20(1), 163-170. 130. Raivich, G., Bohatschek, M., Da Costa, C., Iwata, O., Galiano, M., Hristova, M., Nateri, A., Makwana, M., Riera-sans, L., Wolfer, D., Lipp, H., Aguzzi, A., Wagner, E., Behrens, A. 2004. The AP-1 transcription factor c-Jun is required for efficient axonal regeneration. Neuron. 43, 57-67. 131. Rema, V., Armstrong-James, M., Ebner, F. 2003. Experience-dependent plasticity is impaired in adult rat barrel cortex after whisker are unused in early postnatal life. J Neurosci. 23, 358-366. 132. Ren, W., Liu, Y., Zhou, L., Li, W., Zhong, Y., Pang, R., Xin, W., Wei, X., Wang, J., Zhu, H., Wu, C., Qin, Z., Liu, G., Liu, X. 2011. Peripheral nerve injury leads to working memory deficits and dysfunction of the hippocampus by upregulation of TNF-α in Rodents. Neuropsycopharmacology. 36, 979-992. 133. Roozendaal, B. 2002. Stress and memory: opposing effects of glucocorticoids on memory consolidation and memory retrieval. Neurobiol Learn Mem. 78(3), 578- 595. 134. Soreide, A. 1981. Variations in the axon reaction in animals of different ages. Acta anat. 110, 40-47. 135. Semba, K., Egger, M. 1986. The facial “motor” nerve of the rat: Control of vibrissal movement and examination of motor and sensory components. The Journal of Comparative Neurology. 247, 144-158. 136. Sanes, J., Suner, S., Donoghue, J. 1990. Dynamic organization of primary motor cortex output to target muscles in adult rats I. Long-term patterns of reorganization following motor or mixed peripheral nerve lesions. Exp Brain Res. 79, 479-471. 137. Sanes, J., Wang, J., Donoghue, J. 1992. Inmediate and delayed changes in motor cortical output representation with new forelimb configurations. Cereb Cortex. 2, 141-152. 138. Scoville, W., Milner, B. 1957. Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatry. 20(1), 11-21. 139. Shohara, E., Sakai, A. 1983. Localization of motoneurons innervating deep and superficial facial muscles in the rat: A Horseradish peroxidase and electrophysiologic study. Experimental Neurology. 81, 14-33. 140. Svensson, M., Aldskogius, H. 1993. Synaptic density of axotomized hypoglossal motoneurons following pharmacological blockade of the microglial cell proliferation. Experimental Neurology. 120, 123-131. 141. Stanton, P., Winterer, J., Bailey, C., Kyrozis, A., Raginov, I., Laube, G., Veh, R., Nguyen, C., Müller, W. 2003. Long-term depression of presynaptic release from readily releasable vesicle pool induced by NMDA receptor-dependent retrograde nitric oxide. J Neurosci. 23(13), 5936-5944. 142. Steward, O. 1976. Topographic organization of the projections from the entorhinal area to the hippocampal formation of the rat. J Comp Neur. 167, 285-314. 143. Streit, W., Kreutzberg, G. 1988. Response of endogenous glial cells to motor neuron degeneration induced by toxic ricin. 268, 248-263. 144. Stoltz, S., Humm, J., Schallert, T. 1999. Cortical injury impairs contralateral forelimbs immobility during swimming: a simple test for loss of inhibitory motor control. Behav. Brain. Res. 106: 127-132. 145. Sugitani, M., Yano, J., Sugai, T., Ooyama, H. 1990. Somatotopic organization and columnar structure of vibrissae representation in the rat ventrobasal complex. Exp Brain Res. 81:346-352. 146. Tabatadze, N., McGonigal, R., Neve, R., Routtenberg, A. 2013. Activitydependent Wnt 7 dendritic targeting in hippocampal neurons: Plasticity- and taggingrelated retrograde signaling mechanism? Hippocampus. 24(4), 455-465. 147. Takatoh, J., Prevosto, V., Wang, F. 2017. Vibrissa sensory neurons: linking distinct morphology to specific physiology and function. Neuroscience. 368, 109- 114. 148. Toldi, J., Laskawi, R., Landgrebe, M., Wolff, J. 1996. Biphasic reorganization of somatotopy in the primary cortex follows facial nerve lesions in adult rats. Neurosci. Lett. 203, 179-182. 149. Toni, N., Buchs, P., Nikonenko, I., Bron, C., Muller, D. 1999. LTP promotes formation of multiple spine synapses between a single axon terminal and dendrite. Nature. 402, 421-425. 150. Torvik, A., Soreide, A. 1975. The perineuronal glial reaction after axotomy. Brain Research. 95, 519-529. 151. Tremblay, M., Zettel, M., Ison, J., Allen, P., Majewska, A. 2012. Effects of aging and sensory loss on glial cells in mouse visual and auditory cortices. Glia. 60, 541-558. 152. Troncoso, J., Buriticá, E., Múnera, A. 2015. Peripheral nerve injury induces glial activation in primary motor cortex. Conference abstract: Latin-American school on glial cells in the diseased brain (IBRO). 153. Trudeau, L., Emery, D., Haydon, P. 1996. Direct modulation of the secretory machinery underlies PKA-dependent synaptic facilitation in hippocampal neurons. Neuron. 17, 789-797. 154. Tsao, A., Moser, M., Moser, E. 2013. Traces of experience in the lateral entorhinal cortex. Current Biology. 23, 399-405. 155. Tyssowski, K., DeStefino, N., Cho, J., Dunn, C., Poston, R., Carty, C., Jones, R., Chang, S., Romeo, P., Wurzelmann, M., Ward, J., Andermann, M., Saha, R., Dudek, S., Gray, J. 2018. Different neuronal activity patterns induce different gene expression programs. Neuron. 98, 530-546. 156. Urrego, D., Múnera, A., Troncoso, J. 2011. Retracción a largo plazo del árbol dendrítico en neuronas piramidales cortico-faciales por lesiones periféricas del nervio facial. Biomédica. 31, 560-569. 157. Urrego, D., Troncoso, J., Múnera, A. 2015. Layer 5 pyramidal neurons dendritic remodeling and increased microglial density in primary motor cortex in a murine model of facial paralysis. BioMed Research International. 158. Van der Loos, H. 1976. Barreloids in the somatosensory thalamus. Neuroscience Letters. 2: 1-6. 159. Varela, C., Kumar, S., Yang, J., Wilson, M. 2013. Anatomical substrates for direct interactions between hippocampus, medial prefrontal cortex, and the thalamic nucleus reuniens. Brain Struct. Funct. 160. Veinante, P., Deschênes, M. 1999. Single- and multi-whisker channels in the ascending projections from the principal trigeminal nucleus in the rat. J. Neurosci. 19: 5085-5095. 161. Wake, H., Moorhouse, A., Jinno, S., Kohsaka, S., Nabekura, J. 2009. Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. The Journal of Neuroscience. 29(13), 3974-3980. 162. Waller, A. 1850. Experiments on the section of the glossopharyngeal and hypoglossal nerves of the frog, and observations of the alterations produced thereby in the structure of their primitive fibers. Philosophical Transactions of the Royal Society of London. 140, 423-429. 163. Walker, F., Nilsson, M., Jones, K. 2013. Acute and chronic stress-induced disturbances of microglial plasticity, phenotype and function. Current Drug Targets. 14, 1262-1276. 164. Wang, Y., Okamoto, M., Schmitz, F., Hofmann, K., Südhof, T. 1997. Rim is a putative Rab3 effector in regulating synaptic-vesicle fusion. Nature. 388, 593-598. 165. Watson, C., Sakai, S., Armstrong, W. 1982. Organization of the facial nucleus in the rat. Brain Behav. Evol. 20, 19-28. 166. Welker, C., Hoogland, P., Van der Loos, H. 1988. Organization of feedback and feedforward projections of the barrel cortex: a PHA-L study in the mouse. Exp Brain Res. 73, 411-435. 167. Welker, C. 1971. Microelectrode delineation of fine grain somatotopic organization of SM1 cerebral cortex in albino rat. Brain. Res. 26: 259-275. 168. Welker, W. (1964). Analysis of sniffing of the albino rat. Behaviour. 22: 223- 244 169. Wigström, H., Gustafsson, B., Huang, Y. 1986. Hippocampal long-term potentiation is induced by pairing single afferent volleys with intracellularly injected depolarizing current pulses. Acta Physiol Scand. 126, 317-319. 170. Witter, M., Amaral, D. 2004 “Hippocampal Formation”, en The Rat Nervous System, ed. G. Paxinos, 3era Edn (Sydney: Academic Press), 637-687. 171. Witter, M., Naber, P., Haeften, T., Machielsen, W., Rombouts, S., Barkhof, F., Scheltens, P., da Silva, F. 2000. Cortico-Hippocampal communication by way of parallel parahippocampal-subicuar pathways. Hipoocampus. 10, 398-410. 172. Woolsey, T., Van der Loos, H. 1970. The structural organization of layer IV in the somatosensory region (S1) of mouse cerebral cortex: The description of a cortical field composed of discrete cytoarchitectonic unit. Brain Ress. 17, 205-242. 173. Xu, L., Anwyl, R., Rowan, M. 1997. Behavioural stress facilitates the induction of long-term depression in the hippocampus. Nature. 387, 497-500. 174. Yang, Y., Calakos, N. 2013. Presynaptic long-term plasticity. Front Synaptic Neurosci. 5, 8. 175. Zakharenko, S., Patterson, S., Dragatsis, I., Zeitlin, S., Siegelbaum, S., Kandel, E., Morozov, A. 2003. Presynaptic BDNF required for a presynaptic but not postsynaptic component of LTP at hippocampal CA1-CA3 synapses. Neuron. 39, 975-990. 176. Zamanillo, D., Sprengel, R., Hvalby, O., Jensen, V., Burnashev, N., Rozov, A., Kaiser, K., Köster, H., Borchardt, T., Worley, P., Lübke, J., Frotscher, M., Kelly, P., Sommer, B., Andersen, P., Seeburg, P., Sakman, B. 1999. Importance of AMPA receptors for hippocampal synaptic plasticity but not for spatial learning. Science. 284, 1805-1811. 177. Zengel, J., Magleby, K. 1982. Augmentation and facilitation of transmitter release. A quantitative description of the frog neuromuscular junction. J. Gen. Physiol. 80, 583-611. 178. Zucker, R., Regehr, W. 2002. Short-Term Synaptic Plasticity. Annu. Rev. Physiol. 64, 355-405.
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleEfecto de la lesión de nervio facial sobre la plasticidad en la sinapsis comisural CA3-CA1 de hipocampo de rata.
dc.typeOtro


Este ítem pertenece a la siguiente institución